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Abstract: We consider the problem of predictive density estimation un-
der Kullback-Leibler loss in a high-dimensional Gaussian model with exact
sparsity constraints on the location parameters. For non-asymptotic spar-
sity levels, the least favorable prior is discrete. Here, we study the first
order asymptotic minimax risk of Bayes predictive density estimates where
the proportion of non-zero coordinates converges to zero as dimension in-
creases. Motivated by an optimal thresholding rule in Mukherjee and John-
stone (2015), we propose a discrete prior and show that its Bayes predictive
density estimate is minimax optimal. This produces a nonsubjective dis-
crete prior distribution that minimizes the maximum posterior predictive
relative entropy regret. We discuss the decision theoretic implications and
the structural differences between our proposed prior and its closest prede-
cessor – the geometrically decaying discrete prior of Johnstone (1994a) that
produced minimax optimal point estimators under quadratic loss. Through
numerical experiments, we present non-asymptotic worst-case risk of our
proposed estimator across different sparsity levels.
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1. Introduction and main results

A fundamental problem in statistical prediction analysis is to choose a probabil-
ity distribution based on observed data that will be good in predicting the behav-
ior of future samples (Aitchison and Dunsmore, 1975; Geisser, 1993; Aitchison,
1975). The future probability density conditioned on the observed past is re-
ferred to as the predictive density and estimating it plays an important role in a
number of statistical applications (Liang, 2002; Mukherjee, 2013). Consider the
problem of predictive density estimation in a n-dimensional Gaussian location
model where the observed past vector X ∼ Nn(θ, vxI) and the future vector
Y ∼ Nn(θ, vyI). The variances vx and vy are known. The future and past vec-
tors are related only through the unknown location vector θ. Consider predictive
density estimators (PRDE) p̂(y|x) and measure their performance in estimating
the true future density p(y|θ, vy) = Nn(θ, vyI) by the global divergence measure
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of Kullback and Leibler (1951),

L(θ, p̂(·|x)) =
∫

p(y|θ, vy) log
(
p(y|θ, vy)
p̂(y|x)

)
dy. (1.1)

The KL risk integrates the above loss over the past distribution and is given by

ρ(θ, p̂) =

∫
L(θ, p̂(·|x))p(x|θ, vx) dx.

Sweeting et al. (2006) showed that ρ(θ, p̂) constitutes a posterior predictive
relative entropy regret criterion that can be used for the construction of non-
subjective prior distributions.

Given any prior π on θ, the Bayes PRDE p̂π(y|x) =
∫
p(y|θ, vy)π(dθ|x). The

average integrated risk B(π, p̂) =
∫
ρ(θ, p̂)π(dθ), when well-defined, is minimized

by p̂π yielding the Bayes risk B(π) = inf p̂ B(π, p̂).
Decision theoretic parallels between PRDE and point estimation (PE) of the

multivariate normal mean under square loss are established in Komaki (2001);
George et al. (2006); Brown et al. (2008); Ghosh et al. (2008); Kato (2009a);
Maruyama and Ohnishi (2019). These risk analysis results hold for any dimen-
sion n. In higher dimensions, Fourdrinier et al. (2011); Xu and Liang (2010);
Kubokawa et al. (2013) developed minimax optimal PRDE for constrained pa-
rameter spaces [see George et al. (2012), Ch. 1 of Mukherjee (2013) and George
et al. (2019) for extensive reviews]. Sparse PRDE under exact �0 sparsity con-
straints on the location parameter is studied in Mukherjee and Johnstone (2017,
2015) where efficacy of different PRDEs were evaluated with respect to the min-
imax benchmark risk R∗(Θ) = inf p̂ supθ∈Θ ρ(θ, p̂). For an �0 constrained param-
eter space Θ0[sn] = {θ ∈ R

n :
∑n

i=1 1{θi �= 0} ≤ sn} when ηn = sn/n → 0, the
first order asymptotic minimax risk was evaluated as

R∗(Θ0[sn]) = (1 + r)−1n ηn log η
−1
n (1 + o(1)) as n → ∞, (1.2)

where r = vy/vx. The minimax risk increases as r decreases. The difficulty of
the density estimation problem increases as r decreases as we need to estimate
the future observation density based on increasingly noisy past observations.
The rate of convergence of the minimax risk with n does not depend on r,
and so exact determination of the constants is needed to show the role of r in
this prediction problem. Several predictive phenomena that contrast with point
estimation results have been reported with the divergence becoming palpable
as r decreases.

Here, we study the risk of Bayes predictive density estimators based on sparse
discrete priors. In order to incorporate the knowledge on sparsity of the pa-
rameters, we consider priors with an atom of probability (spike) at the origin.
Spike-and-slab priors based procedures have been shown to be very success-
ful for sparse estimation (Johnstone and Silverman, 2004; Clyde and George,
2000; Rockova and George, 2018). Here, we consider slabs based on discrete
priors. In regimes with non-asymptotic sparsity levels, i.e., ηn → η ∈ (0, 1),
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the least favorable prior is unique and discrete (Berger and Bernardo, 1992;
Zhang, 1994). Risk analysis of estimators based on discrete priors has a rich
history in statistical decision theory (Johnstone, 2013; Marchand et al., 2004;
Bickel, 1983; Kempthorne, 1987), particularly for studying the worst-case geom-
etry of parametric spaces. For tractable analysis and detailed insights, minimax
optimality based on discrete priors is studied in the asymptotic regime (John-
stone, 1994b; Bickel, 1983, 1981). Johnstone (1994a) (henceforth referred to
as J94) established that for sparse point estimation a product prior based on
discrete marginals containing equi-spaced support-points with geometrically de-
caying probability is asymptotically minimax optimal. Mukherjee and Johnstone
(2017) (referred hereon as MJ17) showed that Bayes PRDE from the J94 prior
is minimax sub-optimal under Kullback-Leibler loss. In this paper, we construct
a discrete prior whose marginals have geometrically decaying tail probabilities
akin to J94 but have different prior spacings so that the resultant Bayes PRDE
is minimax optimal.

The discrete prior we study here is inspired by the risk diversification phe-
nomenon introduced in Mukherjee and Johnstone (2015) (henceforth referred
to as MJ15) for constructing minimax optimal PRDEs. MJ15 showed that in
contrast to point estimation, for obtaining minimax optimality in sparse PRDE
we need to incorporate the notion of diversification of the future risk. The op-
timal thresholding rule of MJ15 used two Bayes PRDEs: One of those is the
Bayes PRDE from a symmetric product prior whose marginals have finitely
many support points with atoms except at the origin having equal probability.
Here, we conduct detailed worst-case risk analysis of PRDEs based on generic
versions of such discrete priors. Unlike MJ15, our proposed prior has marginals
with clusters of equi-probable atoms and the clusters have different probabili-
ties. Compared to MJ15, our proposed clustered prior based Bayes PRDE has
the advantage of avoiding the discontinuous thresholding operation in order to
obtain sparse minimax optimality.

We first present our main result regarding minimax optimality of the Bayes
PRDE from the proposed clustered discrete prior. Thereafter, we discuss the
implications of the result along with detailed background and connections to
the existing literature.

1.1. Main result: Minimax optimality

For any fixed positive r, consider the Bayes PRDE from a discrete product prior
consisting of symmetric marginals πCL (defined below). The marginal has equi-
spaced clusters of atoms with geometrically decaying probability content in the
clusters as they move away from the origin. For any η ∈ (0, 1) and r ∈ (0,∞)
consider the univariate clustered discrete prior:

πCL[η, r; γ, κ] = (1− η)δ0 +
1− η

2

∞∑
i=1

ηi
{
Ci(η, r; γ, κ) + C−i(η, r; γ, κ)

}
, (1.3)
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which has an atom of probability 1−η at the origin and the remaining η probabil-
ity shared across clusters. Each of the clusters Ci has κ atoms {μij : j = 1, . . . , κ}
of equal probability which is the reason for referring such prior distributions
as clustered priors. Let v = (1 + r−1)−1, λe := λe(η) = (−2vx log η)

1/2 and
λf := λf (η, r) = v1/2λe. For any fixed γ ≥ 1, the atoms in C1 are aligned
in between λf and λe in a geometric progression with common ratio γ, i.e.,
μ1j(η, r, γ) = γj−1λf ∧λe for 1 ≤ j ≤ κ. Such geometric spacing was introduced
in MJ15 (see Theorem 1C). For i ≥ 2 the atoms are extended periodically to
cluster Ci as μij = (i − 1)μ1κ + μ1j and by symmetry μ−ij = −μij to the
negative axis. Thus, the clusters themselves are equidistant at a separation of
λf and while the atoms within each cluster has equal probability, the clusters
themselves have geometrically decaying probabilities:

Ci(η, r; γ, κ) =
1

κ

κ∑
j=1

δμij and P (Ci) = 2−1(1− η)η|i| for i ∈ Z \ {0}. (1.4)

Our proposed cluster prior πC has γ = γr and κ = Kr where,

γr = 1 + 4r (1.5)

Kr = 1 +
⌈
log(1 + r−1)/(2 log γr)

⌉
· 1{r < r0} . (1.6)

Thus, πC[η, r] := πCL[η, r; γr,Kr]. Here, r0 = 0.5. Note that, Kr = 1 iff r ≥ r0.

Table 1

The size Kr of each cluster in our proposed univariate cluster prior πC as r varies.

r 0.0654 0.0759 0.0910 0.1150 0.1601 0.2826 0.4999 0.5 and above

Kr 8 7 6 5 4 3 2 1

When Kr ≥ 3 and i ≥ 1, all atoms except the Krth one in any cluster Ci

are aligned in a geometric progression starting from μi1 = (i− 1)λe + λf , with
common ratio 1 + 4r and μiKr = iλe. Table 1 shows the cluster size as r varies.
Figure 1 shows the schematic diagram of the (truncated) prior with 6 clusters
for two instances when r = 0.38 and r = 0.14 respectively. While the former has
clusters of size 2, the latter has cluster size 4. Figure 1 illustrates a key aspect
of the cluster prior: for r < r0 the gap μi,Kr −μi,Kr−1 is allowed to vary widely
with r while μi+1,1 − μi,Kr is fixed at λf for all i.

Now, consider the multivariate clustered prior πC
n[ηn, r](dθ) =

∏n
i=1 πC[ηn,

r](dθi) on R
n. Then, the Bayes PRDE p̂C[ηn, r] based on πC

n[η, r] is asymptoti-
cally minimax optimal.

Theorem 1.1. Fix any r ∈ (0,∞). If ηn = sn/n → 0, then

lim
n→∞

{
sup

θ∈Θ0[sn]

ρ
(
θ, p̂C[ηn, r]

)}/
R∗(Θ0[sn]) = 1.
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Fig 1. Schematic for our proposed univariate cluster prior when r equals 0.38 (top) and 0.14
(bottom) respectively. The x-axis shows the spacings between and within the clusters and the
y-axis the logarithm of the prior probabilities. Figure drawn to scale with η = 0.001. Only the
six clusters are displayed with the rest being truncated.

1.2. Geometrically decaying priors: Background and risk analysis

For understanding the decision theoretic implications of the above result, we
briefly revisit the risk properties of sparse product priors based on symmetric
marginals. It follows from J94 that for point estimation of the normal mean
over Θ0[sn] under �2 loss, the posterior mean of the grid prior πEG

n is minimax
optimal as ηn → 0. πEG

n constitutes of i.i.d. copies of univariate grid prior πEG[ηn]
which is defined for any fixed r and η ∈ (0, 1) as

πEG[η] = (1− η)δ0 +
1− η

2

∞∑
i=1

ηi
{
δiλe + δ−iλe

}
.

As ηn → 0, the geometric contamination based discrete prior πEG[ηn] attains
the least Fisher information. In contrast to πC, πEG always has only one point
in each cluster. However, they have identical probability decay rate (geometric
contamination) as the clusters extend away from the origin. MJ17 showed that
the PRDE based on πEG

n is sub-optimal for PRDE estimation based on KL loss.
The Bayes PRDE based on a product grid prior whose univariate marginals
πPG (subscripts PG and EG denote predictive and estimative grids) has reduced
spacing between the atoms and reduced probability decay rate, was established
to be minimax optimal in the predictive regime abet for r ≥ r̃0 = (

√
5− 1)/4:

πPG[η, r] = (1− η)δ0 +
η(1− ηv)

2

∞∑
i=1

η(i−1)v
{
δiλf

+ δ−iλf

}
.

However, πPG is sub-optimal for r < r̃0. Note that, unlike the univariate grid
priors πEG, πPG where support points have geometric probability decay, πC has
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support points with identical probability within each clusters. The clusters in
πC however has the same decay rate as the support points in πEG. The maximum
gap between atoms in πC equals the spacing in πPG. Equiprobable atoms in the
clusters was introduced in MJ15 to control predictive risk via the new notion
of risk diversification. As such consider a truncated cluster prior with only two
clusters:

πTC[η, r] = (1− η)δ0 + η/2{C1 + C−1}

where, C1 = C1(η, r; γ̃r, K̃r) as in (1.4) with γ̃r = 1 + 2r and K̃r given by
Kr − 1 with the formula in (1.6) used with γ̃r in place of γr. As the prior
πTC is bounded at λe, its corresponding Bayes PRDE p̂CT has unbounded risk.
Thresholded product PRDE p̂Tn(y|x) =

∏n
i=1 p̂T(yi|xi) with

p̂T(yi|xi) = p̂TC[ηn, r](yi|xi)1{|xi| ≤ λe(ηn)}+φ(yi|xi, vx+ vy)1{|xi| > λe(ηn)}

was shown in MJ15 to be minimax optimal for any r ∈ (0,∞). In p̂T the thresh-
old is λe(ηn); above the threshold the Bayes PRDE based on the uniform prior,
which is Gaussian with variance vx + vy was used where as below the threshold
the Bayes PRDE from πCT is used. Thresholding rules are not smooth functions
of the data and it was conjectured in Sec. 6 of MJ15 that periodic clustered
priors of the form of (1.3)-(1.4) can attain minimax optimality without the dis-
continuous thresholding operation. Here, we study the risk properties of such
cluster priors and establish minimax optimality of the properly calibrated prior
πC . We found that the common ratio γ̃r used in MJ15 was not optimal and
can be increased to γr. However, as a consequence of removing thresholding we
needed one more atom than MJ15 in our proposed cluster prior πC for small
values of r. We show that the number of support points in πC as used here is nec-
essary by proving the following risk properties of Bayes PRDEs based on generic
cluster priors of (1.3). First, we show that our prescribed choice of r0 = 0.5 is
sharp and can not be further lowered: Any cluster prior with cluster-size one and
the probabilty decay rate of at least ηn is sub-optimal for all r < r0. Consider
the following univariate prior with singleton atoms in each cluster:

πSI[η; ν, l] = (1− η)δ0 +
1− η

2

∞∑
i=1

ηi
{
δμi + δ−μi

}
and μi = ν + (i− 1)l, (1.7)

with ν ≥ 0 and l ≥ L(η) := (−2 log η)1/2. As ν, L vary, let SI be the class of
Bayes PRDEs p̂SI[ηn; ν, L] based on n i.i.d. copies of πSI[ηn; ν, L]. Note, that this
class includes Bayes PRDEs based on πEG

n which correspond to ν = l = L(ηn)
as well as p̂C for all r ≥ r0 in which case l = L(ηn) but ν = (1+ r−1)−1/2L(ηn).
The following result shows that the class SI is sub-optimal.

Lemma 1.2. If ηn = sn/n → 0, then for any r < r0,

lim inf
n→∞

{
inf
p̂∈SI

sup
θ∈Θ0[sn]

ρ
(
θ, p̂

)}/
R∗(Θ0[sn]) > 1.
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Second, we show that our prescribed cluster size Kr can not be further re-
duced for any r < r0. The following result shows that any priors of the form
(1.3)-(1.4) with γ > γr and Kγ = 1 + �log(1 + r−1)/(2 log γ)
 (which gets
specified once γ is fixed by the structure of the atoms in (1.4)) will produce
sub-optimal Bayes PRDEs. Also, dropping atoms from πC will lead to sub-
optimality. For any non-empty subset S ⊂ {1, . . . ,Kr}, instead of (1.4) consider
priors πS[η, r] with clusters

Ci(η, r; γr,Kr) =

( Kr∑
j=1

I(j ∈ S)

)−1 Kr∑
j=1

δμijI(j ∈ S)

and P (Ci) = 2−1(1 − η)η|i| for i ∈ Z \ {0}. Let p̂CL[ηn, r;S] denote the multi-
variate Bayes PRDE based on product of πS[ηn, r]. The following result shows
that it is sub-optimal.

Lemma 1.3. For any fixed r < r0, as ηn = sn/n → 0, for any γ > γr and
Kγ = 1 + �log(1 + r−1)/(2 log γ)
 we have:

lim inf
n→∞

{
sup

θ∈Θ0[sn]

ρ
(
θ, p̂CL[ηn, r; γ,Kγ ]

)}/
R∗(Θ0[sn]) > 1.

As ηn = sn/n → 0, there exists r < r0 such that for any S ⊂ {1, . . . ,Kr},

lim inf
n→∞

{
sup

θ∈Θ0[sn]

ρ
(
θ, p̂CL[ηn, r;S]

)}/
R∗(Θ0[sn]) > 1.

The proof of the above two lemmas are provided in section 3. We end this
section by summarizing the key features of our results.

(a) We construct a prior πC
n with geometric contamination akin to the prior

πEG
n in J94. Under high sparsity, the prior in J94 is asymptically least

favorable for point estimation and has the least Fisher information; its
posterior mean is minimax optimal under quadratic loss. However, the
corresponding Bayes PRDE p̂EG is minimax sub-optimal under KL loss.
Our proposed πC

n has the same decay rate as πEG
n but lot more atoms. It

Bayes PRDE p̂C is minimax optimal under KL loss.
(b) The proposed prior πC

n is based on the minimax analysis of the poste-
rior predictive relative entropy regret criterion of Sweeting et al. (2006)
which differs from traditional reference prior inducing criterion (Bernardo,
1979) as it also considers predictive performance in relation to alternative
nondegenerate prior distributions.

(c) As conjectured in MJ15, using the proposed prior πC
n lead to a minimax

optimal procedure that do not involve threholding. The optimality in the
structure of the proposed prior is established. Among all geometrically
contantimated sparse discrete prior having cluster decay rate similar to
πEG
n in J94, it has the minimal cardinality as established in Lemmas 1.2

and 1.3.
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(d) Compared to the simplier grid priors πPG
n analyzed in MJ17, the geometry

of manifold induced by the proposed prior πC
n is significantly different.

This necessitates separate analysis and proofs of the risk properties of the
Bayes PRDEs from πC

n.
(e) The essential ingredient in the proof is the asymptotic analysis of the terms

in the decomposition of the univariate predictive risk function in (2.2). The
terms in the right hand side of (2.2) involve exponential Gaussian sums
with different means and variances. Minimax analysis of the predictive
regret involves asymptotic characterization of the differences between the
logarithm of two exponential Gaussian sums. In contrast, minimax opti-
mality in PE involves studying only one exponential Gaussian sum (see
Ch 8.5 in Johnstone (2013) and the description in Sec. 2).

1.3. Further result on the asymptotic Bayes risk

Figure 2 shows the numerical evaluation of the predictive risk ρ(θ, p̂C[η, r]) of
our proposed Bayes PRDE when η = 0.001 and r = 0.225. Each cluster has size
three. The maximum risk p̂C[η, r] crosses the asymptotic theory limit but does
not exceed by much. It shows that the asymptotic analysis is fairly reflective in
this non-asymptotic regime.

Fig 2. Plot of the univariate predictive KL risk ρ(θ, p̂C)[η, r] as θ varies over the x-axis. Here,
η = 0.001 and r = 0.225. The horizontal line corresponds to the asymptotic minimax limit
λ2
f (η)/(2r). The dotted vertical lines denotes the location of the non-origin support points of

πC[η, r] with the bold lines marking each cluster boundary.

The risk function has its peak between μ11 and μ12 and is approximately
periodic barring a few clusters near the origin. As the figure shows, the risk
function is much smaller than the asymptotic limit of λ2

f/(2r) for all the points
in C1 barring its first point. As all points in C1 are equally likely, this implies
that the cluster prior is not least favorable. The following result make this
observation rigorous by explicitly evaluating the first order asymptotic Bayes
risk of the cluster prior. It establishes that when there are two or more points
in each cluster (i.e. r < r0) the cluster prior is no longer least favorable.

Theorem 1.4. If ηn = sn/n → 0 as n → ∞, then the multivariate cluster prior
πC
n[ηn, r] is not asymptotically least favorable for all r < r0. As such, its Bayes
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risk satisfies:

lim
n→∞

{
B(πC

n[ηn, r])
)}/

R∗(Θ0[sn]) =
1

Kr

{
1 + r

∞∑
i=2

(
1 + r−1 − (1 + 4r)2i

)
+

}
,

(1.8)

where, Kr is defined in (1.6). Additionally, if ηn → 0 and sn → ∞ as n → ∞
then πC

n[ηn, r] is asymptotically least favorable for all r ≥ r0.

Note that, when r ≥ r0, Kr = 1 and the RHS of (1.8) equals 1. For r < r0,
the proposed prior is no longer exactly asymptotically least favorable but its
Bayes risk has the same order of the minimax risk as ηn → 0.

2. Proof overview

We provide a brief overview of the proof of our main result. Detailed proofs of all
the results are provided in section 3. The proof of Theorem 1.1 involves asymp-
totically upper bounding the risk supθ∈Θ0[sn] ρ(θ, p̂C) by R∗(Θ0[sn]). Then, the
asymptotic equality follows as the first term can not be smaller than the min-
imax risk by definition. Also, note that due to the product structure of the
prior, the multivariate maximal risk can be evaluated based on the risk of the
univariate Bayes PRDE p̂C[ηn, r] by using the following relation:

sup
θ∈Θ0[sn]

ρ(θ, p̂C) = n(1− ηn)ρ(0, p̂C[ηn, r]) + nηn sup
θ∈R\0

ρ(θ, p̂C[ηn, r]) . (2.1)

Asymptotic evaluation of the two expressions on the right above is done by
using the risk decomposition Lemma 2.1 of MJ17. It reduces the calculation
for the univariate predictive risk to finding expectation of functionals involving
standard normal random variable Z as

ρ(θ, p̂C[ηn, r]) =
θ2

2r
− E logNθ,v(Z) + E logDθ(Z), where, (2.2)

Nθ,v(Z) = 1 +
∑
i∈Z\0

qi
K

K∑
j=1

Nij(θ, Z; v) and Dθ(Z) = Nθ,1(Z) .

Here, qi = (1−ηn)
−1P (Ci) with P (Ci) being the mass of cluster Ci in πC[ηn, r];

thus qi = 2−1 exp(−|i|λ2
e,n/2) with λe,n = (2 log η−1

n )−1 and λf,n = v1/2λe,n;
Nij is the contribution to the risk of the jth support point μij(ηn, r) within the
ith cluster.

The risk contributions Nij are exponents of quadratic forms in μij , viz,

Nij(θ, Z; v) = exp{v−1/2μijZ + v−1μijθ − (2v)−1μ2
ij}.

The risk at the origin is well-controlled for this cluster prior based PRDE (see
Lemma 3.1) and so, based on (2.1), it is suffices to bound supθ ρ(θ, p̂C[ηn, r]) by
λ2
f,n/(2r) to arrive at the desired result. This involves tracing two fundamentally



Minimax sparse prediction and discrete priors 1645

different risk phenomena depending on the location of θ (a) θ ∈ C±1 (b) θ /∈ C±1.
In the former case, E logDθ(Z) = O(λf,n) (and thus the contribution of the third
term on the right of (2.2) is not significant. Also, E logNθ,v(Z) = O(λf,n) for
|θ| ≤ λf,n and so, asymptotically ρ(θ, p̂C[ηn, r]) initially increases quadratically
in θ and ρ(λf,n, p̂C[ηn, r]) = λ2

f,n/(2r)(1 + o(1)). However, if |θ| ∈ C1 \ [0, λf,n],
then E logNθ,v(Z) is significantly large and controls the predictive risk below
the desired asymptotic limit (see Lemma 3.4).

If θ ∈ Ci for any |i| > 1, then the risk phenomenon is quite different than the
origin adjoining clusters. Now, E logDθ(Z) is significantly positive. However, an
important ingredient of the proof is that its magnitude can be asymptotically
well controlled by considering only atoms in Ci or the nearest atom in Ci−1.
Lemma 3.3 establishes that for θ ∈ Ci with |i| > 1,

E logDθ(Z) ≤ {E logDi.(Z)}+ + o(λ2
f,n) as n → ∞,

where, Di.(Z) = Ni−1,K(θ, Z; 1)+
∑K

j=1 Nij(θ, Z; 1). Next, use the naive bound

E logNθ,v(Z) ≥ E logNi.(Z)) where Ni. = Ni−1,K(θ, Z; v) +
∑K

j=1 Nij(θ, Z; v).
Plugging these two bounds in (2.2) we get the desired upper bound in Lemma 3.4.

3. Detailed proofs

3.1. Background and preliminaries

For the technical proofs without loss of generality assume vx = 1. So, r =
vx/vy = vx. Recall v = (1 + r−1)−1 and ηn = sn/n. As demonstrated in (2.1),
the multivariate maximal risk of the Bayes predictive density estimate (PRDE)
from the cluster prior can be evaluated by studying the predictive risk of the
univariate Bayes PRDE p̂C[ηn, r] based on the univariate cluster prior πC[ηn, r]:

sup
θ∈Θ0[sn]

ρ(θ, p̂C) = n(1− ηn)ρ(0, p̂C[ηn, r]) + nηn sup
θ∈R\0

ρ(θ, p̂C[ηn, r]) . (3.1)

Henceforth, unless we explicitly mention, we would concentrate on univariate
Bayes predictors and their risk functions. Recall, in the multivariate set-up we
consider asymptotically sparse regimes, where ηn → 0 as n → ∞. Hereon, for
convenience of notation we write η instead of ηn keeping the dependence on n
implicit. Recall,

λe :=
√
2 log η−1, and λf :=

√
2 log η−v.

Recall from equations (1.3)-(1.6) the univariate clustered discrete prior πC[η, r]
is the following:

πC[η, r] = (1− η)δ0 +
1− η

2

∞∑
j=1

ηj
{
Cj(η, r) + C−j(η, r)

}
.
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The point-masses in cluster Cj are denoted by {μjk : k = 1, . . . ,K} where the
common cluster size K is

K := K(r) = 1 +
⌈
log(1 + r−1)/(2 log(1 + 4r))

⌉
· 1{r < r0},

where, r0 = 1/2. Further, recall that

Cj(η, r) =
1

K

K∑
k=1

δμjk
for j ∈ Z \ {0},

where μ1k = λf (1+4r)k−1∧λe for 1 ≤ k ≤ K, μjk = (j−1)μ1K+μ1k for j ≥ 2,
and μjk = μ−jk for j < 0. So for r ≥ r0, that is, when K = 1, the clustered
discrete prior only has point-masses {jλf : j ∈ Z}.

By Lemma 2.1 of MJ17 the predictive KL risk of the univariate cluster prior
is given by:

ρ(θ, p̂C[η, r]) =
θ2

2r
− E logNθ,v(Z) + E logDθ(Z) (3.2)

where Z is a standard normal random variable, and

Nθ,v(Z) = 1 +
1

2K

∑
j∈Z\{0}

K∑
k=1

exp

{
μjkZ√

v
+

μjkθ

v
−

μ2
jk

2v
− |j|λ

2
e

2

}
, and

Dθ(Z) = 1 +
1

2K

∑
j∈Z\{0}

K∑
k=1

exp

{
μjk(Z + θ)−

μ2
jk

2
− |j|λ

2
e

2

}
.

3.2. Proof of Theorem 1.1

We first present the proof for r < r0 because the proof is more intricate compared
to the case when r ≥ r0. In the latter case, by definition K = 1, and the proof is
is comparatively easier. It uses parts of the proof techniques used for r < r0 case
but also involves some fundamentally different attributes. Hence, it is presented
afterwards where we also explain the choice of r0 = 1/2.

3.2.1. Notations

For convenience of notation, we shall write the support points of the clustered
discrete prior as {μp : p ∈ Z}. The identification is made as follows. Let μ0 = 0,
and for p > 0 identify μp in the new notation with μjpkp in the original notation
where jp, kp are the unique positive integers such that p = (jp − 1)K + kp with
kp ≤ K. For p < 0 let μp = −μ−p. So essentially μp is the kpth point in the
pth cluster. Let j0 = 0 and j−p = jp for p < 0. Let c0 = 1 and cp = (2K)−1 for
p �= 0. With these new notations can write

Dθ(Z) =
∑
p∈Z

Dθp(Z), and Nθ(Z) =
∑
p∈Z

Nθp(Z)
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where

Dθp(Z) := cp exp

{
μpZ + μpθ −

1

2
μ2
p − jp

λ2
e

2

}
, and

Nθp(Z) := cp exp

{
μpZ√

v
+

μpθ

v
−

μ2
p

2v
− jp

λ2
e

2

}
.

The above notations will be used for all r ∈ (0,∞). But now we define two
indexes ld(θ) and ln(θ) for all θ > 0 specifically for r < r0. If θ ∈ [jλe, (j+1)λe),
then let ld(θ) := jK. So ld(θ) is the number of support points in the cluster
prior between [0, jλe]. This is the index of the atom μp such that ED0p(Z) is
maximized. Note that jλe = μjK = μld(θ). Now we define the index ln(θ) which
is the index of the atom μp such that EN0p(Z) is maximized. More precisely,
ln(θ) is defined as follows:

(i) If θ ∈ [jλe, jλe + λf ], then let ln(θ) := jK. Note that, in this case μln =
μjK = jλe.

(ii) If θ ∈ (jλe + λf (1 + 4r)k,min{jλe + λf (1 + 4r)k(1 + 2r), (j + 1)λe}] for
0 ≤ k < K, then let ln(θ) := jK + k + 1. Note that, in this case μln =
μjK+k+1 = jλe + λf (1 + 4r)k.

(iii) If θ ∈ (jλe + λf (1 + 4r)k(1 + 2r),min{jλe + λf (1 + 4r)k+1, (j + 1)λe}] for
some 0 ≤ k < K, then let ln(θ) := jK+k+2. Note that, μln = μjK+k+2 =
min{jλe + λf (1 + 4r)k+1, (j + 1)λe}.

3.2.2. Risk at origin

The risk at the origin for our cluster prior based Bayes PRDE is asymptotically
much smaller than the risk for the thresholding based risk diversified PRDE
of MJ15. As such, comparing equation (51) in the aforementioned paper with
the following result, it follows that any thresholding based minimax optimal
PRDE will have much higher risk at the origin than the cluster prior based
Bayes PRDE. The Bayes PRDEs based on grid and bi-grids priors such as the
πEG prior of J94 and πPG and πPG priors of MJ17 have similar risk to the cluster
prior based Bayes PRDE at the origin.

Lemma 3.1. For any fixed r ∈ (0,∞), ρ(0, p̂C[η, r]) ≤ η(1 + o(1)) as η → 0.

Proof. By definition Nθ,v(Z) ≥ 1 for all Z. Using (3.2), we have

ρ (0, p̂C) = −E logNθ,v(Z) + E logDθ(Z) ≤ E logDθ(Z).

Note that, for p �= 0, ED0p(Z) = (2K)−1ηjp . Summing over all p �= 0 and using
D0 = 1 along with the inequality log(1 + x) ≤ x for x ≥ 0 we get

E logD0(Z) ≤
∑
p �=0

ED0p(Z) =
∑
p �=0

(2K)−1ηjp =

∞∑
j=1

ηj =
η

1− η
.

This completes the proof.
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3.2.3. Risk bounds at the non-origin parametric points

Next, we concentrate on the risk at the non-origin points. Our goal is to establish

sup
θ∈R\{0}

ρ (θ, p̂C[η, r]) ≤
λ2
f

2r
(1 + o(1)) as λf → ∞. (3.3)

This along with (3.1) and the above result about the risk bound at the origin
will imply that the multivariate maximum risk obeys

sup
θ∈Θ0[sn]

ρ(θ, p̂C[ηn, r]) ≤ −nηn(1− ηn)
−1 + nηn

λ2
f

2r
(1 + o(1))

= nηn log η
−1
n (1 + r)−1(1 + o(1))

which would establish the result in Theorem 1.1. By symmetry, it would be
enough to prove the bound in (3.3) for positive θ. Hence, hereon in this subsec-
tion we only consider θ > 0. In this case the contribution of Dθis for i < 0 are
expected to be negligible. This is formalized in the following result.

Lemma 3.2. For any r ∈ (0,∞) and any fixed θ > 0 we have,

E logDθ(Z) = E log

(
1 +

∞∑
i=1

Dθi(Z)

)
+ o(1) as λf → ∞.

Proof. Using the the inequality log(1 + x+ y) ≤ x+ log(1 + y) for nonnegative
x, y we get,

E logDθ(Z) ≤
∑
i<0

EDθi(Z) + E log

(
1 +

∞∑
i=1

Dθi(Z)

)
.

Using definition of ji and Dθi and the fact that μi < 0, θ > 0 we get,

EDθi(Z) = E
1

2
exp

{
μi(Z + θ)− μ2

i

2
− ji

λ2
e

2

}

=
1

2
exp

{
μiθ − ji

λ2
e

2

}
≤ 1

2
e−ji

λ2
e
2 .

As i runs from 0 to −∞, ji goes from 1 to ∞ with each term repeating K
times. Hence, summing over i < 0 we get,

∑
i<0 EDθi = o(1) as λf → ∞. This

completes the proof.

We first provide an upper bound on E logDθ(Z), which would be substituted
in equation (3.2) to get the required upper bound. The following result is crucial
as it shows that the infinite sum in the expression of Dθ(Z) can be asymptot-
ically reduced as a contribution from a single dominant term. This reduction
greatly helps in tracking the risk of the cluster prior and is pivotal in the proof
of Theorem 1.1.
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Lemma 3.3. For r < r0 and any fixed θ > 0 we have,

E logDθ(Z) = E logDθld(Z) +O(λf ) as λf → ∞.

Proof. By virtue of the previous lemma, we can consider only contributions
from Dθi(Z)s with i > 0. We suppress the dependence of Dθi(Z)s on θ and Z
and simply write Di. Similarly Dθ(Z) is written only as Dθ. Note that, ld ≥ 0
because θ > 0. First we get an upper bound on E logDθ by separating the
contribution from μld as follows

E log

(
1 +

∞∑
i=1

Dθi(Z)

)
≤ E logDld + E log

(
1 +

∞∑
i=ld+1

Di

Dld

)

+ E log

(
1 +

ld−1∑
i=0

Di

Dld

)
. (3.4)

In the right hand side of the above equation, the second term compares contri-
bution of μld with that of the succeeding terms. We split it further by separating
out the contribution of points in the next cluster from the rest in the following
manner

E log

(
1 +

∞∑
i=ld+1

Di

Dld

)
≤

ld+K∑
i=ld+1

E log

(
1 +

Di

Dld

)
+

∞∑
i=ld+K

E
Di+1

Di
. (3.5)

Note that by definition of ld, μld < θ ≤ μld+K . Take i such that ld + 1 ≤ i ≤
ld +K. Let di := μi − μld . Using the inequality log(1 + x) ≤ log 2 + (log x)+ we
get

E log

(
1 +

Di

Dld

)
= E log

(
1 + exp

{
di

(
Z + θ − μld − di

2

)
− λ2

e

2

})

≤ E log

(
1 + exp

{
diZ − 1

2
(λe − di)

2

})
≤ log 2 + E(dilZ − (λe − di)

2/2)+

= O(λf ). (3.6)

Summing over i in the range ld + 1 ≤ i ≤ ld + K we get the fist term in the
right-hand side of equation (3.5) is O(λf ).

Now let us consider the second term in the right-hand side of (3.5). Let
i ≥ ld +K so that θ ≥ μi. Using E((μi+1 − μi)Z) = (μi+1 − μi)

2/2 we get

E
Di+1

Di
≤ E exp

{
(μi+1 − μi)

(
Z + θ − μi+1 + μi

2

)}
= exp {(μi+1 − μi)(θ − μi)} . (3.7)

Since i runs from ld +K to ∞ and θ ≤ μld+K , if we take a sum over i, we get
a geometrically decaying sum so that the second term in the right-hand side of
equation (3.5) is O(1).
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Hence, the second term in the right-hand side of equation (3.4) is O(λf ).
Now we consider the third term in the right-hand side of equation (3.4) is

also O(λf ). We split the sum as

E log

(
1 +

ld−1∑
i=0

Di

Dld

)
≤

ld−1∑
i=ld−K+1

E log

(
1 +

Di

Dld

)

+ E log

(
1 +

Dld−K

Dld

z

)
+

ld−K−1∑
i=0

E
Di

Dld−K
. (3.8)

To consider the first term in the right-hand side above, take ld−K+1 ≤ i ≤ ld−1.
Then θ ≥ μld ≥ (μld + μi)/2 and because of the structure of the atoms in the
clusters, θ−(μld+μi)/2 = O(λf ). Note that, i and ld belong to the same cluster.
Using symmetry of the distribution of Z we get

E log

(
1 +

Di

Dld

)
= E log

(
1 + exp

(
(μi − μld)

(
Z + θ − μld + μi

2

)))

= E log

(
1 + exp

(
(μld − μi)

(
Z − θ +

μld + μi

2

)))
= O(1).

Summing over ld −K + 1 ≤ i ≤ ld − 1 we get the first term in the right-hand
side of equation (3.8) is O(1).

Now let us consider the second term in the right-hand side of (3.8). Since
μld − μld−K = λe and θ ≥ μld , we get (μld + μld−K)/2− θ ≤ −λe/2. Therefore

E log

(
1 +

Dld−K

Dld

)

=E log

(
1 + exp

(
(μld − μld−K)

(
Z +

μld + μld−K

2
− θ

)
+

λ2
e

2

))

=E log

(
1 + exp

(
λe

(
Z +

μld + μld−K

2
− θ

)
+

λ2
e

2

))
≤E log (1 + exp (λeZ))

≤ log 2 + λe EZ+

=O(λf ).

This shows that the second term in the right-hand side of (3.8) is O(λf ). Here
we see how η, which is the probability decay rate from cluster to cluster, goes
with the cluster length λe.

Finally, for each 0 ≤ i < ld −K define bi = �(ld −K − i)/K�. Then

E log

(
1 +

Di

Dld−K

)
≤ E

Di

Dld−K

≤ 2K exp

(
(μld−K − μi)(μld−K − θ) + bi

λ2
e

2

)
. (3.9)
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Note that, θ − μld−K ≥ λe and μld−K − μi ≥ biλe. Thus, we have

(μld−K − μi) (μld−K − θ) + bi
λ2
e

2
≤ −biλ

2
e + bi

λ2
e

2
= −bi

λ2
e

2
.

Using (3.9) and summing over i in the range 0 ≤ i ≤ ld −K we get

∑
0≤i≤ld−K

E log

(
1 +

Di

Dld−K

)
≤

∑
0≤i≤ld−K

E
Di

Dld−K
≤ K

b0∑
p=0

e−pλ2
e/2 = O(1).

This shows that the third term in the right-hand side of (3.8) is O(1). Thus we
have proved that the second and third term in the right-hand side of (3.4) are
O(λf ) as λf → ∞. This completes the proof.

The previous lemma essentially shows that to get an upper bound on E logDθ(Z)
it is enough to consider only Dθld(Z) because asymptotically the contribu-
tion of the other terms are negligible. To prove (3.3) using (3.2) we need a
lower bound on E logNθ,v(Z), which we get by the straightforward inequality
E logNθ(Z) ≥ E logNθln(Z). Of course the novelty is in choice of ln(θ) and in
the next result we see that these bounds are enough to prove (3.3).

Lemma 3.4. For r < r0 and for any θ > 0, with ln(θ), ld(θ), Nθln , Dθld defined
in Subsection 3.2.1 we have

θ2

2r
− E logNθln(Z) + E logDθld(Z) ≤

λ2
f

2r
(1 + o(1)) as λf → ∞.

Proof. For convenience we write ld(θ) and ln(θ) as ld and ln respectively. Note
that from the definition of ld it follows μld ≤ θ ≤ μld+K . Let

Aθ := μldθ −
μ2
ld

2
− jld

λ2
e

2
, and Bθ :=

μlnθ

v
−

μ2
ln

2v
− jln

λ2
e

2
.

From definitions it follows Dld = cld exp(μldZ + Aθ) and Nln = cln exp(μlnZ +
Bθ). Hence,

− E logNθln(Z) ≤ −Bθ +O(1) as λf → ∞. (3.10)

Using θ ≥ μld = jldλe we get

Aθ = jldθ −
j2ldλ

2
e

2
− jld

λ2
e

2
≥

(
j2ld − jld

) λ2
e

2
≥ 0.

Using this, we derive the upper bound

E log(1 +Dθld(Z)) = E log(1 + cλ exp(μldZ +Aθ))

= Aθ + E log(cλ + exp(μldZ −Aθ)) ≤ Aθ + E(μldZ −Aθ)+ +O(1).

Since μld = jldλe and Aθ ≥ (j2ld −jld)λ
2
e/2, we see that E(μldZ−Aθ)+ = O(λf ).

Hence,
E log(1 +Dθld(Z)) ≤ Aθ +O(λf ). (3.11)
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Combining equations (3.10) and (3.11) we get

θ2

2r
− E logNθln(Z) + E logDθld(Z) ≤ θ2

2r
−Aθ +Bθ +O(λf ).

We will show that θ2/(2r) +Aθ −Bθ ≤ λ2
f/(2r). First consider the case ln = ld

which means θ ∈ [jldλe, jldλe + λf ]. Observe in this case

λ2
f

2r
− θ2

2r
−Aθ +Bθ =

λ2
f

2r
− θ2

2r
+

μldθ

r
−

μ2
ld

2r
=

1

2r

(
λ2
f − (μld − θ)2

)
≥ 0.

Now consider the case ln �= ld, that is, ld + 1 ≤ ln ≤ ld +K. In this case, using
jln = jld + 1, we get

λ2
f

2r
− θ2

2r
−Aθ +Bθ = −

λ2
f

2
− θ2

2r
+

μlnθ

v
−

μ2
ln

2v
− μldθ +

μ2
ld

2
. (3.12)

If we fix values of ln and ld then this is a quadratic in θ with roots α(ln, ld) and
β(ln, ld) where

α(p, q) := μp + r (μp − μq)− r

(
(μp − μq)

2

v
−

λ2
f

r

)1/2

, (3.13)

β(p, q) := μp + r (μp − μq) + r

(
(μp − μq)

2

v
−

λ2
f

r

)1/2

. (3.14)

To show that the right-hand side of (3.12) is nonnegative for all θ, we need
to verify that for the range of θ for which ln(θ) = p and ld(θ) = q is in the
interval [α(p, q), β(p, q)] for all feasible p, q (ln(θ) determines ld(θ)). Because of
the periodicity of the clusters, it’s enough to consider the first cluster. So we fix
q = 0 and consider p going from 1 to K.

Consider the case p = 1. Using μ0 = 0 and μ1 = λf we get α(1, 0) = λf and
β(1, 0) = λf (1 + 2r). By definition, ln = 1 for θ ∈ [α(1, 0), β(1, 0)] as required.
With some calculations we can see that if α(2, 0) = λf (1 + 2r) then μ2 =
λf (1 + 4r). In general for any p > 1 we can verify α(p, 0) < β(p− 1, 0) proving
that the expression in the right-hand side of (3.12) is always non-negative.

3.2.4. Proof of Theorem 1.1 for r ≥ r0

The proof follows essentially the same ideas of the proof in the case r < r0
but there are some technical differences. The analysis of risk at the origin is
unchanged because Lemma 3.1 holds for all r. So now, we analyze risk at non-
origin points and basically prove (3.6).

As before, we use the decomposition of risk in (3.2). Our strategy is the
same, that is, showing that contribution of EDθld(θ)(Z) for one particular index
ld(θ) is dominant in E logDθ(Z) and using a naive lower bound on E logNθv(Z)
considering ENθln(θ) for one particular index ln(θ).
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The choices of the indexes in this case are slightly different. Recall that each
cluster Cj of πC[η, r] consists of only one point. The atoms are at μp = pλf for
all p ∈ Z. By symmetry we only consider θ > 0. By Lemma 3.2, which didn’t
depend on value of r, we can ignore all Dθp with p < 0. Suppose θ ∈ [μl, μl+1)
for some l ≥ 0. The contribution of Dθi for all i > l is negligible compared to
Dθl and the proof is exactly same as done in the beginning of Lemma 3.3, c.f.,
equations (3.4), (3.5), (3.6) and (3.7). The crucial difference from the sub-critical
case arises now. We will see that, if l ≥ 1, then unlike the sub-critical case Dθl

is not always the dominant term. Instead Dθ,l−1 dominates Dθl for some θ if
r > r0. To see this, note that,

E log

(
1 +

Dθ,l−1

Dθl

)
= E log

(
1 +

cl−1

cl
exp

{
λf

(
Z +

μl + μl−1

2
− θ

)
+

λ2
e

2

})
.

Hence, EDθl(Z) dominates EDθ,l−1(Z) if λf ((μl + μl−1)/2 − θ) + λ2
e/2 ≤ 0,

which simplifies to θ ≥ μl + λf/(2r). For θ ∈ [μl, μl + λf/(2r)], it can be shown
that Dθ,l−1 is dominant. Also note that for l ≥ 2

E log

(
1 +

Dθ,l−2

Dθ,l−1

)
= E log

(
1 +

cl−2

cl−1
exp

{
λf

(
Z +

μl−2 + μl−1

2
− θ

)
+

λ2
e

2

})
.

Using r ≥ 1/2

λf

(
μl−2 + μl−1

2
− θ

)
+

λ2
e

2
≤ λ2

e

2
−

3λ2
f

2
≤ 0.

Hence, Dθ,l−2 and the preceding Dθis are not dominant.
Now if Dθl is dominant, that is, θ ∈ [μl +λf/(2r), μl+1) then using the naive

lower bound E logNθ,v(Z) ≥ E logNθl(Z) we get

ρ(θ, p̂C[η, r]) =
θ2

2r
− E logNθ,v(Z) + E logDθ(Z) ≤

λ2
f

2r
(1 + o(1)) .

We skip the details of the proof because it’s exactly similar to the case ld = ln
in Lemma 3.4.

On the other hand, if Dθ,l−1 is dominant, that is, θ ∈ [μl, μl + λf/(2r)),
then we use E logNθl(Z) as a lower bound of E logNθ,v(Z). We end up with a
quadratic in θ similar to equation (3.12), which is nonnegative in [μl, μl+2rλf ].
Since this interval covers the interval [μl, μl+λf/(2r)] for r ≥ r0 we get the the
above equation.

3.3. Proof of Lemma 1.2

Similar to Lemma 3.4, here also, since l > λe, we can show that in the risk
decomposition in (2.2) E logNθ,v(Z) can be replaced with E logNθ,ln(θ)(Z) for
some ln(θ), and similarly E logDθ(Z) can be replaced with E logDθ,ld(θ)(Z) for
some ld(θ) (Dθ,p and Nθ,p defined in Subsection 3.2.1), in the sense that the



1654 U. Gangopadhyay and G. Mukherjee

difference is negligible, that is O(λf ), asymptotically. Consider θ ∈ [ν + (p −
1)l, ν + pl] for some p > 1. By calculations similar to Lemma 3.4, we can show
for θ ∈ [ν + (p− 1)l, ν + (p− 1)l + λf ] if we choose ln = ld = p then the risk is
below the threshold λ2

f/(2r) asymptotically and similarly ln = ld = p+1 works
for θ ∈ [ν+pl−λf , ν+pl]. But for r ≤ 1/3 we have ν+pl−λf > ν+(p−1)l+λf ,
so that for θ = ν + (p− 1)l+ λf + ε for small ε > 0, we must choose ln = p+ 1
and ld = p. This makes the risk go above the threshold λ2

f/(2r) leading to
sub-optimality.

3.4. Proof of Lemma 1.3

From calculations of Lemma 3.4 it is clear that the for any r < r0 the choice of
γ = γr = (1+4r) cannot be improved upon for asymptotic minimax optimality.
So if we have γ > γr then we will have asymptotic minimax suboptimality.
Since the common ration γ determines the cluster size Kγ , the cluster size
cannot be improved if we want to maintain minimax optimality. Also if we keep
γ = γr and then dropping points from the geometrically spaced grid also causes
suboptimality. To see this, suppose the first point we drop is the m’th point
in the cluster. If m = 1, i.e., we drop λf then as we have already seen that
this creates suboptimality. Let m > 1. This implies that (3.13)-(3.14) defined
in the proof of Lemma 3.4 must statisfy the constraint: β(m + 1, 0) > α(m −
1, 0). Writing down the constraint in terms of r and letting r → 0 we get
a contradiction, which shows that we cannot drop support points from our
prescribed prior.

3.5. Proof of Theorem 1.4

The Bayes risk of the multivariate cluster prior B(πC
n) = nB(πC) and the uni-

variate Bayes risk is given by

B(πC) = (1− ηn)ρ(0, p̂C[ηn, r]) +
1− ηn
2K

∞∑
i=1

K∑
j=1

η|i|n ρ(μij , p̂C[ηn, r])

where K is defined in (1.6). From the risk calculations in Lemmas 3.2, 3.3, 3.4
it is clear that the first order asymptotic risk as ηn → 0 can be reduced to just
concentrating on the origin adjoining clusters C±1 and thereafter by symmetry:

B(πC) =
(1− ηn)ηn

K

K∑
j=1

ρ(μ1j , p̂C[ηn, r])(1 + o(1)) .

Now, by (3.2) and Lemma 3.4, for each 1 ≤ j ≤ K we have:

ρ(μ1j , p̂C[ηn, r]) = μ2
1j/(2r)− E logNμ1j ,v(Z) +O(λf,n) as ηn → 0 .

Also, following exactly the similar asymptotic analysis as in Lemma 3.4 abet
now with Nμ1j ,v(Z) we can establish E logNμ1j ,v(Z) = (2v)−1(μ2

1j − λ2
f,n)(1 +
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o(1)). By construction, μ1j ≥ λf,n with strict equality only when j = 1 and so
each of the terms barring the first one has some positive contributions. Thus,
ρ(μ11, p̂C[ηn, r]) = λ2

f,n/(2r)(1 + o(1)). For all j > 1, recalling μ1j/λf,n = (1 +

4r)j ∧ v−1/2 and v = (1 + r−1)−1 we have,

ρ(μ1j , p̂C[ηn, r]) = 2−1λ2
f,n

{
1 + r−1 − (1 + 4r)2j

}
+
+O(λf,n)

where, the first term in the right side above is 0 only when j = K. Thus, the
maximal risk is only attained at μ11 = λf,n. Thereafter, the risk decays and
finally at j = K, the risk is negligible compared to the asymptotic minimax
risk. Figure 3 shows the numerical evaluation of the risk of the cluster prior
at the different support point of the first cluster. The figure shows the risk
profile when ηn = 10−15 which well captures the asymptotic analysis and the
aforementioned decay in the risk function is evident from the figure.

Fig 3. Plot of the univariate predictive KL risk ρ(θ, p̂C[ηn, r] as θ varies over the first cluster
spanning [0, λe(ηn)]. Here, ηn = 10−15 and r = 0.08. The horizontal line corresponds to the
asymptotic theoretical limit λ2

f (ηn)/(2r). The dotted vertical lines denotes the location of the

the support points in cluster C1 of πC[ηn, r].

Noting that the multivariate minimax risk is nηnλ
2
f,n/(2r)(1+ o(1)) as ηn →

0, the result follows from the above display. When r > r0, then K = 1 and so,
the above result directly imply B(πC

n)/R
∗(Θ0[sn]) → 1 as n → ∞. The condition

sn → ∞ ensures that the prior concentrates on the parametric space Θ0[sn] (see
Theorem 1B of MJ15 for details) and thus is least favorable in this case.

4. Simulations

We introspect the performance of the aforementioned PRDEs across different
sparsity regimes. The product structure of our estimation framework allows us
to concentrate on the maximal risk of the corresponding univariate PRDEs.
(2.1) shows that the multivariate maximum risk of p̂C over Θ0[sn] is a function
of sparsity level ηn and the univariate risk of p̂C. In table 2, we report the
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Table 2

Numerical evaluation of the maximum risk for the different univariate predictive density
estimates as the degree of sparsity (η) and predictive difficulty r varies. The asymptotic
theory based minimax risk value is reported in ‘A-Theory’ and the subsequent columns

report the maximum risk of the estimators as quotients of ‘A-Theory’ values.

Sparsity r A-Theory Plugin p̂T p̂EG p̂PG p̂C

1 0.8047 1.3626 0.9934 0.8321 1.0384 1.1019

0.4 1.1496 2.2073 1.1302 1.2182 1.3824 1.5500

0.2 0.2 1.3412 3.5794 1.5878 1.6444 1.6730 1.9128

0.1 1.4631 6.2714 1.9686 2.8799 2.0024 2.5775

1 1.1513 1.2037 0.8250 0.6908 0.8700 0.9364

0.10 0.4 1.6447 1.9999 0.9464 0.9962 1.1108 1.1568

0.2 1.9188 3.3046 1.2179 1.4599 1.3572 1.4608

0.1 2.0933 5.8811 1.4644 2.6143 1.6369 1.9706

1 1.4979 1.1319 0.7434 0.6473 0.7845 0.8573

0.4 2.1398 1.9102 0.8907 0.9767 0.9880 1.0055

0.05 0.2 2.4964 3.1917 1.0344 1.4607 1.1814 1.2722

0.1 2.7234 5.7314 1.1756 2.5838 1.4082 1.6359

1 2.3026 1.0841 0.7065 0.6279 0.7287 0.7537

0.4 3.2894 1.8602 0.8643 0.9827 0.9211 0.9170

0.01 0.2 3.8376 3.1433 0.9636 1.5069 1.0680 1.1132

0.1 4.1865 5.6949 1.1083 2.6074 1.2092 1.3617

1 3.4539 1.0913 0.7022 0.6849 0.7081 0.6966

0.4 4.9341 1.8849 0.8792 1.0408 0.9104 0.9086

0.001 0.2 5.7565 3.2018 0.9493 1.5674 1.0309 1.0746

0.1 6.2798 5.8275 1.0696 2.7097 1.1471 1.1883

1 4.6052 1.1130 0.7193 0.7164 0.7177 0.7118

0.4 6.5788 1.9292 0.8990 1.0548 0.8918 0.9111

0.0001 0.2 7.6753 3.2857 0.9512 1.5981 1.0142 1.0378

0.1 8.3730 5.9936 1.0502 2.7587 1.1083 1.1301

1 5.7565 1.1371 0.7364 0.7437 0.7248 0.7267

0.4 8.2235 1.9752 0.9102 1.0939 0.8940 0.9132

0.00001 0.2 9.5941 3.3695 0.9609 1.6501 1.0108 1.0262

0.1 10.4663 6.1542 1.0429 2.7887 1.0995 1.1000

1 11.5129 1.2390 0.7954 0.8304 0.7888 0.7872

0.4 16.4470 2.1615 0.9321 1.1669 0.9000 0.9298

10−10 0.2 19.1882 3.6981 0.9680 1.7358 1.0109 1.0184

0.1 20.9326 6.7701 1.0185 2.9049 1.0916 1.0253

maximum risk of our proposed clustered prior based Bayes PRDE p̂C (in last
column) as the degree of sparsity η and predictive difficulty r varies. Using
(2.2), we evaluate the univariate risk of p̂T for any fixed θ with high precision
by using Monte Carlo integration. Thereafter, the maximum risk is found by a
conducting a univariate grid search as θ varies over R.

The performance of the following related PRDEs (a) hard thresholding based
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plugin estimator (b) thresholding based risk diversified PRDE p̂T of MJ15 (c)
Bayes PRDE p̂EG based on πEG prior of J94 (d) Bayes PRDE p̂PG based on
πPG prior of MJ17 are respectively reported in columns 4 to 7 in table 2. The
risk of p̂EG and p̂PC are evaluated by looking at their maximum univariate risk
and analogous version of (2.1) which follows from Lemma 2.1 of MJ17. The
maximum risk of p̂T is numerically evaluated by combining (24), (34), (43) and
(47) in MJ15.

Under moderate sparsity, the maximal values of the PRDEs exceed the mini-
max value specified by the asymptotic theory in (1.2). The exceedance is higher
for lower values of r. From the table, it seems that the numeric results are in
accordance with the asymptotic theory as ηn ≤ 10−3. As expected the plug-in
PRDE is highly sub-optimal for lower values of r across all regimes. Once the
asymptotic behaviour sets in, the maximum risk of the proposed PRDE p̂C is
near optimal among the concerned PRDEs across all r regimes; under moderate
sparsity its maximum risk is little worse but for ηn ≤ 10−3 it has lower maxi-
mum risk than p̂EG, p̂PG, and similar risks as p̂T. However, due to the presence
of the countably infinite univariate discrete prior in p̂C, the asymptotic approx-
imation to its maximum risk as described by Theorem 1.1 comes into effect at
relatively smaller ηn values than in the risk of p̂T.

5. Discussion and future work

The results developed here assume that the variances vx and vy are known.
If vy = rvx where r is known but vx is unknown, a simple approach would
be to substitute an estimate v̂x of vx in the PRDEs discussed here. For v̂x we
can use the median absolute deviation from zero which is used for PE in the
EbayesThresh package of Johnstone and Silverman (2005). For other good can-
didates for v̂x, see Xing et al. (2020) and the references therein. However, as
shown in Kato (2009b) such plug-in approach will not be optimal. Recently,
Maruyama et al. (2020) developed a decision theoretic framework under re-
peated sampling for studying point estimation efficiency in Gaussian models
with unknown scale. As future work, it will be interesting to study PRDE un-
der Kullback-leibler loss in such a framework.

Also, if the sparsity level is unknown, it can be estimated from the data using
the empirical Bayes maximum likelihood approach in Johnstone and Silverman
(2005) and the estimated sparsity level can be plugged in the form of the Bayes
PRDEs discussed in this paper. The PRDEs discussed here are based on spike-
and-slab priors with the slab being infinite discrete priors. PRDEs based on
continuous slabs (Rockova and George, 2018) are preferred for practical imple-
mentation. A manuscript studying adaptivity of such spike-and-slab PRDEs to
unknown sparsity is forthcoming.
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Tatsuya Kubokawa, Éric Marchand, William E Strawderman, and Jean-Philippe
Turcotte. Minimaxity in predictive density estimation with parametric con-
straints. Journal of Multivariate Analysis, 116:382–397, 2013. MR3049911

S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.
Statistics, 22:79–86, 1951. ISSN 0003-4851. MR0039968

Feng Liang. Exact minimax procedures for predictive density estimation and data
compression. ProQuest LLC, Ann Arbor, MI, 2002. ISBN 978-0493-60397-1.
Thesis (Ph.D.)–Yale University. MR2703233

Eric Marchand, William E Strawderman, et al. Estimation in restricted pa-
rameter spaces: A review. In A Festschrift for Herman Rubin, pages 21–44.
Institute of Mathematical Statistics, 2004. MR2126884

Yuzo Maruyama and Toshio Ohnishi. Harmonic bayesian prediction under
alpha-divergence. IEEE Transactionson Information Theory, 65:5352–53666,
2019. MR4009238

Yuzo Maruyama, William E. Strawderman, et al. Admissible bayes equivariant
estimation of location vectors for spherically symmetric distributions with
unknown scale. Annals of Statistics, 48(2):1052–1071, 2020. MR4102687

http://www-stat.stanford.edu/~imj
http://dx.doi.org/10.1214/aos/1176325368
http://dx.doi.org/10.1214/aos/1176325368
https://www.ams.org/mathscinet-getitem?mr=1286310
http://dx.doi.org/10.1214/009053604000000030
http://dx.doi.org/10.1214/009053604000000030
https://www.ams.org/mathscinet-getitem?mr=2364426
http://dx.doi.org/10.1007/s10463-007-0163-z
http://dx.doi.org/10.1007/s10463-007-0163-z
https://www.ams.org/mathscinet-getitem?mr=2529965
https://www.ams.org/mathscinet-getitem?mr=0879409
http://dx.doi.org/10.1093/biomet/88.3.859
http://dx.doi.org/10.1093/biomet/88.3.859
https://www.ams.org/mathscinet-getitem?mr=1859415
https://www.ams.org/mathscinet-getitem?mr=3049911
https://www.ams.org/mathscinet-getitem?mr=0039968
https://www.ams.org/mathscinet-getitem?mr=2703233
https://www.ams.org/mathscinet-getitem?mr=2126884
https://www.ams.org/mathscinet-getitem?mr=4009238
https://www.ams.org/mathscinet-getitem?mr=4102687


1660 U. Gangopadhyay and G. Mukherjee

G. Mukherjee and I. M. Johnstone. Exact minimax estimation of the predictive
density in sparse gaussian models. Annals of Statistics, 2015. MR3346693

Gourab Mukherjee. Sparsity and Shrinkage in Predictive Density Estimation.
PhD thesis, Stanford University, 2013. MR4187552

Gourab Mukherjee and Iain M. Johnstone. On minimax optimality of sparse
bayes predictive density estimates. arXiv preprint 1707.04380, 2017.

Veronika Rockova and Edward I. George. The spike-and-slab lasso. Journal of
the American Statistical Association, 113(521):431–444, 2018. MR3803476

Trevor J. Sweeting, Gauri S. Datta, and Malay Ghosh. Nonsubjective priors via
predictive relative entropy regret. The Annals of Statistics, pages 441–468,
2006. MR2275249

Zhengrong Xing, Peter Carbonetto, and Matthew Stephens. Flexible signal de-
noising via flexible empirical bayes shrinkage. Journal of Machine Learning
Research, 2020.

Xinyi Xu and Feng Liang. Asymptotic minimax risk of predictive density estima-
tion for non-parametric regression. Bernoulli, 16(2):543–560, 2010. ISSN 1350-
7265. 10.3150/09-BEJ222. URL http://dx.doi.org/10.3150/09-BEJ222.
MR2668914

Z. Zhang. Discrete non-informative priors. In Ph.D. Dissertation. Department
of Statistics, Yale University, 1994. MR2692257

https://www.ams.org/mathscinet-getitem?mr=3346693
https://www.ams.org/mathscinet-getitem?mr=4187552
https://arxiv.org/abs/1707.04380
https://www.ams.org/mathscinet-getitem?mr=3803476
https://www.ams.org/mathscinet-getitem?mr=2275249
http://dx.doi.org/10.3150/09-BEJ222
http://dx.doi.org/10.3150/09-BEJ222
https://www.ams.org/mathscinet-getitem?mr=2668914
https://www.ams.org/mathscinet-getitem?mr=2692257

	Introduction and main results
	Main result: Minimax optimality
	Geometrically decaying priors: Background and risk analysis
	Further result on the asymptotic Bayes risk

	Proof overview
	Detailed proofs
	Background and preliminaries
	Proof of Theorem 1.1
	Notations
	Risk at origin
	Risk bounds at the non-origin parametric points
	Proof of Theorem 1.1 for rr0

	Proof of Lemma 1.2
	Proof of Lemma 1.3
	Proof of Theorem 1.4

	Simulations
	Discussion and future work
	Acknowledgments
	References

