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Optimal Shrinkage Estimation of Predictive
Densities under α–divergences

Edward George∗, Gourab Mukherjee† and Keisuke Yano‡

Abstract. We consider the problem of estimating the predictive density in a het-
eroskedastic Gaussian model under general divergence loss. Based on a conjugate
hierarchical set-up, we consider generic classes of shrinkage predictive densities
that are governed by location and scale hyper-parameters. For any α-divergence
loss, we propose a risk-estimation based methodology for tuning these shrink-
age hyper-parameters. Our proposed predictive density estimators enjoy optimal
asymptotic risk properties that are in concordance with the optimal shrinkage
calibration point estimation results established by Xie, Kou, and Brown [53] for
heteroskedastic hierarchical models. These α-divergence risk optimality properties
of our proposed predictors are not shared by empirical Bayes predictive density
estimators that are calibrated by traditional methods such as maximum likelihood
and method of moments. We conduct several numerical studies to compare the
non-asymptotic performance of our proposed predictive density estimators with
other competing methods and obtain encouraging results.

MSC2020 subject classifications: Primary 62L20; secondary 60F15, 60G42.
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1 Introduction

Predictive density estimation (prde) is one of the fundamental problems in statistical
prediction analysis (see chapters 2, 7 and 10 of Aitchison and Dunsmore [1] and chapters
2, 3 and 9 of Geisser [14]). Predictive density estimates assign probabilities to all pos-
sible future outcomes and can be used for better risk assessment and decision making
than traditional point estimation methods [38, 32, 54]. Predictive densities have been
widely used in a host of statistical applications in weather forecasting [49], finance [48],
information theory [33, 59, 3] as well as for model diagnostics and validation [15, 42, 16].

In this paper, we consider multivariate predictive density estimation under gen-
eral divergence loss in a heteroskedastic Gaussian model. For point estimation, since
the seminal work of James and Stein [26] there has been substantial research toward
understanding the risk properties of shrinkage estimators for the homoscedastic hierar-
chical normal models (see Fourdrinier et al. [13], Efron [10] and the references therein).
The concept of shrinkage is important because it provides an elegant framework for
combining information from related populations and often leads to substantial im-
provements in the performances of estimators used for simultaneous inference. Komaki

∗Department of Statistics, University of Pennsylvania, edgeorge@wharton.upenn.edu
†Department of Data Sciences and Operations, University of Southern California, gourab@usc.edu
‡The Institute of Statistical Mathematics, yano@ism.ac.jp

c© 0000 International Society for Bayesian Analysis DOI: 0000

https://bayesian.org/resources/bayesian-analysis/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
mailto:edgeorge@wharton.upenn.edu
mailto:gourab@usc.edu
mailto:yano@ism.ac.jp
https://doi.org/0000


2 Optimal Predictive density estimation under α–divergences

[29, 30], George et al. [17], Brown et al. [6] demonstrated the critical role of shrinkage
priors for constructing efficient predictive density estimates (prdes) under Kullback-
Leibler (KL) loss. High-dimensional decision theoretic parallels between prde under
Kullback-Leibler loss and point-estimation under quadratic loss have been established
in [12, 55, 18, 31, 40, 39, 58, 20]. Ghosh et al. [21], Suzuki and Komaki [45], Maruyama
and Strawderman [37], L’Moudden and Marchand [35] and Ghosh and Kubokawa [19]
extended those parallels for prde under general α-divergences. Using KL loss as a di-
vergence measure between the true and estimated predictive density leads to conve-
nient tractable analysis. However, predictive densities calibrated by KL loss are often
non-robust to outliers and may under-estimate the variance or ignore important local
attributes of the true density. To circumvent these issues, it is becoming increasingly
popular in complex prediction approaches [50, 24, 7, 61] to use the class of α-divergences
[2, 34, 4] that covers a wide spectrum of divergence measures with contrasting attributes.

For predictive density estimation in multivariate Gaussian models, Ghosh et al. [21]
showed that the canonical minimax prde, which is the Bayes prde under uniform prior,
is not admissible under general divergence loss for dimensions greater than 2. For domi-
nating the canonical minimax prde, Ghosh et al. [21] used prdes that are not necessarily
Bayes, whereas Maruyama et al. [36] established the domination results for the Bayes
prde under the harmonic prior of [17]. Ghosh and Kubokawa [19] established that the
hierarchical Bayes prde has lower frequentist risk than that of the empirical Bayes prde
in a regression set-up. While [21, 19] showcased enhanced predictive efficiency of the
Bayes prde from non-informative priors over plug-in prdes, L’Moudden and Marchand
[35] proposed improving plug-in prdes directly. However, all of these results are based
on the homoskedastic model. They also do not provide any prescription for selecting a
particular prde among the host of feasible and admissible prdes.

Here, we study the prde in a heteroskedastic set-up where our target density is no
longer spherically symmetric, and consider the problem of finding optimal shrinkage
directions. We provide a data driven program for determining the optimal directions
(location) and magnitude (scale) of shrinkage such that the resultant prde has minimal
frequentist risk among a wide class of shrinkage estimators. Our proposed prde not
only possesses the plug-in-dominance properties of the Bayes prde as in [21], but also
obtains the minimal risk among a wide class of shrinkage rules. These α-predictive risk
optimality properties parallel those established by Xie et al. [53] for point estimation in
heteroskedastic hierarchical models.

Recent point estimation results of Xie et al. [53, 52], Tan [47], Weinstein et al.
[51] have brought to light new shrinkage phenomena in heteroskedastic models. A
hierarchical set-up specifying a second-level structure to motivate the shrinkage is con-
sidered, and the corresponding hyper-parameters are subsequently estimated. Whereas,
the common practice is to choose the conjugate hierarchical structure and estimate the
hyper-parameters through empirical Bayes maximum likelihood estimator (EBMLE) or
empirical Bayes method of moments (EBMOM), we instead consider tuning the hyper-
parameters by minimizing efficient risk estimates as in [53].

A significant finding reported in [53, 52, 47, 51] is that, under heteroskedasticity,
EBMLE or EBMOM provide sub-optimal predictive performance and are far out-
performed by algorithms tuned using risk estimation-based approaches. We establish
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asymptotic optimality of our proposed predictive methods akin to the point estimation
results in Xie et al. [53]. These asymptotic properties are not shared by EBMLE or
EBMOM based prdes. We establish asymptotic convergence rates of our risk estimates
as dimension increases. Dimension independent non-asymptotic characterizations of the
predictive risk of our proposed estimators is also provided using maximal inequalities
for martingales. We compare these comprehensive results for general α-divergence with
those of Xu and Zhou [56] who studied empirical Bayes prde in spherically symmetric
homoskedastic Gaussian model under KL loss. Our general α-divergence results well
reconcile with the KL results in the existing literature. Through numerical studies, we
demonstrate the benefits of using α-divergence based risk calibrated prdes over EBMLE
or EBMOM based prdes. The direction of shrinkage and the shape of the optimally
shrunken prdes greatly varies as α changes.

2 Predictive Set-up

Predictive Sequence Model. Consider observing a vector X = {X1, . . . , Xn} where
Xi are independent among each other and Xi follows N(θi, σ

2
i ), i = 1, . . . , n. Based on

observing X we would like to predict the unknown density of future observations Y =
{Yi : 1 ≤ i ≤ n}, where Yi independently follow N(θi, ν

2
i ). Here, σi, νi are known and

thus, ri = ν2
i /σ

2
i is the known ratio of the future-to-past variances. The observed past

X and unobserved future Y are only related through the unknown location parameter
θ = {θi : 1 ≤ i ≤ n}. This is the heteroskedastic version of the Gaussian predictive
model studied in [29, 17, 6, 56]. Let p̂(y|x) be any prde for the true density p(y|θ,ν) =∏n
i=1 φ(yi− θi; νi) of Y . Note that, here we denote normal probability density function

(pdf) with variance v by φ(· ; v) and thus, φ(yi − θi; νi) = ν
−1/2
i φ(ν−1/2(yi − θi)) where

φ(·) denotes standard normal pdf.

Loss Function. Consider α-divergence as the measure of discrepancy between the prde
and the true density. For any fixed α ∈ R, the loss defined as

Ln,α(θ, p̂( · ;x)) :=

∫
p(y | θ,ν) `α

(
p̂(y|x)

p(y | θ,ν)

)
dy,

where the f-divergence function `α with domain in [0,∞) is:

`α(z) :=


{4/(1− α2)}{1− z(1+α)/2}, α 6= ±1,

− log z, α = −1,

z log z, α = 1.

Integrating over the density of the observed past, we have the predictive α-risk as:

Rn,α(θ, p̂) :=

∫
p(x | θ,σ)Ln,α(θ, p̂( · ;x)) dx.

When α = 3, we have Pearson χ2-divergence where as α = −3 corresponds to Ney-
man χ2-divergence; α = −1 is KL loss and α = 1 yields reverse KL loss; α = 0
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corresponds to Bhattacharyya-Hellinger (BH) loss [5]. Note that, the predictive risk
might not be well-defined for all α ∈ R on which we reflect later. For α0 ∈ {−1, 1},
Rn,α0

(θ, p̂) = limα→α0
Rn,α(θ, p̂), so that the KL and reverse KL predictive risk expres-

sions will follow from the general α–predictive risk. Note that, the α predictive risk is
the posterior predictive relative entropy regret criterion introduced in [46] and differs
from the reference prior inducing criterion studied in [8, 22].

Hierarchical set-up and Shrinkage prdes. Next, we assume a hierarchical higher
level exchangeable structure on the unknown location parameters. Let {θi : 1 ≤ i ≤ n}
be independent and identically distributed (i.i.d.) from a N(η, τ) prior where η ∈ R and
τ ≥ 0 are unknown hyper-parameters. This exchangeable hierarchical set-up, well-used
in the literature [53, 11, 43, 60], allows partial pooling of information from quantities
of interest for different yet related groups of populations. Define the integrated Bayes
risk with respect to any prior πn on θ as Bn(π, p̂) =

∫
Rn,α(θ, p̂)πn(θ) dθ. Let αU =

1 + 2 min{ri : 1 ≤ i ≤ n}, b = (1 − α)/2 and b̄ = 1 − b. The following result (proved
in section 7.2) shows that for all α ≤ αU and for any product normal priors, i.e.,
πn(θ) =

∏
φ(θi − η; τ), the integrated Bayes risk has a well-defined minima and the

resultant Bayes predictive density estimator is also a product of normal densities.

Lemma 2.1. Consider θ1, . . . , θn
i.i.d.∼ N(η, τ) where η ∈ R and τ ≥ 0. Then, the Bayes

predictive density estimate with respect to α-divergence loss for any fixed α ≤ αU is

p̂[η, τ ](y|x) =

n∏
i=1

φ
(
yi − (ωixi + ω̄iη); (ri + bωi)σ

2
i

)
(2.1)

where ωi = τ/(τ + σ2
i ) and ω̄i = 1− ωi.

Henceforth, we consider only α–divergences with α ≤ αU . Note that as mini ri ≥ 0,
BH, KL, reverse KL, Neyman χ2 divergences are always covered in our results. If
mini ri ≥ 1, then the Pearson χ2 divergence is also covered. Based on the above result,
we consider the following flexible class S = {p̂[η, τ ] : η ∈ [q̂1, q̂2], 0 ≤ τ} of shrinkage
prdes, where p̂[η, τ ](y|x) =

∏
i φ
(
yi − (ωixi + ω̄iηi); (ri + bωi)σ

2
i

)
,with ωi := ωi[τ ] =

τ/(τ + σ2
i ), ω̄i := ω̄i[τ ] = 1 − ωi[τ ], and q̂1, q̂2 are q/2 and (1 − q/2)th quantiles of

X1, . . . , Xn for any prefixed q ∈ (0, 1). The class is indexed by the location and scale
hyper-parameters, η and τ . For any sensible shrinkage predictors, it is enough to con-
fine the location hyper-parameter η within the 100q% range of the observed data. The
scale hyper-parameter τ varies over the non-negative axis. In the following section, we
provide a methodology for choosing the hyper-parameters so that the resultant prde
has optimal risk properties among all prdes in the class S.

Extension to Non-diagonal Predictive Set-ups. The results and methodology de-
veloped here can encompass non-diagonal predictive set-ups where X ∼ N(θ,Σp) and
Y ∼ N(θ,Σf ) with Σp and Σf being known positive definite matrices. For a non-
diagonal prior θ ∼ N(η,Λ), Lemma 2.1 can be extended as follows with αU being
1 + 2λmin(ΣfΣ

−1
p ), which is the generalization of the scalar case. The proof of the

lemma is presented in section 7.2.



George et al. 2021 5

Lemma 2.2. Let X ∼ N(θ,Σp), Y ∼ N(θ,Σf ), and θ ∼ N(η,Λ) with known positive
definite matrices Σp,Σf , and Λ. Then, the Bayes predictive density estimate with respect
to α-divergence loss for α < αU is

p̂[η,Λ](y | x) = φ
(
y − (Ωx+ Ωη); Σf + b (Σ−1

p + Λ−1)−1
)
, (2.2)

where Ω := Λ(Λ + Σp)
−1 and Ω := I − Ω.

For tractable shrinkage classes, we need to impose lower dimensional structures on
η and Λ in (2.2). Perhaps, the most popular choice is η = η1 and Λ = τI, which
extends the class S based on (2.1) to the non-diagonal set-up. In the following sections,
we describe our method and its associated results for the class S. However, note that
the methodology can be extended to other shrinkage classes based on (2.2).

Hereon, we describe our method first for the diagonal predictive set-up as it produces
comparatively simpler expressions that can be intuitively studied and compared to the
point estimation results of Xie et al. [53] and the predictive KL results in Xu and Zhou
[56]. The general results for non-diagonal set-ups along with their complete proofs are
provided in section 7.

3 Risk Estimation and Hyper-parameter Calibration

Denote by Rn,α(θ; η, τ) the risk Rn,α(θ, p̂[η, τ ]) of any arbitrary member p̂[η, τ ] in S.
The following result proved in section 7.3 shows that this multivariate predictive risk de-
couples as functions of the corresponding coordinate-wise risks and subsequently can be
explicitly written through closed form expressions as functions of η, τ,θ and α. Letting
τ →∞, we get the second display in Theorem 2.4 of Ghosh et al. [21].

Theorem 3.1. For α ≤ αU and α 6= ±1, the risk of any prde p̂[η, τ ] ∈ S can be
expressed as

log
(
1− cαRn,α(θ; η, τ)

)
=

n∑
i=1

Hi(θi, η, τ ;α), where, cα = (1− α2)/4, and,

Hi(θi, η, τ ;α) = f
(
(θi − η)2, ωi[τ ], ri, σi, (1− α)/2

)
with ωi[τ ] = τ/(τ + σ2

i ),

f(t, w, r, σ, b) =
b̄

2
log

(
r

r + wb

)
+

1

2
log

(
r + wb

r + wb2 + w2bb̄

)
− bb̄w̄2t

2σ2(r + wb2 + w2bb̄)

and w̄ = 1− w, b̄ = 1− b.

The risk for the KL and reverse KL losses can be derived from the above expression
by noting that for α = α0 ∈ {−1, 1},

Rn,α0
= lim
α→α0

Rn,α = lim
α→α0

1− exp{
∑n
i=1Hi(θi, η, τ ;α)}
cα

= 2α0

n∑
i=1

∂

∂α
Hi(θi, η, τ ;α0),
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where, the last equality follows from the fact that Hi = 0 when α ∈ {−1, 1}, and

L’Hôpital’s rule. Thus,

Rn,−1 =

n∑
i=1

fb((θi − η)2, wi[τ ], ri, σi; 1) and Rn,1 = −
n∑
i=1

fb((θi − η)2, wi[τ ], ri, σi; 0),

where, fb(t, w, r, σ; b) = ∂
∂bf(t, w, r, σ, b). Finally, it yields

Rn,−1(θ; η, τ) =

n∑
i=1

log(1 + r−1
i ωi)

2
+
ω̄2
i (θi − η)2 − ωiω̄iσ2

i

2σ2
i (ri + ωi)

,

Rn,1(θ; η, τ) =

n∑
i=1

ω̄2
i (θi − η)2 + ω2

i σ
2
i

2σ2
i ri

.

Note that Rn,−1 matches the KL risk expression in equation (11) of Xu and Zhou

[56]. We next estimate the predictive risk Rn,α(θ; η, τ). Noting that (Xi − η)2 − σ2
i is

an unbiased estimator for (θi − η)2, an unbiased estimate of Hi(θi, η, τ ;α) is given by

Ĥi(η, τ ;α), where

Ĥi(η, τ ;α) = f

(
(Xi − η)2 − σ2

i ,
τ

τ + σ2
i

, ri , σi ,
1− α

2

)
.

Consider their average Ĥn(τ, η;α) = n−1
∑n
i=1 Ĥi(τ, η;α). For any fixed α ≤ αU , select

the hyper-parameters that minimize the average risk estimate, i.e.,

(η̂n,α, τ̂n,α) = arg min
0≤τ, η∈[q̂1,q̂2]

sign(α2 − 1) Ĥn(η, τ ;α) (3.1)

to obtain our proposed prde p̂[η̂n,α, τ̂n,α](y|x). Thus, when |α| < 1, we maximize

Ĥn(η, τ ;α) and we minimize it when |α| > 1. However, note that in both the cases,

this corresponds to minimizing risk estimates of the actual risk. For α = ±1, we di-

rectly minimize the unbiased estimates of Rn,1 and Rn,−1. Taking the limit of the

hyper-parameters (η̂n,α, τ̂n,α) as α→ 1− or α→ −1+ also yields similar results.

Figure 1 shows the BH risk of prdes for n = 5 and 10 at θ = t1 where t varies from 0

to∞. The risks of the best prde in S (which is characterized later in (4.1)) is plotted in

blue. The risk of our proposed method is calculated by Monte-Carlo integration and is

plotted in red. In dotted black lines, we have the risk of the best invairant prde p̂Uwhich

is the Bayes prde from the uniform prior. We see that compared to p̂U significant gains

in risk can be obtained by estimators in S when |t| is near the origin and the gains

decrease when |t| is large. Also, the risk of the proposed method is reasonably close to

the minimum attainable risk in S. Next, we rigorously document these risk properties

of prdes tuned by the proposed procedure.
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Figure 1: Plot of BH risks of the prdes in a homoskedastic normal model at θ = t1 as
t varies in the abscissa. Here, σi = 1 and ri = r for all i = 1, . . . , n. From left to right,
r = 1, 0.25, 0.1 respectively; n = 5 in the top and n = 10 in the bottom plots. The risk
of the best-invariant predictive density (dotted black), the risk of the oracle estimator
based on hyper-parameters in (4.1) (in blue) and the risk of our proposed method (in
red) are presented here.

4 Theory Results

We first establish a non-asymptotic concentration bound on the deviation of Ĥn from
the true log-risk. Consider the expected absolute deviation:

Dn,α(θ, τ, η) = E
[

sup
τ≥0

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣].
We establish an upper bound on Dn,α that depends on the L2 norm of the signal
strength:

gn(θ, η) := max

{
1,

{
1

n

n∑
i=1

(
θi − η
σi

)2}1/2}
.

Theorem 4.1. For any α ≤ αU , any fixed η ∈ R and θ ∈ Rn, for all n ≥ 1,

Dn,α(θ, τ, η) ≤ κ0 r
−1
∗ max{1, |cα|} gn(θ, η)n−1/2 ,

where, κ0 = 12 is an absolute constant and r∗ = infi ri.
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When α→ ±1, both the Dn,α(θ, τ, η) and the cα = (1−α2)/4 on the RHS tends to
0. Applying L’Hôpital’s rule yields the analogous bound E supτ≥0

∣∣n−1Rn,α(θ; η, τ)} −
Ĥn(η, τ ;α)| ≤ κ0 r

−1
∗ gn(θ, η)n−1/2 for α = ±1. The proof of the theorem is presented

in section 7.3.

Our next result which uses Theorem 4.1 shows that our proposed risk estimate
approximates the average of the logarithm of the true multivariate risk uniformly well for
all prdes in the shrinkage class S. Thus, calibrating the hyper-parameters by minimizing
the risk estimates is a sensible choice. To facilitate shorter mathemetical proofs we
assume the following asymptotic conditions:

[A1] limn→∞ n−1
∑n
i=1 σ

2
i <∞, limi σi > 0 and 0 < limi ri ≤ limi ri <∞,

[A2] limn→∞ n−1
∑n
i=1 θ

2
i <∞.

Though these conditions may be further relaxed as noted after Theorem 3.1 of [53],
we do not seek the full generality as the conditions are not restrictive and the proofs
presented under these assumptions contain all the essential statistical perspectives.

Theorem 4.2. Under Assumptions A1-A2, for any α ≤ αU and an = o(n1/2),

an

(
sup

η∈[q̂1,q̂2],τ≥0

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣)→ 0 in L1 as n→∞ .

The above result (proved in section 7.5) shows that the risk estimates Ĥn have near-
parametric

√
n-rates of convergence barring some poly-log terms. Thus, we expect the

risk estimates to be reasonably precise even for moderate dimensions n. This attribute
is reflected in the simulation studies in Section 5.

To study the risk properties of our proposed prde p̂[η̂n,α, τ̂n,α], we next introduce
the oracle risk (OR) hyper-parameters as those which minimize the true risk function:

(ηorn,α, τ
or
n,α) = arg min

0≤τ, η∈[q̂1,q̂2]

Rn,α(θ; η, τ). (4.1)

These oracle choices are not really estimators since they depend on the unknown θ
values. They are not obtainable in practice but provide the theoretical benchmark that
one can ever hope to reach. Indeed, no prdes in S can have smaller risk than the oracle
risk prde p̂[ηorn,α, τ

or
n,α].

Consider the average logarithmic ratio of the risk deviations

ρn,α(θ) = − γα
n

log

{
1− cαRn,α(θ; ηorn,α, τ

or
n,α)

1− cαE{Ln,α(θ; η̂n,α, τ̂n,α)}

}
where γα = sign(α2 − 1).

By construction, ρn,α(θ) ≥ 0. For any fixed 0 < a0 < a1 < ∞ and ε > 0, consider
the neighborhood Θ[ε, a0, a1] := {(η, τ) : |τ − τ orn,α| ≤ ε, |η − ηorn,α| ≤ ε, τ ≥ 0, η ∈
[a0, a1]} around oracle hyper-parameters. We impose the following regularity condition
on the sensitiveness (non-flatness) on the true risk functions around the oracle hyper-
parameters.
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[A3] For any ε > 0 and −∞ < a0 < a1 <∞,

lim
n→∞

n−1/2

[
inf

(η,τ)/∈Θ[ε, a0, a1]
log

(
1− cαRn,α(θ; η, τ)

1− cαRn,α(θ; ηorn,α, τ
or
n,α)

)γα]
=∞.

The following result shows that our estimated hyper-parameters are close to the oracle
hyper-parameters and our proposed prde has risk close to the oracle risk. This property
is not shared by the EBMLE or EBMOM. The estimating equations for calibrating
the hyper-parameters based on the EBMLE and EBMOM (discussed in the following
section), differ from our proposed methodology so that the estimated hyper-parameters
can be highly different (see cases IV-V in Section 5). In such cases the EBMLE and
EBMOM tuned prdes have much higher risk than the oracle unless the risk function is
completely flat. As our proposed estimator p̂[η̂n,α, τ̂n,α] is asymptotically nearly as good
as the oracle prde, its asymptotic risk is no larger than that of any other prdes in the
general class S.

Theorem 4.3. For any α ≤ αU , under assumptions A1-A2, the logarithmic ratio
ρn,α(θ) converges asymptotically satisfying lim supn→∞ n1/2ρn,α(θ) <∞. Additionally,
with assumption A3, we have:

(η̂n,α − ηorn,α, τ̂n,α − τ orn,α)→ 0 in probability as n→∞ .

The above result is proved in section 7.6. It shows that as n increases, the average
logarithmic ratio of risk deviations from the oracle (ALRORD) converges to 0 for any
prde calibrated by the proposed method. As such, as n→∞ the ALRORD of any prde
calibrated by the proposed method is always bound above by Op(n

−1/2). Assumption
A3 implies that the ALRORD for an arbitrary p̂[η, τ ] based on hyper-parameter (η, τ)
cannot be bounded below Op(n

−1/2) unless the hyper-parameter (η, τ) is within any
prefixed ε−neighborhood of the oracle hyper-parameter values. This ensures that as
n→∞, the hyper-parameter estimates in (3.1) converge to the oracle values in (4.1).

5 Simulation Experiments

We conduct six simulation experiments to compare the performance of our estimation
methodology with competing methods for calibrating estimators in S. We consider the
EBMLE tuned prde which uses hyper-parameters

(η̂ML, τ̂ML) = arg min
η∈R,τ≥0

n∑
i=1

log(τ + σ2
i ) +

(Xi − η)2

τ + σ2
i

,

the EBMOM tuned prde whose hyper-parameters are solutions to the following equa-
tions

η̂MM =

∑n
i=1(σ2

i + τ)−1Xi∑n
i=1(σ2

i + τ)−1
and τ̂MM =

1

n− 1

( n∑
i=1

(Xi − η̂MM)2 − n− 1

n

n∑
i=1

σ2
i

)
+

,
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the extended James-Stein [53] based prde in S with hyper-parameters

η̂JS =

∑n
i=1 σ

−2
i Xi∑n

i=1 σ
−2
i

and τ̂JS =

(
1

n

n∑
i=1

σ2
i

)(∑n
i=1 σ

−2
i (Xi − η̂JS)2

(n− 3)
− 1

)
+

,

as well as the completely non-informative (NI) prde which has τ → ∞ and the oracle
estimator of (4.1). Additionally, we also consider the Bayes prde p̂C from the heavy
tailed Cauchy prior.

Figure 2: Adjusted BH risk of the prdes based on the oracle estimator of (4.1) (in black),
EBMLE (in blue), EBMOM (in green), Cauchy prior based Bayes prde (in cyan) and
our proposed method (in red) are plotted as n varies along the x-axis.

The six simulation regimes are inspired by experiments in section 4 of Xie et al.
[53]. In Cases I to V, we have Gaussian noise with mean 0 and variances σ2

i being i.i.d.
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from Uniform[0.5, 1.5] distribution. Thus, the mean noise variance is 1. In Case I, we
generate θ ∼ N(0, 2In) and the ri as uniformly distributed between 0.1 and 1. The
average signal-to-noise-ratio (snr) is 2 here. Note, that this case is in perfect congruence
with the hierarchical normal set-up of Section 2. The remaining cases are different from
the normal models and conjugate priors set-ups of Lemmas 2.1 and 2.2. In Case II, θi are
i.i.d. from a Uniform prior on [−

√
3,
√

3] and thus has variability 1. Here, we consider
stratification in r. The ri are generated from a mixture of three uniform distributions
with significantly different supports. In Case III, we introduce dependence between the
means and the future variances by setting θ = r while r is i.i.d. form Uniform[0.1, 2].
Case IV is similar to case 3, except ri’s are no longer bounded as before but are generated
from an inverse-Chisquare with 5 degrees of freedom. In Case V, {(θi, ri) : i = 1, . . . , n}
are independent among themselves, ri takes two possible values with P (ri = 10) = 0.7
and P (ri = 1) = 0.3, and the true mean values are generated conditionally on the ri
values with [θi|ri = 10] and [θi|ri = 1] both being normal distributions with mean 0 and
standard deviations 0.1 and 1, respectively. In Case VI, we consider θ, r as in case 3.
However, here the noise is no longer Gaussian but is from a uniform distribution with
mean 0 and variance 1. The snr is 1.4 in this set-up.

We report the Bhattacharyya-Hellinger predictive risk for the six cases in Table 1
and Figure 2. In each of the six cases, we generate {θi, σi, νi : 1 ≤ i ≤ n} values once
from the corresponding model and then calculate the adjusted BH risk for different η̂
and τ̂ estimates across 100 replicates. We calculate the BH risk adjusted for dimension
by ABHn(θ; η, τ) = 1 − {1 − c0Rn,0(θ; η, τ)}1/n. For each case and n, the reported
adjusted BH predictive risk in Figure 2 is the average of the ABH value across the 100
replicates.

Table 1: As n→∞, the limiting BH predictive risk (adjusted for dimensions) of different
shrinkage prdes is reported in % of excess risk over that of the oracle estimator in (4.1).

Proposed EBMOM EBMLE JS NI Cauchy
Case I 0.05 0.17 0.19 0.04 24.63 1.63
Case II 0.23 0.71 0.65 0.16 48.30 2.32
Case III 0.21 4.69 4.81 6.70 69.70 2.96
Case IV 0.51 26.82 23.07 26.43 119.47 3.28
Case V 0.55 22.40 23.00 19.00 105.97 9.07
Case VI 0.19 5.70 5.67 5.77 72.54 2.94

In Table 1, n = 1000 and so, it reflects the asymptotic risks of these estimators.
Figure 2 compares the risk profiles as sample size varies (NI and JS were avoided in the
display for their significantly higher error rates reduced clarity in some of the plots).
From the table, we see our proposed estimation method is asymptotically close to the
oracle in all the cases where as the figure displays that suitable accuracy can be attained
for moderate n across all the concerned scenarios. The EBMLE and the EBMOM have
risks similar to ours in cases I and II but has significantly worse performance in the
other cases when there is dependence between θ and r. The Cauchy prior based Bayes
prde p̂C performs considerably better than the EBMLE and EBMOM in Cases III,
IV and V, when n is large (see Table 1), though its risk is still significantly higher
than that of the proposed method. In moderate dimensions, the relative risk of p̂C is
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substantially higher than the EBMLE, the EBMOM and the proposed methods. As
such for n ≤ 200, the risk curve for p̂C is higher than the EBMLE or EBMOM in all
cases except IV (see figure 2). The JS based prde has erratic asymptotic risk behavior
as it often fails to adapt to the heterogeneity in the data and the non-informative prior
based prde has poor performance across all regimes. We present two numerical examples
in the supplementary materials where suboptimal performance of the JS based prde is
witnessed.

6 Discussion and Future Work

We developed a risk estimation based methodology for tuning linearly shrunken prdes in
Gaussian models under general α-divergence losses. The proposed risk estimation based
method will be particularly useful under heterogeneity. If the set-up is homoskedastic
(σi = σ and νi = ν for all i), then in high dimensions the proposed method will produce
hyper-parameter estimates similar to the EBMOM and EBMLE. An interesting topic for
future work will be to introspect the roles of prde under α-divergences when covariances
are unknown as studied in Kato [27] for the KL loss. Also, in applications it is important
to choose an α-divergence loss that is tailored to the specific prediction task at hand
[28, 44]. Following Nguyen et al. [41], Gül and Zoubir [23] it will be important to study
the roles different α predictive risks in hypothesis testing and classification problems.
Another important direction would be understanding the roles of adaptive calibration
under α-risk in the presence of latent structures in the mean parameters such as the
sparsity restrictions studied in Mukherjee [38], Yano et al. [57] for the KL loss. Finally,
extending the risk estimation based methodology developed here to non-normal models
will be useful.

7 Proofs

7.1 Details for Non-diagonal Predictive Set-ups

For risk estimation and hyper-parameter calibration in non-diagonal predictive set-ups,
we first extend Theorem 3.1. The following result considers any generic η ∈ Rn and
n × n positive definite (pd) matrix Λ and provides the expression for α-risk of Bayes
prdes given by (2.2).

Lemma 7.1. For α 6= ±1 and α ≤ αU ,

Rn,α(θ, p̂[η,Λ]) = (bb̄)−1
{

1− F (b) exp
[
− bb̄t>Ω

>
(Σf + b2ΩΣp + bb̄Ω>ΣpΩ)−1Ωt/2

]}
,

(7.1)

where t := θ − η, Ω := Λ(Λ + Σp)
−1, b = (1− α)/2 and,

F (b) :=

(
det(Σf )

det(Σf + bΩΣp)

)b̄/2(
det(Σf + bΩΣp)

det(Σf + b2ΩΣp + bb̄Ω>ΣpΩ)

)1/2

.
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Also, 2Rn,1(θ, p̂[η,Λ]) = tr(Σ−1
f Ω>ΣpΩ) + t>Ω

>
Σ−1
f Ωt and 2Rn,−1(θ, p̂[η,Λ]) equals

log det(I + Σ−1
f ΩΣp) + t>Ω

>
(Σf + ΩΣp)

−1Ωt− tr{(Σf + ΩΣp)
−1(ΩΣp − Ω>ΣpΩ)}.

The above expression (7.1) involves the hyper-parameters in Λ via Ω and Ω̄; it is
just the matrix version of risk expression in Theorem 3.1 and was obtained in the above
closed form by applying the Sherman-Morrison-Woodbury formula to the multi-variate
risk function expressions. The proof is provided later in section 7.3.

Next, we consider hyper-parameter calibration for the prdes p̂[η,Λ] which are given
by (2.2) and whose risks are given by (7.1). For that purpose, assume η = η1 and Λ = τI.
Also, assume that Σp and Σf has same eigen-vectors, i.e., Σp = Udiag{σ2

1 , . . . , σ
2
n}U>

and Σf = Udiag{ν2
1 , . . . , ν

2
n}U> with a known orthogonal matrix U = [U1, . . . , Un].

Define ui = 1TUi for i = 1, . . . , n. Consider generalization of the following definitions
from section 3 of the main paper:

Hi(θi, η, τ ;α) = f
(
(θi − η ui)2, ωi[τ ], ri, σi, (1− α)/2

)
and

Ĥi(η, τ ;α) = f
(
(UTi X − η ui)2 − σ2

i , τ/(τ + σ2
i ), ri, σi, (1− α)/2

)
,

where, f , ω[τ ], ri are defined as before. Note, that substituting U = I above, we get
back the definitions in Section 3.

Noting that α-divergence risk is invariant with respect to any one-to-one transfor-

mations of X and Y , consider the transformed prediction problem with X̃ = UX ∼
N(θ̃,diag{σ2

1 , . . . , σ
2
n}), Ỹ = UY ∼ N(θ̃,diag{ν2

1 , . . . , ν
2
n}) and θ̃ = Uθ. The prior

structure on θ̃ = {θ̃i : 1 ≤ i ≤ n} is θ̃i ∼ N(η ui, τ) independently for i = 1, . . . , n.
With this transformed set-up, from lemmas 2.2 and 7.1 it follows that theorem 4.1 can
be easily extended to

log(1− cαRn,α(θ; η, τ)) =

n∑
i=1

Hi(θ̃i, η, τ ;α) = E
{ n∑
i=1

Ĥi(η, τ ;α)

}
.

Thus, the optimization in (3.1) is also our prescribed method for the non-diagonal pre-
dictive set-up. With the additional assumption lim supi σi < ∞, the optimality results
of section 4 also extend over with the general definition

gn(θ, η) = max

1,

{
1

n

n∑
i=1

(
UTi θ − η · UTi 1

σi

)2
}1/2

 .

Next, we provide the proofs of the results stated in the main paper. We provide the
proofs for the general non-diagonal set-up from which the results for the diagonal case
directly follows. Note that, we do need the assumption that Σf and Σp have same eigen
vectors for Lemma 2.2 and 7.1 but for the generalized versions of the optimality results
of Section 4.
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7.2 Proofs of Lemmas 2.1 and 2.2

We begin with two additional notations: let λmin(M) and λmax(M) respectively be the
maximum and the minimum eigenvalue of a matrix M . For positive definite (pd) M , let
φ(·;M) denote multivariate normal probability density function with covariance matrix
M . We prove lemma 2.2 from which lemma 2.1 easily follows.

Consider the cases when α 6= ±1 first. This is equivalent to b 6= 0, 1. Note, that
Σf + bΩΣp is pd. We start by expanding φ(y − (Ωx+ Ωη); Σf + bΩΣp). Let

T1 := y>(Σf + bΩΣp)
−1y and T2 := y>(Σf + bΩΣp)

−1(Ωx+ Ωη).

We expand {y − (Ωx+ Ωη)}>(Σf + bΩΣp)
−1{y − (Ωx+ Ωη)} as

T1 − 2T2 + (Ωx+ Ωη)>(Σf + bΩΣp)
−1(Ωx+ Ωη) . (7.2)

Next, consider further reduction of T1 and T2. By Sherman–Morrison–Woodbury for-
mula we know

(Σf + bΩΣp)
−1 = Σ−1

f −Σ−1
f (Σ−1

f + b−1Σ−1
p + b−1Λ−1)−1Σ−1

f ,

using which we get

T1 = y>Σ−1
f y − y

>Σ−1
f (Σ−1

f + b−1Σ−1
p + b−1Λ−1)−1Σ−1

f y. (7.3)

A simple algebra shows (Σf + bΩΣp)
−1Ω = Σf{bΣ−1

f + Σ−1
p + Λ−1}−1Σ−1

p and thus
we get

T2 = y>Σ−1
f {Σ

−1
f + b−1Σ−1

p + b−1Λ−1}(b−1Σ−1
p x+ b−1Λ−1η) (7.4)

Combined with (7.2), equations (7.3) and (7.4) yield φ(y − (Ωx+ Ωη); Σf + bΩΣp)

∝ exp[−y>Σ−1
f y/2 + y>Σ−1

f (Σ−1
f + b−1Σ−1

p + b−1Λ−1)−1Σ−1
f y/2

+ y>Σ−1
f {Σ

−1
f + b−1Σ−1

p + b−1Λ−1}(b−1Σ−1
p x+ b−1Λ−1η)], (7.5)

where ∝ denotes equality up to a multiplicative constant independent of y.

We next expand p̂[η,Λ]. To this end, we employ the following representation of
the Bayes prde based on prior πn(θ): If {

∫
φb(y − θ; Σf )φ(x − θ; Σp)πn(θ)dθ}1/b is

integrable with respect to y for all x, then

p̂[η,Λ](y | x) ∝
{∫

φb(y − θ; Σf )φ(x− θ; Σp)πn(θ)dθ

}1/b

. (7.6)

For the proof of this representation, see Theorem 1 of [9] and remarks therein. Consider
the right hand side in (7.6). Observe that for any positive definite matrix A and any
n-dimensional vector b, we have∫

exp{−θ>A−1θ/2 + θ>b}dθ = (2π)n/2(det(A))1/2 exp{b>Ab/2}. (7.7)
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Using the above, we arrive at{∫
φb(y − θ; Σf )φ(x− θ; Σp)φ(θ − η; Λ)dθ

}1/b

∝ e−y
>Σ−1

f y/2

[∫
exp

{
−
θ>(bΣ−1

f + Σ−1
p + Λ−1)θ

2
+ θ>(bΣ−1

f y + Σ−1
p x+ Λ−1)

}
dθ

]1/b

∝ exp{−y>Σ−1
f y/2

+ (bΣ−1
f y + Σ−1

p x+ Λ−1)>(bΣ−1
f + Σ−1

p + Λ−1)−1(bΣ−1
f y + Σ−1

p x+ Λ−1)/2}

∝ exp[−y>{Σ−1
f −Σ−1

f (Σ−1
f + b−1Σ−1

p + b−1Λ−1)−1Σ−1
f }y/2

+ y>Σ−1
f {Σ

−1
f + b−1Σ−1

p + b−1Λ−1}(b−1Σ−1
p x+ b−1Λ−1η)].

Together with (7.5) and (7.6), this shows that if {
∫
φb(y − θ; Σf )φ(x − θ; Σp)φ(θ −

η; Λ)dθ}1/b is integrable with respect to y for all x, we have

p̂[η,Λ](y | x) ∝ φ(y − (Ωx+ Ωη); Σf + bΩΣp). (7.8)

Lastly, we will check the condition that {
∫
φb(y−θ; Σf )φ(x−θ; Σp)φ(θ−η; Λ)dθ}1/b

is integrable with respect to y for all x. Equation (7.8) also implies that if Σf +bΩΣp is
positive definite, then {

∫
φb(y−θ; Σf )φ(x−θ; Σp)φ(θ−η; Λ)dθ}1/b is integrable with

respect to y for all x. Note that under the assumption that α < 1 + 2λmin(ΣfΣ
−1
p ),

matrix Σf + bΩΣp is positive definite. This completes the proof. When α = ±1, the
proof is much easier and follows by repeating part of the above deductions.

7.3 Proofs for Theorem 3.1 and Lemma 7.1

We prove Lemma 7.1 from which Theorem 3.1 directly follows. In addition to the nota-
tions defined at the beginning of subsection 7.2, define

Hα(θ, p̂) :=

∫
φ(x− θ; Σp)

∫
φ(y − θ; Σf )

{
p̂(y | x)

φ(y − θ; Σf )

}b̄
for any prde p̂ and for α 6= ±1. We start with the case with α 6= ±1. For a square
matrix A, an n-dimensional vector b, and a positive definite matrix M , define the prde

p̂[A, b,M ] := φ(y−{Ax+b};M). It suffices to show that, if both bI+ b̄Σ
1/2
f M−1Σ

1/2
f

and I + Σ
1/2
p A>S−1AΣ

1/2
p with S := {bM + b̄Σf}/(bb̄) are positive definite, then

logHα(θ, p̂[A, b,M ]) =
b̄

2
log

(
det(Σf )

det(M)

)
− 1

2
log det(bI + b̄Σ

1/2
f M−1Σ

1/2
f )

− 1

2
log det(I + Σ1/2

p A>S−1AΣ1/2
p )− 1

2
(θ −Aθ − b)>(S +A>ΣpA)−1(θ −Aθ − b).

(7.9)

Together with the identity Rn,α(θ, p̂[η,Λ]) = {1 − Hα(θ, p̂[η,Λ])}/(bb̄), this gives the
desired expression of Rn,α by setting A = Ω, b = Ω̄η, and M = Σf + bΩΣp, by noting
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that bM + b̄Σf = Σf + b2ΩΣp and by noting that the Sylvester determinant theorem
yields

det(bI + b̄Σ
1/2
f M−1Σ

1/2
f )× det(I + Σ1/2

p AS−1A>Σ1/2
p )

= det(bI + b̄Σ
1/2
f M−1Σ

1/2
f )× det(S +A>ΣpA)

det(S)

=
det(bM + b̄Σf )

det(M)
× det(S +A>ΣpA)

det(S)
.

Hereafter we denote by EX|θ and EY |θ the expectations with respect to φ(X−θ; Σf )

and φ(Y − θ; Σp), respectively. Observing that b̄(y −Ax − b)>M−1(y −Ax − b) −
(y − θ)>Σ−1

f (y − θ) equals b̄(Ax + b − θ)>M−1(Ax + b − θ) + b̄(y − θ)>(M−1 −
Σ−1
f )(y − θ)− 2b̄(Ax+ b− θ)>M−1(y − θ), it follows that Hα(θ, p̂[A, b,M ]) equals

(
det(Σf )

det(M)

)b̄/2
EX|θ

[
exp

{
− b̄

2
(AX + b− θ)>M−1(AX + b− θ)

}
I(X)

]
, where,

(7.10)

I(x) is defined as

EY |θ

[
exp

{
− b̄

2
(Y − θ)>(M−1 −Σ−1

f )(Y − θ) + b̄(Ax+ b− θ)>M−1(Y − θ)

}]
.

Formula (7.7) yields I(x) equals

∫
exp{−z>[bI + b̄Σ

1/2
f M−1Σ

1/2
f ]z/2}

(2π)n/2
exp{b̄(Ax+ b− θ)>M−1Σ

1/2
f z}dz

=
exp{b̄2(Ax+ b− θ)>M−1Σ

1/2
f (bI + b̄Σ

1/2
f M−1Σ

1/2
f )−1Σ

1/2
f M−1(Ax+ b− θ)/2}

{det(bI + b̄Σ
1/2
f M−1Σ

1/2
f )}1/2

.

Putting this into (7.10), we get

Hα(θ, p̂[A, b,M ]) =

(
det(Σf )

det(M)

)b̄/2 EX|θ[exp{−(Ax+ b− θ)>S̃−1(Ax+ b− θ)}]
{det(bI + b̄Σ

1/2
f M−1Σ

1/2
f )}1/2

where, S̃−1 := b̄M−1 − b̄2M−1{bΣ−1
f + b̄M−1}−1M−1.

Lastly, we evaluate EX|θ[exp{−(Ax + b − θ)>S̃−1(Ax + b − θ)}. Observe that

(Ax+ b− θ)>S̃−1(Ax+ b− θ) can be decomposed as

(x− θ)>A>S̃−1A(x− θ)− 2(x− θ)>A>S̃−1(θ −Aθ − b)

+(θ −Aθ − b)>S̃−1(θ −Aθ − b).
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Together with (7.10), this implies that EX|θ[exp{−(Ax + b − θ)>S̃−1(Ax + b − θ)}
is given by the product of: I1 := exp{−(θ − Aθ − b)>S̃−1(θ − Aθ − b)/2}, I2 :=

{det(I + Σ
1/2
p A>S̃−1AΣ

1/2
p )}−1/2, and I3 := exp{(θ − Aθ − b)>S̃−1A>Σ

1/2
p (I +

Σ
1/2
p A>S̃−1AΣ

1/2
p )−1Σ

1/2
p AS̃−1(θ −Aθ − b)/2}.

Next, applying the following Sherman–Morrison–Woodbury decomposition

(S̃ +A>ΣpA)−1 = S̃−1 − S̃−1A>Σ1/2
p (I + Σ1/2

p AS̃−1A>Σ1/2
p )−1Σ1/2

p AS̃−1 ,

we reduce I1 · I3 to simplify the above product and eventually arrive at the conclusion
that EX|θ[exp{−(Ax+ b− θ)>S̃−1(Ax+ b− θ)} equals

I2 · exp{−(θ −Aθ − b)>(S̃ +A>ΣpA)−1(θ −Aθ − b)/2} . (7.11)

Further, the Sherman–Morrison–Woodbury formula also yields S̃ = S. Thus, we obtain
the desired identity (7.9) for α 6= ±1.

Finally, we consider the cases with α = ±1. These cases can be obtained by taking
the limit of Rn,α. Noting that

F ′(b)

F (b)
=

[
log det(I + b̄Σ−1

f ΩΣp)

2
+
b̄tr(Σ−1

f ΩΣp)

2
+

tr{(Σf + bΩΣp)
−1ΩΣp}

2

− tr{(Σf + b2ΩΣp + bb̄Ω>ΣpΩ)−1(2bΩΣp − 2bΩ>ΣpΩ + Ω>ΣpΩ)}
2

]
,

L’Hôpital’s rule gives the expressions for α = ±1, which completes the proof.

7.4 Proof for Theorem 4.1

By the translation invariance of an α-divergence, we set σi := 1. Let εi := (Xi − θi) for
i = 1, . . . , n. Let ω(τ) := τ/(τ + 1) and ω̄(τ) := 1− ω(τ). Let α 6= ±1 first. Start with
the following Layer cake representation of the target quantity:

E
[

sup
τ≥0

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣]
=

∫ ∞
0

Pr

[
sup
τ≥0

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣ > x

]
dx.

Let mi(τ) := ω̄2(τ)/(ri+b2ω(τ)+bb̄ω2(τ)) for all i = 1, . . . , n and τ ∈ [0,∞). We upper
bound the target quantity |n−1 log

{
1 − cαRn,α(θ; η, τ)

}
− Ĥn(η, τ ;α)| by the sum of

two tractable quantities

|bb̄|
n

∣∣∣∣ n∑
i=1

{(Xi − θi)2 − 1}mi(τ)

∣∣∣∣+
|bb̄|
n

∣∣∣∣ n∑
i=1

(θi − η)(Xi − θi)mi(τ)

∣∣∣∣.
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Thus, we have

E
[

sup
τ≥0

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣] ≤ ∫ ∞
0

{
P1(x) + P1(x)

}
dx,

(7.12)

where, P1(x) = Pr

(
sup
τ≥0

∣∣∣∣ n∑
i=1

(ε2
i − 1)mi(τ)

∣∣∣∣ > nx

2|bb̄|

)
and,

P2(x) = Pr

(
sup
τ≥0

∣∣∣∣ n∑
i=1

(θi − η)εimi(τ)

∣∣∣∣ > nx

2|bb̄|

)
.

Consider bounding P1(x). Without loss of generality, we assume r1 ≥ r2 ≥ r3 ≥ · · · ≥
rn. Noting that mi(τ) = (τ2(ri + b) + τ(2ri + b2) + ri)

−1 ≤ r−1
i , it follows that for any

τ ∈ [0,∞), we have 0 ≤ m1(τ) ≤ m2(τ) ≤ · · · ≤ mn(τ) ≤ r−1 with r := inf ri. Now,
defining a standardized version m̃i(τ) of mi(τ) as m̃i(τ) := rmi(τ), we arrive at

sup
τ≥0

∣∣∣∣ n∑
i=1

(ε2
i − 1)mi(τ)

∣∣∣∣ =
1

r
sup
τ≥0

n∑
i=1

|ε2
i − 1|m̃i(τ) (7.13)

which is bounded above by the magnitude of the following weighted sum

r−1 sup

{ n∑
i=1

|ε2
i − 1|ai : a ∈ Rn and 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ 1

}
.

The function (a1, . . . , an) 7→
∑n
i=1 ai|ε2

i − 1| is convex, and the set of extreme points
of {a ∈ Rn : 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ 1} is exactly {a ∈ Rn : aj = · · · =
an = 1 for some 1 ≤ j ≤ n}. So, the maximum of the above quantity is attained by
aj∗ = · · · = an = 1 for some j∗. Thus, the expression in (7.13) equals the following
simpler quantity: r−1 max1≤j≤n

∑n
i=j |ε2

i − 1|.

With this simplified expression, we now apply the Kolmogorov inequality, to bound

P1(x) ≤
(

2|bb̄|
nxr

)2( n∑
j=1

E(ε2
i − 1)2

)
≤ 1

n

(
2|bb̄|
x r

)2{
Eε4 − 1

}
=

1

nx2
C1 ,

where ε has the standard normal distribution and C1 := 8b2b̄2r−2. Next, using the
inequality between arithmetic and geometric means, it follows∫ ∞

0

P1(x)dx ≤ inf
x>0
{x+ C1n

−1x−1} = 2C
1/2
1 n−1/2. (7.14)

Next consider bounding P2(x). Similarly as before, it follows that

sup
τ≥0

∣∣∣∣ n∑
i=1

εi(θi − η)mi(τ)

∣∣∣∣ ≤ 1

r
sup

1≤j≤n

∣∣∣∣ n∑
i=j

εi(θi − η)

∣∣∣∣.
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As in bounding P1(x), here also we apply the Markov and the Rosenthal inequalities.
It yields

P2(x) ≤
(

2|bb̄|/r
nx

)4

E sup
1≤j≤n

∣∣∣∣ n∑
i=j

εi(θi − η)

∣∣∣∣4

≤
(

2|bb̄|/r
nx

)4

C4

[
E|ε|4 1

n

n∑
i=1

|θi − η|4 +

{
1

n

n∑
i=1

(θi − η)2

}2]

≤ (2|bb̄|/r)4C4

n2x4
(E|ε1|4 + 1)

{
1

n

n∑
i=1

(θi − η)2

}2

. (7.15)

Here, C4 is the constant in the Rosenthal inequality for the fourth moment [25]; C4 =
E(W−1)4 where W has Poisson distribution with mean 1. Thus, C4 ∼ 4. Again applying
the fact that arithmetic mean is at least as much as the geometric mean, we have∫ ∞

0

P2(x)dx ≤ inf
x>0
{x+ C2n

−2x−3} = 2C
1/4
2 n−1/2, (7.16)

where, C
1/4
2 =

2|bb̄|
r

(
4C4

3

)1/4
√√√√ 1

n

n∑
i=1

(θi − η)2.

Finally, combining (7.14) and (7.16) with (7.12) yields

E
[

sup
τ≥0

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣] ≤ 2
(
C

1/2
1 + C

1/4
2

)
n−1/2

≤ c0|bb̄|r−1 max

{
1,

{
1

n

n∑
i=1

(θi − η)2

}1/2}
n−1/2

where c0 = 4(
√

2 + (4C4/3)1/4) ≈ 11.74. This completes the proof for α 6= ±1. The
proof for α = ±1 follows the same line as in the above.

7.5 Proof for Theorem 4.2

Let εi := (Xi− θi) for i = 1, . . . , n. Let ω(τ) := τ/(τ + 1) and ω̄(τ) := 1−ω(τ). Also let
mi(τ) := ω̄2

i (τ)/(ri+ b2ω(τ)+ bb̄ω2(τ)) for i = 1, . . . , n. Consider the case with α 6= ±1.
Start with the following representation of the target quantity:

E
[

sup
τ≥0,|η|≤q̂

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣] ≤ ∫ ∞
0

{P1(x) + P2(x) + P3(x)}dx,

where, P1(x) = Pr

(
sup
τ≥0

∣∣∣∣ n∑
i=1

(ε2
i − 1)mi(τ)

∣∣∣∣ > nx

2|bb̄|

)
,

P2(x) = Pr

(
sup
τ≥0

∣∣∣∣ n∑
i=1

θiεimi(τ)

∣∣∣∣ > nx

2|bb̄|

)
and,
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P3(x) = Pr

(
sup

τ≥0,|η|≤max{q̂1,q̂2}

∣∣∣∣ n∑
i=1

ηεimi(τ)

∣∣∣∣ > nx

2|bb̄|

)
.

First consider bounding P1(x) and P2(x). From (7.14) and (7.16), we get∫ ∞
0

P1(x)dx ≤ 2C
1/2
1 n−1/2 and

∫ ∞
0

P2(x) ≤ 2C
1/2
2 n−1/2 (7.17)

with constants C1 and C2 given in (7.14) and (7.16). Next consider bounding P3(x).
Similarly as in (7.13), we get

sup
τ≥0,|η|≤max{q̂1,q̂2}

∣∣∣∣ n∑
i=1

ηεimi(τ)

∣∣∣∣ ≤ max{|q̂1|, |q̂2|}r−1 sup
1≤j≤n

∣∣∣∣ n∑
k=j

εk

∣∣∣∣,
where r := infi ri. This yields∫ ∞

0

P3(x)dx ≤ 2|bb̄|
n

r−1E
[

max{|q̂1|, |q̂2|} sup
1≤j≤n

∣∣∣∣ n∑
k=j

εk

∣∣∣∣].
Here, the Markov inequality gives

max{|q̂1|, |q̂2|} ≤ cq
∑n
i=1 |Xi|
n

with cq := max

{
2

q
,

1

1− q/2

}
,

and then this gives∫ ∞
0

P3(x)dx ≤ 2cq|bb̄|
r

1

n2

n∑
i=1

E
[
|Xi| sup

1≤j≤n

∣∣∣∣ n∑
k=j

εk

∣∣∣∣] ≤ 2cq|bb̄|
r

(S1 + S2),

where, S1 :=
1

n2

n∑
i=1

E
[
|εi| sup

1≤j≤n

∣∣∣∣ n∑
k=j

εk

∣∣∣∣] and, S2 :=
1

n2

n∑
i=1

E
[
|θi| sup

1≤j≤n

∣∣∣∣ n∑
k=j

εk

∣∣∣∣].
Consider bounding S1. Applying the Cauchy–Schwarz and the Lévy inequalities to S1

yields

S1 ≤
1

n

{
E
[

sup
1≤j≤n

∣∣∣∣ n∑
k=j

εk

∣∣∣∣2]}1/2

≤
√

2

n

{
E
[∣∣∣∣ n∑
k=1

εk

∣∣∣∣2]}1/2

≤
√

2n−1/2.

Consider bounding S2. Applying the Cauchy–Schwarz, the Lévy, and again the Cauchy–
Schwarz inequalities to S2 yields

S2 ≤
1

n

{∑n
i=1 θ

2
i

n

}1/2

E
[

sup
1≤j≤n

∣∣∣∣ n∑
k=j

εk

∣∣∣∣] ≤ 2

n

{∑n
i=1 θ

2
i

n

}1/2

E
[∣∣∣∣ n∑
k=1

εk

∣∣∣∣]

≤ 2

{∑n
i=1 θ

2
i

n

}1/2

n−1/2.
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Therefore, we obtain∫ ∞
0

P3(x)dx ≤ 2C
1/2
3 n−1/2 with C

1/2
3 :=

2cq|bb̄|
r

{
1 +

(∑n
i=1 θ

2
i

n

)1/2}
. (7.18)

Finally, by combining (7.17) with (7.18), we get

E
[

sup
τ≥0,|η|≤q̂

∣∣n−1 log
{

1− cαRn,α(θ; η, τ)
}
− Ĥn(η, τ ;α)

∣∣] ≤ 2(C
1/2
1 + C

1/2
2 + C

1/2
3 )n−1/2

which completes the proof of the theorem.

7.6 Proof for Theorem 4.3

We prove the statement of the theorem for γ = γ(α) := sign(α2 − 1) = −1. The
other case follows similarly. Consider an evaluation of the risk function at our proposed
hyper-parameter values:

Řn,α(θ;X) = Rn,α(θ; η, τ)
∣∣
η=η̂n,α,τ=τ̂n,α

.

Note that Řn,α is not a risk function as it depends on the data X through η̂n,α and
τ̂n,α. As such, Řn,α(θ;X) 6= Rn,α(θ; η̂n,α, τ̂n,α) = ELn,α(θ, p̂[η̂n,α, τ̂n,α]). Consider

En,α(θ) := E
(
n−1 log(1− cαRn,α(θ; ηor

n,α, τ
or
n,α))− n−1 log(1− cαŘn,α(θ;X))

)
(7.19)

As n→∞, we provide an upper bound on En,α(θ). From Theorem 4.1, we have

E
[

sup
τ≥0,η∈[q̂1,q̂2]

∣∣∣∣n−1 log(1− cαRn,α(θ; η, τ))−Ĥn(η, τ ;α)

∣∣∣∣] ≤ 2(C
1/2
1 +C

1/2
2 +C3)n−1/2

with constants C1, C2, C3 given in (7.14), (7.16), (7.18). Also, from the definition of
(η̂n,α, τ̂n,α), we know that

Ĥn(ηor
n,α, τ

or
n,α;α) ≤ Ĥn(η̂n,α, τ̂n,α;α).

Combining them, we get

En,α(θ) = E
[
n−1 log(1− cαRn,α(θ; ηor

n,α, τ
or
n,α))− n−1 log(1− cαRn,α(θ; η̂n,α, τ̂n,α))

]
≤ E

[
Ĥn(ηor

n,α, τ
or
n,α;α)− Ĥn(η̂n,α, τ̂n,α;α)

]
+ 2E

[
sup

τ≥0,η∈[q̂1,q̂2]

∣∣n−1 log{1− cαRn,α(θ; η, τ)} − Ĥn(η, τ ;α)
∣∣]

≤ 4(C
1/2
1 + C

1/2
2 + C3)n−1/2.

This shows lim supn→∞ n1/2ρn,α(θ) <∞. Again, by assumption [A3], for any ε > 0 the
event {|τ or − τ̂n,α| > ε, |ηorn,α − η̂n,α| > ε} is contained in the event {

√
nEn,α(θ) ≥ C}

with C > 4(C
1/2
1 + C

1/2
2 + C3). Thus, Pr(|τ orn,α − τ̂n,α| > ε, |ηorn,α − η̂n,α| > ε) → 0 as

n→∞.
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Supplementary Material

Supplementary materials for Optimal Shrinkage Estimation of Predictive Densities un-
der α–divergences. The supplement contains two numerical examples regarding the
prdes discussed in this paper.
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1 Two Examples of Predictive Usage

We describe two examples to motivate the usage of our proposed prdes. First, consider
predicting the mean cellular expression patterns of sup-populations of infected cells
in l = 1, . . . , L replicated experiments. In experiment l for protein i, we observe the

expression (in arcsinh scale) v
(l)
ij for j = 1, . . . , k

(l)
v cells. Consider a Gaussian additive

model for the protein intensity recorded from each cell:

v
(l)
ij = θi,v + σ

(l)
i,v ε

(l)
ij , j = 1, . . . , k(l)v ,

where, θi,v is the average expression level and ε
(l)
ij are i.i.d. from standard normal dis-

tribution. In these virology experiments the percentage of infection is very low [1] and

typically k
(l)
v in the order of hundreds. As virus entry in cells and subsequent infection

is an endogenous process with experimenter having no control, k
(l)
v vary across replica-

tions l. Our object of interest is the average observed expression vector v̄(l) which has
the same mean but reduced variance:

v̄
(l)
i =

1

k
(l)
v

k(l)
v∑

j=1

v
(l)
ij

d
= θi,v+σ̄

(l)
i Z

(l)
i where σ̄

(l)
i =

σ
(l)
i,v√
k
(l)
v

for i = 1, . . . , 24 and l = 1, . . . , L,

where, Z
(l)
i are i.i.d. from standard normal. The cellular variability σ2

i,v can be well
estimated based on the variability of other types of infected cells from those experiments.

Based on observing v̄ = v̄(1) and knowing {k(l)v : l = 1, . . . , L} we considering predicting
the average expression levels v̄(l) for l > 1. Here, L = 50. We consider BH and KL
losses based prdes p̂H, p̂KL in S that are tuned by our proposed method as well as the
completely non-informative prior based prde p̂NI. We also consider p̂Homo the prde in
S that is tuned ignoring the heteroskedasticity in the data as well as two plugin prdes
(a) p̂CP centered on the canonical mean estimator v̄ (b) p̂JSP centered on the extended
James-Stein (JS) estimator

θ̂JSi (v̄) = η̂JS +

(
1− n− 3∑n

i=1 σ̄
−2
i (v̄i − η̂JS)2

)
+

(v̄i − η̂JS) with η̂JS =

∑n
i=1 σ̄

−2
i v̄i∑n

i=1 σ̄
−2
i

.
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Note, that for these prediction problem r
(l)
i = (σ̄

(l)
i /σ̄

(1)
i )2 vary greatly across i and l. In

Table 1 we report the average (across l) volumes of the 90% and 95% prediction intervals

(PIs) as well as the average number of cases v̄
(l)
i falls outside the interval which is

reported as non-coverage of the intervals. It was witnessed that though the plugin prdes
produced prediction regions with the minimal volume, they are not conservative. All
the other prdes produced conservative prediction intervals with p̂H having substantially
lower volumes than the others.

Table 1: We report the average non-coverage and the average volume of 90% and 95%
prediction intervals that are constructed using different prdes of the infected mean
expression levels.

PRDE 95% Prediction Interval 90% Prediction Interval

Non-coverage Volume Non-coverage Volume

BH 5.09% 30.745 7.87% 28.203

Kullback Leibler 2.31% 35.595 2.31% 32.652

Homoskedastic 3.70% 36.024 4.63% 33.046

Non-Informative 3.70% 36.108 4.63% 33.122

Plugin Canonical 10.65% 24.789 13.89% 22.740

Plugin JS 10.65% 24.789 14.81% 22.740

Next, we consider a different problem where the goal is finding significant contrasts
in expressions between infected and uninfected population. In virology it is important
to predict the difference in the average protein expression between the infected and

uninfected cell populations [2]. For uninfected cells we observe u
(l)
ij – the expression of

the ith protein across j = 1, . . . , k
(l)
u cells from l = 1, . . . , L samples. Here, L = 20. The

mean expression profile θu = {θi,u : 1 ≤ i ≤ n} in uninfected cells is possibly different

form the mean profile θ
(l)
v . We model

u
(l)
ij = θ

(l)
i,u + σ

(l)
i,u ε

(l)
ijv and v

(l)

ij̃
= θ

(l)
i,v + σ

(l)
i,v ε

(l)

ij̃v
,

where, ε
(l)
iju and ε

(l)

ij̃v
are independent white noise and j = 1, . . . , k

(l)
u and j̃ = 1, . . . , k

(l)
v .

The average expression difference vector d = {v̄(l)i − ū
(l)
i : 1 ≤ i ≤ 24} follows d

(l)
i =

θ
(l)
i,d+σ

(l)
i,d Z

(l)
i where θ

(l)
i,d = θ

(l)
i,v−θ

(l)
i,u and σ

(l)
i,d = {(σ(l)

i,v)2/k
(l)
v +(σ

(l)
i,u)2/k

(l)
u }1/2. The mean

difference between infected and uninfected expressions corresponds to fold changes in
proteins due to viral infection. For L = 20 samples, we observe pre-infection and post
VZV infection protein expressions for i = 1, 2, . . . , 24 proteins over the baseline. These
proteins can be classified into two functional types (a) surface (b) signaling. There is
discernible difference in the variability and mean expression patterns between these two
groups. Figure 1 (left panel) show the variance of the 11 surface proteins (in red) and
the 13 signaling proteins (in blue).

For l = 1, . . . , L, we construct 90% and 95% simultaneous PIs for the mean expres-
sion difference between infected and uninfected cells. Figure 1 (right panel) shows the
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Figure 1: Left panel: Standard deviations (SD) of the VZV infected average expressions
for 11 surface proteins (in red) and the 13 signaling proteins (in blue). The average
SD across 20 samples and their one SD ranges is shown. Right panel: 95 % Predictive
intervals based on p̂H for the difference of means between virus and uninfected sample.
In red corresponds to markers where there is significant difference with the x denoting
that 0 is outside the 95% interval.

Table 2: We report the number of proteins (# Sig) with significantly different expressions
between infected and uninfected samples for the 95% and 90% prediction intervals. The
reproducibility (R-index) of these significant contrasts across 19 experiments and the
average volumes of the PIs are also reported.

PRDE 95% Prediction Interval 90% Prediction Interval

# Sig R-index Volume # Sig R-index Volume

BH 6.6 93.33% 38.478 7.4 92.50% 35.296

Kullback Leibler 5.3 94.58% 44.204 6.2 93.33% 40.549

Homoskedastic 5.4 94.17% 44.680 6.5 93.33% 40.986

Non-Informative 5.3 93.33% 44.874 6.6 93.33% 41.164

Plugin Canonical 9.1 88.96% 31.731 9.9 86.88% 29.107

Plugin JS 9.1 88.33% 31.731 10 86.25% 29.107

95% PI from p̂H in l = 1. The intervals marked in red do not contain the origin. So, at

5% level of significance they denote the proteins which has different expression in the

infected population. Up regulation of only one signaling protein was witnessed in the

infected sample along with changes in six cell surface proteins (two down and four up

regulation). It shows down regulation of naive marker (CD45RA) accompanied by cor-

responding up regulation of the memory marker (CD45RO) which was reported in [3].

In Table 2, we report the average number of significant contrasts based on 90% and 95%

prediction intervals. For c = 0.05 and 0.1 we find significant contrasts between infected

and uninfected samples for l = 1, . . . , L at level c based on 100(1− c)% PIs constructed
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using different prdes. The contrasts θ
(l)
i,d is expected to be invariant across l = 1, . . . , L.

In table 2 we report the reproducibility of these findings across the different samples by
the reproducibility index (R-index). We define R-index as 24−1

∑24
i=1 di∨ (1−di) where

di = L−1
∑L

l=1 I{θ
(l)
i,d 6= 0}.

Prdes that produce PIs with higher R-index and lower average volumes are desired.
Plugin prdes do not attain desired R-index for both cases c = 0.05 and 0.1. The other
prdes have reasonable R-indices. Among those the BH loss based prde in S produces PIs
with the least average volume and also with the maximum average discoveries of signifi-
cant contrasts. However, note that here we do not have any criterion or recommendation
for prescribing what would be a good α-divergence metric for producing prediction in-
tervals or for hypothesis testing. In real-world applications, we need decision-theoretic
formulation of a loss function that is tailored to the specific inferential task at hand.
We need a suitable loss function (in this case a good choice of α) that is carefully de-
signed based on the application at hand and without looking at the data. Here, we do
not conduct any introspection on what would be a good choice of α but present the
two examples merely for illustrating results based on different prdes used in the paper.
We witness sub-optimal performance of the aforementioned plug-in prde but can not
suggest any optimal choice from the other prdes.
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