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We develop an empirical Bayes procedure for estimating the cell means
in an unbalanced, two-way additive model with fixed effects. We employ a
hierarchical model, which reflects exchangeability of the effects within treat-
ment and within block but not necessarily between them, as suggested before
by Lindley and Smith [J. R. Stat. Soc., B 34 (1972) 1–41]. The hyperparam-
eters of this hierarchical model, instead of considered fixed, are to be sub-
stituted with data-dependent values in such a way that the point risk of the
empirical Bayes estimator is small. Our method chooses the hyperparameters
by minimizing an unbiased risk estimate and is shown to be asymptotically
optimal for the estimation problem defined above, under suitable conditions.
The usual empirical Best Linear Unbiased Predictor (BLUP) is shown to be
substantially different from the proposed method in the unbalanced case and,
therefore, performs suboptimally. Our estimator is implemented through a
computationally tractable algorithm that is scalable to work under large de-
signs. The case of missing cell observations is treated as well.

1. Introduction. Multilevel cross-classified models are pervasive in statis-
tics, with applications ranging from detecting sources of variability in medical
research [Goldstein, Browne and Rasbash (2002)] to understanding micro–macro
linkages in social studies [Mason, Wong and Entwisle (1983), Zaccarin and Rivel-
lini (2002)]. These models offer a natural and flexible approach to specify mean-
ingful latent structures and, importantly, a systematic way to use all information
for simultaneously analyzing the effects of more than one factor [Rasbash and
Goldstein (1994)]. Hierarchical cross-classified models have classically been used
to decompose the total variability of the response into individual sources and for
prediction in random-effects models. Nevertheless, ever since the appearance of
the James–Stein estimator [James and Stein (1961)] and its Bayesian interpreta-
tion [Lindley (1962), Stein (1962)], the usefulness of such models in estimation
problems involving multiple nonrandom effects has been well recognized.
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Hierarchical models have been used to facilitate shrinkage estimators in linear
regression models since the early 1970s [Efron and Morris (1972)]. In both theo-
retical and more applied work, various authors have employed hierarchical models
to produce estimators that shrink toward a subspace [e.g., Sclove (1968), Oman
(1982), Jiang, Nguyen and Rao (2011), Tan (2016)] or within a subspace [e.g.,
Lindley and Smith (1972), Rolph (1976), Kou and Yang (2017)]; see Section 2
of the last reference for a discussion on the difference between the two types of
resulting estimators. Cross-classified additive models are in a sense the most im-
mediate extension of Stein’s canonical example. Specifically, unlike in a general
linear model, the symmetries of within-batch effects can be regarded as a priori
information, which suggest the use of exchangeable priors, such as those proposed
by Lindley and Smith (1972) and Efron and Morris (1973). In the case of balanced
design, the properties of resulting shrinkage estimators are by now well understood
and have a close relationship to the James–Stein estimator. Indeed, when all cell
counts are equal, multiple one-way, homoscedastic estimation problems emerge;
for these the James–Stein estimator has optimality properties under many criteria.
But in the unbalanced case, the problems of estimating the effects corresponding to
different batches are intertwined due to lack of orthogonality in the design matrix.
Hence, the situation in the case of unbalanced design is substantially different.

This paper deals with empirical Bayes (EB) estimation of the cell means in the
two-way fixed effects additive model with unbalanced design. We consider a fam-
ily of Bayes estimators resulting from a normal hierarchical model, which reflects
within-batch exchangeability and is indexed by a set of hyperparameters govern-
ing the prior. Any corresponding estimator that substitutes data-dependent values
for the hyperparameters is referred to as an empirical Bayes estimator. We pro-
pose an empirical Bayes procedure that is asymptotically optimal for the estima-
tion of the cell means under squared loss. In our asymptotic analysis, the number
of row and column levels tends to infinity. Importantly, so-called empirical BLUP
(Best Linear Unbiased Predictors) estimators, using the usual maximum-likelihood
approach in estimating the hyperparameters, are shown to perform suboptimally
in the unbalanced case. Instead of using the maximum-likelihood criterion, we
choose the values for the hyperparameters by minimizing an unbiased estimate of
the risk (URE), which leads to estimates that are different in an essential way. The
proposed approach is appealing in the fixed effects case, because it uses a crite-
rion directly related to the risk instead of using the likelihood under the postulated
hierarchical model.

Using the URE criterion to calibrate tuning parameters has been proposed in
many previous works and in a broad range of parametric and nonparametric es-
timation problems [Li (1986), Ghosh, Nickerson and Sen (1987), Donoho et al.
(1995), Johnstone and Silverman (2004), Candès, Sing-Long and Trzasko (2013),
to name a few]. Recently, Xie, Kou and Brown (2012) employed URE minimiza-
tion to construct alternative empirical Bayes estimators to the usual ones in the
Gaussian mean problem with known heteroscedastic variances and showed that it
produces asymptotically uniformly better estimates.
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Our work can be viewed as a generalization of Xie, Kou and Brown (2012) from
the one-way unbalanced layout to the two-way unbalanced layout. The two-way
unbalanced problem presents various new challenges. The basis for the difference,
of course, lies in the fact that the two-way case imposes structure on the mean vec-
tor, which is nontrivial to handle due to missingness or imbalance in the design.
Some of the implications are that the analysis of the performance of EB methods
is substantially more involved than in the one-way scenario. In addition, the com-
putation of the URE estimator, which is trivial in the one-way scenario, becomes
a cause of concern, especially with a growing number of factor levels. We offer
an implementation of the corresponding URE estimate that in the all-cells-filled
case has comparable computational performance to that of the standard empirical
BLUP in the popular R package lme4 of Bates (2010). Our theoretical analysis
of the two-way case differs in fundamental aspects from the optimality proof tech-
niques usually used in the one-way Normal mean estimation problem. To tackle the
difficulties encountered in the two-way problem, where computations involving
matrices are generally unavoidable, we developed a flexible approach for proving
asymptotic optimality based on efficient pointwise risk estimation; this essentially
reduces our task to controlling the moments of Gaussian quadratic forms.

We would also like to point out that the current work is different from the recent
extensions of Kou and Yang (2017) of the URE approach to the general Gaussian
linear model. While the setup considered in that paper formally includes our setup
as a special case, their results have limited implications for additive cross-classified
models. For example, the covariance matrix used in their second level of the hier-
archy is not general enough to accommodate the within-batch exchangeable struc-
ture we employ and is instead governed by a single hyperparameter. Moreover,
their asymptotic results require keeping the dimension of the linear subspace fixed,
whereas the number of factor levels is increasing in our setup.

Organization of the paper. In Section 2, we describe our estimation setup: we
begin with the all-cells-filled situation, and then present a more general model
which allows missing observations. In Section 3, we show that our proposed es-
timation methodology is asymptotically optimal and is capable of recovering the
directions and magnitude for optimal shrinkage. In Section 4, we report the results
from extensive numerical experiments, and also demonstrate the applicability of
our proposed method on a real-world problem concerning the estimation of the
average nitrate levels in water sources based on location and time of day.

2. Model setup and estimation methods.

2.1. Basic model and Bayes estimators. Consider the following basic two-way
cross-classified additive model with fixed effects:

yij = ηij + εij , ηij = µ + αi + βj ,
(1)

εij ∼ N
(
0,σ 2K−1

ij

)
, 1 ≤ i ≤ r,1 ≤ j ≤ c,
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Kij is the count in the (i, j)th cell; σ 2 > 0 is assumed to be known; and εij is an
independent Gaussian noise term, which can be considered as the average of Kij

homoscedastic error terms. Throughout the paper, we write vectors in bold and
matrices in capital letters. The parameters µ,α = (α1, . . . ,αr )

T,β = (β1, . . . ,βc)
T

are not identifiable without imposing further side conditions, but the vector of cell
means η = (η11,η12, . . . ,ηrc)

T always is. Our goal is to estimate η under sum-of-
squares loss:

Lr,c(η, η̂) = 1
rc

‖η̂ − η‖2 = 1
rc

r∑

i=1

c∑

j=1

(η̂ij − ηij )
2.(2)

In model (1), αi and βj will be referred to as the ith row and the j th column effects,
respectively. In the all-cells-filled model, Kij ≥ 1 for 1 ≤ i ≤ r and 1 ≤ j ≤ c. The
more general model, which allows empty cells, is presented in Section 2.3. We
would like to emphasize the focus in this section on the loss (2) rather than the
weighted quadratic loss L

wgt
r,c (η, η̂) = (rc)−1 ∑r

i=1
∑c

j=1 Kij (η̂ij − ηij )
2, which is

sometimes called the prediction loss, and under which asymptotically optimal esti-
mation has been investigated before [Dicker (2013)]. Nevertheless, in later sections
results are presented for a general quadratic loss, which includes the weighted loss
as a special case.

The usual estimator of η is the weighted least squares (WLS) estimator, also
the maximum-likelihood estimator under (1). The WLS estimator is unbiased and
minimax but can be substantially improved on by shrinkage estimators, particu-
larly when r, c → ∞ [Draper and Van Nostrand (1979)]. As the starting point for
the shrinkage estimators proposed in this paper, we consider a family of Bayes
estimators with respect to the conjugate prior

α1, . . . ,αr
i.i.d.∼ N

(
0,σ 2

A

)
, β1, . . . ,βc

i.i.d.∼ N
(
0,σ 2

B

)
,

where σ 2
A,σ 2

B are hyperparameters. This prior extends the conjugate normal prior
in the one-way case and was proposed by Lindley and Smith (1972) to reflect ex-
changeability within rows and columns separately.3 Employing this prior is stan-
dard in Bayesian Analysis-of-Variance [e.g., Gelman et al. (2004), Chapter 15.6;
Gelman (2005)]. In vector form, the two-level hierarchical model can be written
as

Level 1: y|η ∼ Nrc
(
η,σ 2M

)
, η = 1µ + Zθ , θT = (

αT,βT)
,

(3)
Level 2: θ ∼ Nr+c

(
0,σ 2&&T)

,

3As in Lindley and Smith (1972) and Gelman (2005), we refer to within-batch effects in our model
as exchangeable, although they are really i.i.d.
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where M = diag(K−1
11 ,K−1

12 , . . . ,K−1
rc ) is an rc× rc matrix and Z = [ZAZB] with

ZA = Ir ⊗ 1c and ZB = 1r ⊗ Ic. The (r + c) × (r + c) matrix

& =
[√

λAIr 0
0

√
λBIc

]

is written in terms of the relative variance components λA = σ 2
A/σ 2 and λB =

σ 2
B/σ 2. Henceforth, for notational simplicity, the dependence of & on the model

hyperparameters will be kept implicit. The marginal covariance of y in (5) is σ 2(

where

( = Z&&TZT + M = λAZAZT
A + λBZBZT

B + M.(4)

The following is a standard result and is proved in Section S.2 of the supplementary
materials [Brown, Mukherjee and Weinstein (2018)].

LEMMA 2.1. For any fixed µ ∈ R and nonnegative λA, λB , the Bayes estimate
of η in (3) is given by

E[η|y] = y − M(−1(y − 1µ),(5)

where ( depends on the hyperparameters λA, λB through &.

Instead of fixing the values of µ,λA,λB in advance, we may now return to
model (1) and consider the parametric family of estimators obtained by fixing the
values of the hyperparameters in (5),

S(a, b) = {
η̂(µ,λA,λB) = y − M(−1(y − 1µ) : µ ∈ [a, b],

(6)
λA ≥ 0,λB ≥ 0

}

for a, b ∈ R. Note that above, µ is restricted to lie in [a, b]. In practice, we will
consider only estimators in S[τ ] := S(âτ , b̂τ ) where âτ (y) = quantile{yij :
1 ≤ i ≤ r,1 ≤ j ≤ c; τ/2} and b̂τ (y) = quantile{yij : 1 ≤ i ≤ r,1 ≤ j ≤ c;1 −
τ/2}, the τ/2 and (1 − τ/2) quantiles of the observations. The constraint on the
location hyperparameter µ is imposed for technical reasons but is moderate enough
to be well justified. Indeed, an estimator that shrinks toward a point that lies near
the periphery or outside the range of the data is at the risk of being nonrobust;
it also seems as an undesirable choice for a Bayes estimator correponding to (3),
which models α and β as having zero means. In practice, τ may be taken to be 1%
or 5%.

An empirical Bayes estimator is any estimator that plugs data-dependent values
µ̂, λ̂A, λ̂B into (5), with the restriction that µ̂ is in the allowable range. In the next
section, we propose a specific criterion for estimating the hyperparameters.
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2.2. Empirical Bayes estimators. The usual empirical Bayes estimators are
derived relying on hierarchical model (3). The fixed effect µ and the relative
variance components λA and λB are treated as unknown fixed parameters to be
estimated based on the marginal distribution of y and substituted into (5). For
any set of estimates substituted for λA and λB , the general mean µ is typically
estimated by generalized least squares, producing an empirical version of what
is known as the Best Linear Unbiased Predictor (BLUP). There is extensive lit-
erature on the estimation of the variance components. For a textbook account,
see, for example, Chapters 5 and 6 of Searle, Casella and McCulloch (1992);
and Section 7.3.2 in Fahrmeir et al. (2013), who also discuss Bayesian infer-
ence in Section 7.4.2. Computational issues are discussed in Harville (1977).
The main methods for estimation of variance components in linear mixed mod-
els are maximum-likelihood (ML), restricted maximum-likelihood (REML) and
the ANOVA methods (Method-of-Moments), including the three original ANOVA
methods of Henderson [Henderson (1984)]. Here, we concentrate on the com-
monly used maximum-likelihood estimates, which are implemented in the popular
R package lme4 [Bates (2010)]. If L(µ,λA,λB;y) denotes the marginal likeli-
hood of y according to (3), then the maximum-likelihood (ML) estimates are

(
µ̂ML, λ̂ML

A , λ̂ML
B

) = arg max
µ∈[âτ ,b̂τ ],λA≥0,λB≥0

L(µ,λA,λB;y).(7)

The corresponding empirical Bayes estimator is η̂ML = η̂(µ̂ML, λ̂ML
A , λ̂ML

B ) and
will be referred to as EBMLE (for Empirical Bayes Maximum-Likelihood).

LEMMA 2.2. ML estimates defined in (7) satisfy the following equations:

µ̂ = µ̂1 · I{
µ̂1 ∈ [âτ , b̂τ ]

} + âτ · I {µ̂1 < âτ } + b̂τ · I {µ̂1 > b̂τ },(8)

where µ̂1 = (1T(̂−1y)/(1T(̂−11); if µ̂1 ∈ [âτ , b̂τ ] and if λ̂a, λ̂b are both strictly
positive, they satisfy

tr
(
(̂−1ZAZT

A

) − σ−2yT(I − P̂ )T(̂−1ZAZT
A(̂−1(I − P̂ )y = 0,

(9)
tr

(
(̂−1ZBZT

B

) − σ−2yT(I − P̂ )T(̂−1ZBZT
B(̂−1(I − P̂ )y = 0,

where P̂ = 1(1T(̂−11)−11T(̂−1.

The derivation is standard and provided in Section S.2.1 of the supplement,
which also contains the estimating equation for the case when µ̂1 /∈ [âτ , b̂τ ]. If
the solution to the estimating equations (9) includes a negative component, adjust-
ments are needed in order to produce the maximum-likelihood estimates of the
scale hyperparameters [see McCulloch and Searle (2001), Section 2.2b-iii for a
discussion of the one-way case].

We propose an alternative method for estimating the shrinkage parameters. Fol-
lowing the approach of Xie, Kou and Brown (2012), for fixed τ ∈ (0,1] we choose
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the shrinkage parameters by minimizing unbiased risk estimate (URE) over es-
timators η̂(µ,λA,λB) in S(τ ). By Lemma S.2.2 of the supplement, an unbiased
estimate of the risk, Rr,c(η, η̂(µ,λA,λB))! (rc)−1E‖η̂(µ,λA,λB)−η‖2 is given
by URE(µ,λA,λB), which equals

1
rc

{
σ 2tr(M) − 2σ 2tr

(
(−1M2) + (y − 1µ)T[

(−1M2(−1]
(y − 1µ)

}
.(10)

Hence we propose to estimate the tuning parameters of the class S(τ ) by
(
µ̂U, λ̂U

A, λ̂U
B

) = arg min
µ∈[âτ ,b̂τ ],λA≥0,λB≥0

URE(µ,λA,λB).(11)

The corresponding empirical Bayes estimator is η̂URE = η̂(µ̂U, λ̂U
A, λ̂U

B). As in the
case of maximum likelihood estimation, there is no closed-form solution to (11),
but we can characterize the solutions by the corresponding estimating equations.

LEMMA 2.3. URE based estimates of (11) satisfy the following estimating
equations:

µ̂ = µ̂1 · I{
µ̂1 ∈ [âτ , b̂τ ]

} + âτ · I {µ̂1 < âτ } + b̂τ · I {µ̂1 > b̂τ },(12)

where µ̂1 = (1T[(̂−1M2(̂−1]y)/(1T[(̂−1M2(̂−1]1); if µ̂1 ∈ [âτ , b̂τ ] and if
λ̂a, λ̂b are both strictly positive, they satisfy

tr
(
(̂−1ZAZT

A(̂−1M2)

− σ−2yT(I − P̂ )T(̂−1ZAZT
A(̂−1M2(̂−1(I − P̂ )y = 0,

(13)
tr

(
(̂−1ZBZT

B(̂−1M2)

− σ−2yT(I − P̂ )T(̂−1ZBZT
B(̂−1M2(̂−1(I − P̂ )y = 0,

where P̂ = 1(1T[(̂−1M2(̂−1]1)−11T(̂−1M2(̂−1.

The derivation is provided in Section S.2.1 of the supplementary materials.
Comparing the two systems of equations (9) and (13) without substituting the value
of µ, it can be seen that the URE equation involves an extra term (̂−1M2 in both
summands of the left-hand side, as compared to the ML equation. The estimating
equations therefore imply that the ML and URE solutions may differ when the
design is unbalanced (see Section S.5 of the supplement for a discussion of the
balanced case). In Section 3, we show that the URE estimate η̂URE is asymptoti-
cally optimal as r, c → ∞, and the numerical simulations in Section 4 demonstrate
that in certain situations EBMLE performs significantly worse.

REMARK 1. To compute the hyperparameter estimates by the URE method,
one could attempt to solve the estimating equations in (13), which have no closed-
form solution in general. For example, one could fix the value of λA to some initial
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positive value and solve the first equation in λB . Then plug the solution into the
second equation and solve for λA, and keep iterating between the two equations
until convergence. If this approach is taken, a nontrivial issue to overcome will
be obtaining the actual minimizing values λA and λB when one of the solutions
to (13) is negative. Another issue will be ascertaining the global optimality of the
solutions, as URE is not necessarily convex in (µ,λA,λB). To bypass these issues,
we minimize URE by conducting a grid search on (λA,λB), and µ is subsequently
estimated by (12). For efficiency in handling large data sets, our implementation
adopts some of the key computational elements from the lme4 package [Sec-
tion 5.4, Bates (2010)]; Details are provided in Section A.3 of the Appendix.

REMARK 2. A comment is in order regarding shrinkage estimators for the
general homoscedastic linear model. Note that model (1) could be written for in-
dividual, homoscedastic observations (with an additional subscript k) instead of
for the cell averages. With the corresponding design matrix, the two-way addi-
tive model is therefore a special case of the homoscedastic Gaussian linear model,
y ∼ Nn(Xγ ,σ 2I ), where X ∈ Rn×p a known matrix and γ ∈ Rp is the unknown
parameter. Thus, the various so-called Stein-type shrinkage methods that have been
proposed for estimating γ can also be applied to our problem. Specifically, a popu-
lar approach is to reduce the problem of estimating γ to the problem of estimating
the mean of a p-dimensional heteroscedastic normal vector with known variances
[see, e.g., Johnstone (2011), Section 2.9] by applying orthogonal transformations
to the parameter γ and data y. Thereafter, Stein-type shrinkage estimators can
be constructed as empirical Bayes rules by putting a prior which is either i.i.d.
on the transformed coordinates or i.i.d. on the original coordinates of the param-
eter [Rolph (1976), referred to priors of the first type as proportional priors and
to those of the second kind as constant priors]. In the case of factorial designs,
however, neither of these choices is very sensible, because they do not capture the
(within-batch) symmetries of cross-classified models. Hence, procedures relying
on models that take exchangeability into account can potentially achieve a signif-
icant and meaningful reduction in estimation risk. The methodology we develop
here incorporates the exchangeable structure in (3).

2.3. A model with missing cells. A more general model than (1) allows some
cells to be empty. Hence, consider

(14) yij = ηij + εij , ηij = µ + αi + βj , εij ∼ N
(
0,σ 2K−1

ij

)
, (i, j) ∈ E,

where E = {(i, j) : Kij ≥ 1} ⊆ {1, . . . , r} × {1, . . . , c} is the set of indices corre-
sponding to the nonempty cells. As before, σ 2 > 0 is assumed to be known. Our
goal is in general to estimate all cell means that are estimable under (14) rather
than only the means of observed cells. For ease of presentation and without loss
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of generality, from here on we assume that E is a connected design4 so that all rc
cell means are estimable.

We will need some new notation to distinguish between E[y] ∈ R|E| and the rc
vector consisting of all cell means. In general, the notation in (3) is reserved for
quantities associated with the observed variables. As before, θ = (αT,βT)T. The
matrix M = diag(K−1

ij : (i, j) ∈ E), where the indices of diagonal elements are
in lexicographical order. Let Zc = [1rcIR ⊗ 1C1R ⊗ IC] be the rc × (r + c + 1)
design matrix associated with the unobserved complete model. The |E | × (r +
c + 1) “observed” design matrix Z is obtained from Zc by deleting the subset of
rows corresponding to Ec. With the new definitions for Z and M , we define (
by (4). Finally, let ηc = Zcθ ∈ Rrc be the vector of all estimable cell means and
η = Zθ ∈ R|E| be the vector of cell means for only the observed cells of (14).
Hence, assuming E corresponds to a connected design, we consider estimating
ηc under the normalized sum-of-squares loss. Note that since ηc is estimable, it
must be a linear function of η. The following lemma is an application of the basic
theory of estimable functions and is proved in the Section S.2 of the supplementary
materials.

LEMMA 2.4. If ηc is estimable, then ηc = Zc(Z
TZ)−ZTη, where (ZTZ)− is

any generalized inverse of ZTZ.

In particular, writing Z† for the Moore–Penrose pseudo-inverse of Z, we there-
fore have ηc = ZcZ

†η. Thus, we can rewrite the loss function as

Lr,c(ηc, η̂c)!
1
rc

‖η̂c − ηc‖2 = 1
rc

(η̂ − η)TQ(η̂ − η) = LQ
r,c(η, η̂),(15)

where

Q = (
ZcZ

†)T
ZcZ

†.(16)

In other words, the problem of estimating ηc under sum-of-squares loss can be re-
cast as the problem of estimating η = E[y] under appropriate quadratic loss. This
allows us to build on the techniques developed in the previous section and extend
their applicability to the loss in (15). The standard unbiased estimator of ηc is the
weighted least squares estimator. The form of the Bayes estimator for η under
(3) is not affected by the generalized quadratic loss L

Q
r,c and is still given by (5),

with M,(−1 as defined in the current section. As before, for any pre-specified
τ ∈ (0,1] we consider the class of estimators S[τ ] := S(âτ , b̂τ ), with S(a, b) de-
fined in (6). The EBMLE estimates the hyperparameters µ,λA,λB based on the
marginal likelihood y according to (3), where M,(−1 are as defined in the current

4A design is disconnected if there is a partition of the row effects into nonempty subsets such
that any two members of distinct subsets never appear with the same column effect. A design is call
connected if it is not disconnected.
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section. As shown in Lemma S.2.3 of the supplement, an unbiased estimator of the
point risk corresponding to (15),

RQ
r,c

(
η, η̂(µ,λA,λB)

) ! E
{
LQ

r,c

(
η, η̂(µ,λA,λB)

)}
,

is given by UREQ(µ,λA,λB) which is evaluated as

UREQ(µ,λA,λB) = (rc)−1[
σ 2tr(QM) − 2σ 2tr

(
(−1MQM

)

(17)
+ (y − µ1)T[

(−1MQM(−1]
(y − µ1)

]
.

The URE estimates of the tuning parameters are
(
µ̂UQ, λ̂

UQ
A , λ̂

UQ
B

) = arg min
µ∈[âτ ,b̂τ ],λA≥0,λB≥0

UREQ(µ,λA,λB),(18)

and the corresponding EB estimate is η̂URE = η̂(µ̂UQ, λ̂
UQ
A , λ̂

UQ
B ). Equivalently, the

estimate for ηc is η̂URE
c = ZcZ

†η̂(µ̂UQ, λ̂
UQ
A , λ̂

UQ
B ). The estimating equations for

the URE as well as ML estimates of µ,λA,λB can be derived similar to those in
the all-cells-filled model.

3. Risk properties and asymptotic optimality of the URE based estimator.
We now present the results that establish the optimality properties of our proposed
URE-based estimator. We present the result for the general quadratic loss L

Q
r,c of

the previous section with the matrix Q defined in (16). Replacing Q with Irc will
give the results for the all-cells-filled model (1), which are explained separately. In
proving our theoretical results, we make the following assumptions:

A1. On the parameter space: We assume that the parameter ηc in the complete
model is estimable and satisfies the following second-order moment condition:

(A1) lim
r,c→∞

1
rc

r∑

i=1

c∑

j=1

η2
i,j < ∞.

This assumption is very mild, and similar versions are widely used in the EB lit-
erature [see Assumption C′ of Xie, Kou and Brown (2012)]. It mainly facilitates a
shorter technical proof and can be avoided by considering separate analyses of the
extreme cases.

A2. On the design matrix: Denoting the largest eigenvalue of a matrix A by
λ1(A), the matrix Q in (16) is assumed to satisfy

(A2) lim
r,c→∞(rc)−1/8(

log(rc)
)2

νr,cλ1(Q) = 0,

where νr,c = max{Kij : (i, j) ∈ E}/min{Kij : (i, j) ∈ E}. As shown in
Lemma S.3.1 of the supplement, λ1(Q) equals the largest eigenvalue of
(ZT

c Zc)(Z
TZ)†. Intuitively, it represents the difference in information between
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the observed data matrix and the complete data matrix Zc. If there are many
empty cells, λ1((Z

T
c Zc)(Z

TZ)†) will be large and may violate the above con-
dition. On the contrary, in the case of the completely observed data we have
λ1(Q) = 1 (see Lemma S.3.1). Thus, in that case the assumption reduces to
limr,c→∞(rc)−1/8(log(rc))2νr,c = 0. This condition amounts to controlling in
some sense the extent of imbalance in the number of observations procured per
cell. Here, we are allowing the imbalance in the design to asymptotically grow to
infinity but at a slower rate than (rc)1/8/(log(rc))2. This assumption on the design
matrix is essential for our asymptotic optimality proofs. Section A.1 of the Ap-
pendix shows its role in our proofs and a detailed discussion about it is provided
in the supplementary materials.

Asymptotic results. Our decision theoretic optimality results depend on the
following pointwise approximation of the true loss of estimators in S[τ ] by the
URE methodology. Consider the following design-dependent quantities:

(19) dr,c = m7
r,cν

3
r,cλ

3
1(Q), mr,c = log(rc).

Note that, as r, c → ∞, by Assumption A2, dr,cνr,cλ1(Q) = o(
√

rc) which will
be used afterward in the proofs for bounding the aforementioned pointwise loss
approximation error. The following theorem shows that the unbiased risk estimator
approximates the true loss at an asymptotic L1 error rate smaller than d−1

r,c for
every hyperparameter value in the set where λA,λB is nonnegative and the location
hyperparameter µ is restricted to the interval [−mr,c,mr,c], which grows as r, c
increase.

THEOREM 3.1. Under Assumptions A1–A2, we have

lim
r→∞
c→∞

dr,c ·
{

sup
|µ|≤mr,c
λA,λB≥0

E
∣∣UREQ

r,c(µ,λA,λB) − LQ
r,c

(
η, η̂(µ,λA,λB)

)∣∣
}

= 0.

The set of all hyperparameters considered in S[τ ] differs from hyper-parameter
set considered in the above theorem, as there µ was restricted to be in the data-
dependent set [âτ , b̂τ ]. However, as r, c → ∞. [âτ , b̂τ ] is asymptotically con-
tained in [−mr,c,mr,c] (see Lemma A.4), so Theorem 3.1 asymptotically covers
all hyperparameters considered in S[τ ] for any τ ∈ (0,1]. This explains intuitively
why in choosing the hyperparameters by minimizing an unbiased risk estimate as
in (17), we can expect the resulting estimate η̂(µ̂UQ, λ̂

UQ
A , λ̂

UQ
B ) to have competitive

performance.

Decision theoretic optimality. To compare the asymptotic performance of our
proposed estimate, we define the oracle loss (OL) hyperparameter as

(
µ̃OL, λ̃OL

A , λ̃OL
B

) = arg min
µ∈[âτ ,b̂τ ];λA,λB≥0

LQ(
η, η̂(µ,λA,λB)

)
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and the corresponding oracle rule

η̃OL
c = ZcZ

†η̂
(
µ̃OL, λ̃OL

A , λ̃OL
B

)
.(20)

Note that the oracle rule depends on the unknown cell means ηc and is therefore
not a “legal” estimator. It serves as the theoretical benchmark for the minimum
attainable error by any possible estimator: by its definition, no EB estimator in
our class can have smaller risk than ηOL

c . The following two theorems show that
our proposed URE-based estimator performs asymptotically nearly as well as the
oracle loss estimator. The results hold for any class S[τ ] where τ ∈ (0,1]. These
results are in terms of the usual quadratic loss on the vector of all cell-means.
Note that, based on our formulation of the problem in Sections 2.1 and 2.3, both
Theorems 3.2 and 3.3 simultaneously cover the missing and all-cells-filled model.

THEOREM 3.2. Under Assumptions A1–A2, for any ε > 0 we have

lim
r→∞
c→∞

P
{
Lr,c

(
ηc, η̂

URE
c

) ≥ Lr,c
(
ηc, η̃

OL
c

) + ε
} = 0.

The next theorem asserts than under the same conditions, the URE-based esti-
mator is asymptotically as good as the oracle estimator in terms of risk.

THEOREM 3.3. Under Assumptions A1–A2, the following holds:

lim
r→∞
c→∞

Rr,c
(
ηc, η̂

URE
c

) − E
[
Lr,c

(
ηc, η̃

OL
c

)] = 0.

Finally, as the oracle performs better than any empirical Bayes estimator asso-
ciated with S[τ ], a consequence of the above two theorems is that the URE-based
estimator cannot be improved by any other such empirical Bayes estimator.

COROLLARY 3.1. Under Assumptions A1–A2, it holds that for any estimator
η̂(µ̂, λ̂A, λ̂B) corresponding to the class S[τ ] we have:

(a) limr→∞,c→∞ P {LQ
r,c(η, η̂URE) ≥ L

Q
r,c(η, η̂(µ̂, λ̂A, λ̂B)) + ε} = 0.

(b) lim supr→∞,c→∞ R
Q
r,c(η, η̂URE) − R

Q
r,c(η, η̂(µ̂, λ̂A, λ̂B)) ≤ 0.

Unlike the above two theorems, this corollary is based on the quadratic loss LQ.
It emphasizes the nature of our estimating class S[τ ]. In Section 2, we saw that the
EBMLE and URE generally produce different solutions in unbalanced designs;
combined with Corollary (3.1), this implies that, asymptotically EBMLE generally
does not achieve the optimal risk of an EB estimator corresponding to the class
S[τ ] (otherwise the EBML estimate for η would have to be very close to the URE
estimate).
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Proof Overview. The pointwise loss estimation result of Theorem 3.1 is proved
by a moment-based concentration approach, which translates the problem into
bounding moments of Gaussian quadratic forms involving matrices with possi-
bly dependent rows and columns. The following two lemmas, which are used in
proving Theorem 3.1, display our moment-based convergence approach, where
the concentration of relevant quantities about their respective mean is proved. To
prove Theorem 3.1, we first show (Lemma 3.1) that for each estimator in S[τ ] that
shrinks toward the origin (i.e., with µ set to 0) the URE methodology estimates the
risk in L2 norm below the desired error rate. Thereafter, in Lemma 3.2 we prove
that the loss of those estimators concentrate around their expected values (risk)
when we have a large number of row and column effects.

LEMMA 3.1. Under Assumptions A1–A2,

lim
r→∞
c→∞

d2
r,c ·

{
sup

λA,λB≥0
E

[
UREQ

r,c(0,λA,λB) − RQ
r,c

(
η, η̂(0,λA,λB)

)]2
}

= 0.

LEMMA 3.2. Under Assumptions A1–A2,

lim
r→∞
c→∞

d2
r,c ·

{
sup

λA,λB≥0
E

[
LQ

r,c

(
η, η̂(0,λA,λB)

) − RQ
r,c

(
η, η̂(0,λA,λB)

)]2
}

= 0.

If we restrict ourselves to only estimators in S[τ ] that shrink toward the ori-
gin, then Theorem 3.1 follows directly from the above two lemmas. As such, for
this subset of estimators, the lemmas prove a stronger version of the theorem with
convergence in L2 norm. The proof is extended to general shrinkage estimators by
controlling the L1 deviation between the true loss and its URE-based approxima-
tion through the nontrivial use of the location invariance structure of the problem.
The proofs of all of these results are provided in Section A.1 of the Appendix.
The results for the weighted loss L

wgt
r,c (defined in Section 2) are discussed in Sec-

tion S.3.1 of the supplement.
We would like to point out the qualitative differences between the results and

the proof techniques employed here and those usually used for the one-way Nor-
mal mean estimation problem exemplified in Xie, Kou and Brown (2012). For
the cell mean estimation problem in two-way layouts with unbalanced designs,
there is no indexing on the parametric space under which the “row” effects and
the “column” effects can be decoupled. Thus, in unbalanced designs (see Sec-
tion S.5 of the supplement for discussion on balanced designs) the two-way cell
mean estimation problem cannot be reduced to the one-way setting. The approach
of Xie, Kou and Brown (2012), which would require showing uniform conver-
gence of the difference between the URE and the loss over the entire set H =
{µ ∈ [âτ , b̂τ ];λA,λB ≥ 0} of possible hyperparameter values, that is, showing L1

convergence of sup(µ,λA,λB)∈H |UREQ
r,c(µ,λA,λB)−L

Q
r,c(η, η̂(µ,λA,λB))| to 0,

cannot be trivially adapted to the two-way layout.
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Instead, in Theorem 3.1 we show pointwise control on the expected absolute
difference between the URE and the loss. The pointwise control was established
through computations involving the variance of Gaussian quadratic forms, which
greatly helps in tackling the difficulties encountered when passing to the two-
way problem, where computations involving matrices are generally unavoidable.
Specifically, we show that the expected absolute difference between the URE and
the loss is asymptotically controlled at o(d−1

r,c ) over the essential support of the
hyperparameters. Thereafter, for establishing oracle optimality of the hyperparam-
eters produced by our URE method, we leverage the differentiability of the loss as
function of the hyperparameters. This allows us to concentrate on controlling the
expected absolute difference uniformly over a discrete subset of H whose cardinal-
ity diverges to infinity as r, c → ∞ but is of the order of O(dr,c) (see Appendix A.2
for details). The oracle optimality results follow by applying the pointwise control
of o(d−1

r,c ) on the expected absolute difference between the URE and the loss at
every point on this discrete subset which has only O(dr,c) hyperparameter values;
thus, ensuring at most o(d−1

r,c ) ·O(dr,c) = o(1) cumulative error over the concerned
discrete subset. Section A.2 contains the detailed proofs of the oracle optimality
results of Theorems 3.2, 3.3 and that of Corollary 3.1.

4. Empirical studies. We carry out numerical experiments to compare the
performance of the URE-based estimator to that of different estimators discussed
in the previous sections. As the standard technique, we consider the weighted least
squares estimator η̂LS = µ̂LS1 + Zθ̂

LS, where (µ̂LS, θ̂
LS

) is any pair that mini-
mizes

(y − µ · 1 − Zθ)TM−1(y − µ · 1 − Zθ).

The two-way shrinkage estimators reported are the maximum-likelihood empiri-
cal Bayes (EBML) estimator η̂ML and the URE-based estimator η̂URE, as well as
versions of these two estimators which shrink toward the origin (i.e., with µ fixed
at 0); these are designated in Table 1 as “EBMLE (origin)” and “URE (origin).”

TABLE 1
Estimation errors relative to the Least Squares (LS) estimator. The columns in the table correspond

to the six simulation examples described in Section 4

(a) (b) (c) (d) (e) (f)

LS 1.00 1.00 1.00 1.00 1.00 1.00
EBMLE 0.31 1.79 0.48 1.37 0.21 0.96
URE 0.31 0.45 0.19 0.21 0.18 0.58
EBMLE (origin) 0.31 0.69 0.45 1.42 0.58 0.95
URE (origin) 0.31 0.46 0.20 0.53 0.57 0.63
XKB 0.31 0.58 0.28 0.44 0.20 –
Oracle 0.30 0.42 0.16 0.20 0.17 0.56



EMPIRICAL BAYES FOR A TWO-WAY 1707

We also consider an adaptation of the one-way estimator of Xie, Kou and Brown
(2012) to the two-way layout, which estimates the scale hyperparameters based
on two independent one-way shrinkage problems and shrinks toward a general
data-driven location; details for this estimator, which we label “XKB” in Table 1,
appear in Section S.5 of the supplement. As a benchmark, we consider the oracle
rule η̃OL = η̂(µ̃OL, λ̃OL

A , λ̃OL
B ), where

(
µ̃OL, λ̃OL

A , λ̃OL
B

) = arg min
µ,λA≥0,λB≥0

∥∥y − M(−1(y − µ · 1) − η
∥∥2

.(21)

Simulation Experiments. We report results across 6 simulation scenarios. For
each of these, we draw (α,β,M−1 = diag(K11,K12, . . . ,Krc)) jointly from some
distribution such that the cell counts Kij are i.i.d. and (α,β) are drawn from some
conditional distribution given the Kij . We then draw yij ∼ N(µ+αi +βj ,σ

2K−1
ij )

independently, fixing µ = 0 throughout and setting σ 2 to some (known) constant
value. This process is repeated for N = 100 times for each pair (r, c) in a range
of values, and the average squared loss over the N rounds is computed for each
of the estimators mentioned above. With 100 repetitions, the standard error of the
average loss for each estimator is at least one order-of-magnitude smaller than
the estimated differences between the risks; hence, the differences can be safely
considered significant. The URE estimate is computed using the implementation
described in Section A.3 of the Appendix, and the oracle “estimate” is computed
employing a similar technique. The EBMLE estimate is computed using the R
package lme4 [Bates (2010)].

Table 1 shows the mean square error (MSE) of different estimators as a fraction
of the estimated risk of the Least Squares (LS) estimator. We have equal num-
ber of row and column levels for all experiments except for scenario (c). Figure 1
displays the MSE of the URE, EBMLE, LS, XKB and the Oracle loss (OL) esti-
mators across the six experiments as the number of levels in the design varies. The
figure shows how the estimation errors of the different estimators compare with
the minimum achievable (oracle) error rates as the number of levels in the design
increases. An additional simulation, examining the performance of the estimators
under model misspecification, is included in the supplement.

The general pattern reflected in the subplots shows an initial sharp decline with
a gradual flattening-out of the error rates as the number of levels exceeds 100,
suggesting a setting within the asymptotic regime. In all the examples, the perfor-
mance of the URE-based method is close to that of the oracle when the number
of levels is large; when the number of levels is bigger than 60, there is no other
estimator which is much better at any instance than the URE. On the contrary, in
all examples except scenario (a) the EBMLE performs quite poorly, and is out-
performed even by the “one-way” XKB estimator. In cases with dependency be-
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FIG. 1. Risk of the various estimators in the six simulation scenarios of Table 1. The ordinate shows
the risk of the estimators while we vary L along the abscissa. In all experiments r = c = L, except (d)
where L = r and c was fixed at 40. The sampling variance is σ 2 = 10 in all experiments except (f),
where σ 2 = 1.

tween the effects and the cell counts, even the LS estimator can be preferable to the
EBMLE [experiments (b) and (d)]. A detailed description of each of the simulation
examples is provided in the supplement to this article.
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TABLE 2
Estimated fixed effect (µ) and components λcounty and

λhour, which determine shrinkage

µ County Hour

EBMLE 1.10 0.57 0.05
URE 0.78 0.07 0.80

Real Data Analysis. In addition to the simulation study, we analyzed real data
collected on Nitrate levels measured in water sources across the US. The data was
obtained from the Water Quality Portal cooperative (http://waterqualitydata.us/).
We estimated the (log transformed) average Nitrate level based on the location of
the water resource and time when the measurement was taken. Our data set in-
cludes a total of 858 observations categorized into 108 counties and 9 different
hour-slots (8–16). The data is highly unbalanced: 57% of the cells are empty, and
the cell counts among the nonempty cells vary between 1 to 12. Both the EBMLE
and the URE estimators shrink the LS estimates in this example, but the shrinkage
factors are quite different. There is a marked difference between the methods in the
estimates of the two variance components, as Table 2 shows. Note specifically that
EBMLE applies much more shrinkage to “hour”; this is in accord with the fact that
the p-value for “hour” in a two-way ANOVA (using Type-II sums-of-squares) is
not significant (p-value = 0.25). In terms of the fitted values, EBMLE applies more
shrinkage, although the differences are not very big. To compare the performance
of the different estimators, we carried out two separate analyses. In the first one,
we split the data evenly and used the first portion for estimation and the second
portion for validation. The second analysis is a data-informed simulation intended
to compare performance of the estimators when the two-way additive model (1)
is correctly specified. In the analysis with validation, EBMLE had a smaller esti-
mated total squared error (0.42 vs. 0.5, presented as fraction of TSE of LS), but
in the data-informed simulation, the URE achieved smaller squared error (0.72
vs. 0.81). As both EBMLE and the URE estimators are designed for the additive
model, the results from the latter analysis might be considered a better basis for
comparison between the methods. The two experiments are described in details in
the supplement.

5. Discussion. We considered estimation under sum-of-squares loss of the
cell means in a two-way linear model with additive fixed effects, where the fo-
cus was on the unbalanced case. Minimax shrinkage estimators exist which dif-
fer from, and hence dominate, the Least Squares estimator for the more general
linear regression setup [Rolph (1976)]. However, such estimators do not exploit
the special structure of the two-factor additive model, and might lead to undesir-
able shrinkage patterns which are difficult to interpret. Instead, we considered a
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parametric class of Bayes estimators corresponding to a prior motivated from ex-
changeability considerations. The resulting estimates exhibit meaningful shrink-
age patterns and, when appropriately calibrated, achieve significant risk reduction
as compared to the least squares estimator in practical situations.

To calibrate the Bayes estimator, we considered substituting the hyperparame-
ters governing the prior with data-dependent values, and proposed a method, which
chooses these values in an asymptotically optimal way. We contrasted the proposed
estimator with the traditional likelihood-based empirical BLUP estimator, which
was shown to generally produce asymptotically suboptimal estimates of the cell
means. Since it relies on the postulated two-level model, the likelihood-based em-
pirical BLUP estimator might be led astray when there is dependency between
the cell counts and the true cell means; this was clearly shown in our simulation
examples.

The theory developed here employs proof techniques that differ in fundamental
aspects from those commonly used to prove asymptotic optimality in the one-
way Normal mean estimation problem. We offered a flexible approach for prov-
ing asymptotic optimality via efficient pointwise risk estimation which reduces to
uniformly controlling the variance of the associated quadratic forms. Our proof
techniques can be extended to k-way additive models, although computational dif-
ficulty of our proposed method might become a problem when k is even moder-
ately large. It would be interesting to investigate whether our proof techniques can
be extended to tackle URE-based shrinkage estimation in more complex models
(non-Gaussian or misspecified) by using the general quadratic form concentration
results established in Dicker and Erdogdu (2017).

APPENDIX

A.1. Pointwise loss estimation by URE: Proof details. Here, we present the
proofs of Theorem 3.1, Lemma 3.1 and Lemma 3.2. Henceforth, we assume σ = 1.
It is done mainly for the ease of presentation, and the proofs can easily be modified
for any known value of σ . We fix the following notation. Denote by σk(A) the kth
largest singular value of a matrix A. Denote by λk(B) the kth largest eigenvalue
of a symmetric matrix B . Also, G

·= M(−1 and H
·= GTQG = (−1MQM(−1

where M , (−1 and Q are defined in Section 2.3. Let W = M1/2(−1M1/2. As
0 ≺ M / ( we have W / I , and also W 2 / I . We will use the following result of
Searle, Casella and McCulloch (1992) (Theorem S4, page 467).

LEMMA A.1 (Central moments of Gaussian Quadratic Forms).

If y ∼ N(η,V ),

then E
(
yTAy

) = 2tr[AV ] + ηTAη, and

Var
(
yTAy

) = 2tr
[
(AV )2] + 4ηTAV Aη.
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The proof of Theorem 3.1 for the case when the general effect µ = 0 follows
directly from the results of Lemma 3.1 and Lemma 3.2 as E{UREQ

r,c(0,λA,λB)−
L

Q
r,c(η, η̂(0,λA,λB))}2 is bounded above by

2E
{
UREQ

r,c(0,λA,λB) − RQ
r,c

(
η, η̂(0,λA,λB)

)}2

+ 2E
{
LQ

r,c

(
η, η̂(0,λA,λB)

) − RQ
r,c

(
η, η̂(0,λA,λB)

)}2
.

In fact, this proves Theorem 3.1 in the stronger L2 norm (with its correspond-
ingly adjusted rate). We now concentrate on proving the lemmas and will thereafter
prove the theorem for the general (µ 0= 0) case.

PROOF OF LEMMA 3.1. As the URE is an unbiased estimator of the risk of an
estimator in S , for any fixed λA,λB ≥ 0, we have

(22) E
[
UREQ(0,λA,λB) − RQ

r,c

(
η; η̂(0,λA,λB)

)]2 = Var
[
UREQ(0,λA,λB)

]
.

Based on the expression of the URE estimator in (17) we know that

UREQ(0,λA,λB) = (rc)−2{
σ 2tr(QM) − 2σ 2tr

(
(−1MQM

) + yTHy
}
,

and so the RHS of (22) reduces to (rc)−2 Var(yTHy) which, being the variance
of a quadratic form of the Gaussian random vector y, can in turn be evaluated by
using Lemma A.1 to give

Var
[
UREQ(0,λA,λB)

] = (rc)−2{
2tr(HMHM) + 4ηTHMHη

}
.(23)

Our goal now is to show that each of the terms on the RHS, after being mul-
tiplied by d2

r,c, uniformly converges to 0 for all choices of λA and λB . For this
purpose, we concentrate on the second term of the RHS first. As H is p.s.d. by
R2 (see Section S.6 of the supplement), HMH is also p.s.d. Thus, ηTHMHη ≤
λ1(HMH)‖η‖2. Now, using the bound λ1(HMH) ≤ νr,cλ

2
1(Q) on the largest

eigenvalue of HMH (for detailed derivation, see Lemma S.3.2 in the supplements)
we arrive at the following upper bound:

(rc)−2d2
r,c sup

λA,λB≥0
ηTHMHη ≤ (rc)−2d2

r,cνr,cλ
2
1(Q)‖η‖2

which, under Assumptions A1 and A2, converges to 0 as r, c → ∞. From
Lemma S.3.2, we have tr(HMHM) ≤ rc · λ2

1(Q). Hence, as r, c → ∞, by As-
sumption A2 the first term in (23) scaled by d2

r,c also converges to 0 uniformly
over the ranges of λA and λB . This completes the proof of the lemma. "

PROOF OF LEMMA 3.2. As the risk is the expectation of the loss, to prove the
lemma we need to show

d2
r,c sup

λA,λB≥0
Var

[
LQ(

η, η̂(0,λA,λB)
)] → 0 as r, c → ∞.
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Again, the loss of the estimator η̂0 = η̂(0,λA,λB) can be decomposed as

LQ(η, η̂0) = (rc)−1(η̂0 − η)TQ(η̂0 − η) = (rc)−1(y − η − Gy)TQ(y − η − Gy)

= (rc)−1{
(y − η)TQ(y − η) + yTHy − 2(y − η)TQGy

}

= (rc)−1{L1 + L2 − L3 + L4},
where L1 = (y − η)TQ(y − η),L2 = yTHy,L3 = 2yTQGy,L4 = 2ηTQGy.

Hence, it suffices to show that d2
r,c supλA,λB

Var((rc)−1Li) → 0 as r, c → ∞
for all i = 1, . . . ,4. Uniform convergence of the desired scaled variance of L2 was
already shown in the proof of Lemma 3.1.

For the first term L1, we have

Var
[
(rc)−1L1

] = (rc)−2 Var
[
(y − η)TQ(y − η)

] = 2(rc)−2tr(QMQM)

= 2(rc)−2tr
{(

M
1
2 QM

1
2
)2} ≤ 2(rc)−1λ2

1
(
M

1
2 QM

1
2
)

which by Assumption A2 is o(d−2
r,c ) as r, c → ∞ for any value of the hyper-

parameter. As y is normally distributed, the fourth term can be explicitly evaluated
as

4−1 Var(L4) = Var
(
ηTQGy

) = ηTQGMGTQη ≤ λ1
(
QGMGTQ

)‖η‖2

≤ νr,cλ
2
1(Q)‖η‖2,

where the last inequality follows from Lemma S.3.2. By Assumptions A1–A2, the
above is o(r2c2d−2

r,c ).
The third term requires detailed analysis. It breaks into two components:

Var
[
(rc)−1L3

] = 4(rc)−2 Var
(
yTQGy

)

(24)
= 8(rc)−2tr(G̃MG̃M) + 16(rc)−2ηTG̃MG̃η,

where G̃ = QG + GTQ is a symmetric matrix. By Lemma S.3.2, the first term on
the RHS of (24) is bounded above by 32(rc)−1λ2

1(Q) and hence, by Assumption
A2 is uniformly bounded by o(d−2

r,c ) as r, c → ∞. We now concentrate on the sec-
ond term of the RHS of (24). Note that (rc)−2ηTG̃MG̃η ≤ (rc)−2ηTησ1(G̃MG̃).
If we can uniformly bound the largest eigenvalue of G̃MG̃ as o(rcd−2

r,c ) then by
Assumption A1 the second term of the RHS of (24) is o(d−2

r,c ) as r, c → ∞. As
G̃ = QG + GTQ = QM(−1 + (−1MQ, we have

G̃MG̃ = H1 + H T
1 + H2 + H3,

where

H1 = QM(−1MQM(−1,

H2 = QM(−1M(−1MQ, H3 = (−1MQMQM(−1.
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To uniformly bound the eigenvalues of G̃MG̃ as desired before we just show that
for each of i = 1, . . . ,3, (rc)−1d−2

r,c σ1(Hi) → 0 as r, c → ∞.
Note that, H2,H3 is symmetric but H1 is not. By Lemma S.3.2, we have

max{σ1(H1),λ1(H3)} ≤ νr,cλ
2
1(Q), from which the desired asymptotic control on

the variance follows. For H2 using W 2 / I , we have

λ1(H2) = λ1
(
QM

1
2 W 2M

1
2 Q

) ≤ λ1
(
QM

1
2 M

1
2 Q

) ≤ λ1
(
M−1)

λ2
1
(
M

1
2 QM

1
2
)

which is uniformly controlled at o(rcd−2
r,c ) by Assumption A2. This completes the

proof of the lemma. "

PROOF OF THEOREM 3.1. As shown in the beginning of this section, by the
above two lemmas the theorem easily follows for the case when µ = 0. We now
prove the theorem for the general case. First, note that for arbitrary fixed µ ∈ R,
the loss (η̂(µ,λA,λB) − η)TQ(η̂(µ,λA,λB) − η) decomposes into the following
components:

(
η̂(0,λA,λB) − η

)T
Q

(
η̂(0,λA,λB) − η

) + µ21TH1

− 2µ1THy + 2µ1TGTQ(y − η).

Comparing it with the definition of URE, we have

UREQ
r,c(µ,λA,λB) − LQ

r,c

(
η, η̂(0,λA,λB)

)

= UREQ
r,c(0,λA,λB) − LQ

r,c

(
η, η̂(0,λA,λB)

) + 2(rc)−1µ1TGTQ(y − η).

We have already proved the theorem for the case of µ = 0; hence, in light of the
above identity, the proof of the general case will follow if we show:

(25) lim
r→∞
c→∞

sup
|µ|≤mr,c
λA,λB≥0

dr,c · (rc)−1 · E
∣∣µ1TGTQ(y − η)

∣∣ = 0.

Noting that for any fixed η the random variable F = 1TGTQ(y − η) follows a
univariate normal distribution with mean 0 and variance 1TGTQMQG1, the above
holds if we show

(26) lim
r→∞,c→∞mr,c · dr,c · (rc)−1 · sup

λA,λB≥0

{
Var

(∣∣1TGTQ(y − η)
∣∣)}1/2 = 0.

The above is true based on our assumptions as we can upper bound the variance of
|F | by

Var(F ) ≤ 1TGTQMQG1 ≤ rcλ1
(
GTQMQG

) ≤ rcνr,cλ
2
1(Q),

where the last inequality follows from Lemma S.3.2. This based on Assumption A2
establishes (26) and completes the proof of the theorem. "
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A.2. Proof of the oracle optimality results. The proofs of Theorems 3.2, 3.3
and Corollary 3.1 are presented here. For that purpose, we first construct a discrete
subset of the set of hyperparameters and define analogous versions of the URE and
oracle estimators over it.

Discretization. In (18) and (20), the URE and oracle estimators involve min-
imizing the hyperparameters (µ,λA,λB) simultaneously over T̂r,c = [âτ , b̂τ ] ×
[0,∞] × [0,∞] where the range of the location hyperparameter µ depends on the
data. We define a discrete product grid +r,c = +[1]

r,c × +[2]
r,c × +[3]

r,c which only de-
pends on r, c and not on the data. Details for the construction of +r,c is provided
afterward. It contains countably infinite grid points as r, c → ∞. We define the
discretized version of the oracle estimator where the minimization is conducted
over all the points in the discrete grid +r,c that are contained in T̂r,c. We define the
discretized oracle loss hyper-parameters as

(
µ̃OD, λ̃OD

A , λ̃OD
B

) = arg min
(µ,λA,λB)∈+r,c∩T̂r,c

LQ
r,c

(
η, η̂(µ,λA,λB)

)
,

and the corresponding oracle rule by η̃OD
c = ZcZ

†η̂(µ̃OD, λ̃OD
A , λ̃OD

B ). We define
the URE estimators over the discrete grid by projecting the URE estimates of equa-
tion (18) in +r,c ∩ T̂r,c: if the URE hyperparameters given by equation (18) are such
that:

µ1 ≤ µ̂UQ ≤ µ2, λ1 ≤ λ̂
UQ
A ≤ λ2, and λ3 ≤ λ̂

UQ
B ≤ λ4,

where µ1,µ2 are neighboring points in +[1]
r,c ∩ [âτ , b̂τ ], λ1,λ2 are neighboring

points in +[2]
r,c and λ3,λ4 are neighboring points in +[3]

r,c , then the URE estimates
of the tuning parameters over the discrete grid is defined as the minima over the
nearest 8-point subset of the grid:

(27)
(
µ̂UD, λ̂UD

A , λ̂UD
B

) = arg min
(µ,λA,λB)∈{µ1,µ2}×{λ1,λ2}×{λ3,λ4}

UREQ(µ,λA,λB).

The corresponding discretized EB estimate is η̂UD = η̂(µ̂UD, λ̂UD
A , λ̂UD

B ). The cor-
responding estimate for ηc is η̂UD

c = ZcZ
†η̂(µ̂D, λ̂D

A, λ̂D
B). If the URE estimators

for any of the three hyperparameters are outside the grid, then the nearest bound-
ary of the grid is taken as the UD estimate for that hyper-paramter. We will show
afterward that the probability of such events is negligible. Also, by construction,
L(ηc, η̂

UD
c ) ≥ L(ηc, η̃

OD
c ) ≥ L(ηc, η̃

OL
c ).

Construction of the grid +r,c. The grid +r,c is a product grid. The grid +[1]
r,c

on the location hyperparameter µ is an equispaced discrete set {−mr,c = µ[1] <
µ[2] < · · · < µ[n1] ≤ mr,c}, which covers [−mr,c,mr,c] at a spacing of δ[1]

r,c . Thus,
the cardinality of +[1]

r,c , n1 = 22mr,c{δ[1]
r,c}−13. We choose the spacing as

δ[1]
r,c = {

m4/3
r,c · νr,c · λ1(Q)

}−1
.(28)
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For constructing the grid +[2]
r,c on the scale hyperparameter, we consider the fol-

lowing transformation λ̃A = (1 + λA)−1/2. Note that λ̃A ∈ [0,1] as λA varies over
[0,∞]. Let λ̃A[k] = (k − 1)δ[2]

r,c , n2 = 2{δ[2]
r,c}−13. Consider the equispaced grid on

λ̃A between 0 and 1 at a spacing of δ[2]
r,c : {0 = λ̃A[1] < λ̃A[2] < · · · < λ̃A[n2] ≤ 1}.

The grid on λ̃A is then retransformed to produce the grid +[2]
r,c on the scale hyper-

parameter λA in the domain [0,∞]. The grid +[3]
r,c on λB is similarly constructed

with δ[3]
r,c distances between two corresponding grid points in λ̃B scale. The spaces

were chosen as

δ[2]
r,c = δ[3]

r,c = {
m7/3

r,c · νr,c · λ1(Q)
}−1

.(29)

Now, as r, c → ∞, n1 = O(m
7/3
r,c · νr,c · λ1(Q)), n2 = O(m

7/3
r,c · νr,c · λ1(Q)), and

thus the cardinality of +r,c is |+r,c| = O(m7
r,cν

3
r,cλ

3
1(Q)) = O(dr,c).

The following two lemmas enable us to work with the more tractable, dis-
cretized versions of the URE and oracle estimators when proving our decision
theoretic results.

LEMMA A.2. Under Assumptions A1–A2 for any fixed ε > 0 as r, c → ∞,

A. P
{
Lr,c

(
ηc, η̃

OD
c

) − Lr,c
(
ηc, η̃

OL
c

)
> ε

} → 0,

B. E
∣∣Lr,c

(
ηc, η̃

OD
c

) − Lr,c
(
ηc, η̃

OL
c

)∣∣ → 0,

C. P
{∣∣Lr,c

(
ηc, η̂

UD
c

) − Lr,c
(
ηc, η̂

URE
c

)∣∣ > ε
} → 0,

D. E
∣∣Lr,c

(
ηc, η̂

UD
c

) − Lr,c
(
ηc, η̂

URE
c

)∣∣ → 0.

LEMMA A.3. Under Assumptions A1–A2 for any fixed ε > 0 as r, c → ∞,

A. P
{
UREQ(

µ̂UD, λ̂UD
A , λ̂UD

B

) − UREQ(
µ̂UQ, λ̂

UQ
A , λ̂

UQ
B

)
> ε

} → 0,

B. E
[
UREQ(

µ̂UD, λ̂UD
A , λ̂UD

B

) − UREQ(
µ̂UQ, λ̂

UQ
A , λ̂

UQ
B

)] → 0.

Lemma A.2 above shows that the difference in the loss between the true esti-
mators and their discretized versions is asymptotically controlled at any prefixed
level. It uses the following two lemmas. Lemma A.3 above shows that the URE
values for the estimator is also asymptotically close for the discretized version.
The proofs of all these lemmas (A.2, A.3, A.4 and A.5) are provided in the supple-
mentary materials.

LEMMA A.4. Under Assumption A1 in model (14), for any fixed τ ∈ (0,1]
and mr,c of (19), the event Ar,c(Y ) = {[âτ (Y ), b̂τ (Y )] ⊆ [−mr,c,mr,c]} satisfies
P {Ar,c} → 1 as r, c → ∞.
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LEMMA A.5. Under Assumptions A1–A2, for any fixed τ ∈ (0,1] and mr,c

of (19), the event Ar,c(Y ) = {[âτ (Y ), b̂τ (Y )] ⊆ [−mr,c,mr,c]} satisfies:

A. E
{∣∣Lr,c

(
ηc, η̃

OD
c

) − Lr,c
(
ηc, η̃

OL
c

)∣∣ · I{
Ar,c(Y )

}} → 0 as r, c → ∞.

B. E{∣∣Lr,c
(
ηc, η̂

UD
c

) − Lr,c
(
ηc, η̂

URE
c

)∣∣ · I{
Ar,c(Y )

} → 0 as r, c → ∞.

We next present the proof of the decision theoretic properties where Lem-
mas A.2, A.3 will be repeatedly used.

PROOF OF THEOREM 3.2. We know that

P
{
L

(
ηc, η̂

URE
c

) ≥ L
(
ηc, η̃

OL
c

) + ε
} ≤ P

{
L

(
ηc, η̂

URE
c

) ≥ L
(
ηc, η̃

OD
c

) + ε/2
}

+ P
{
L(ηc, η̃

OD
c ≥ L

(
ηc, η̃

OL
c

) + ε/2
}
.

By Lemma A.2, the second term converges to 0. The first term is less than

P
{
L

(
ηc, η̂

UD
c

) ≥ L
(
η, η̃OD

c
) + ε/4

} + P
{∣∣L

(
ηc, η̂

URE
c

) − L
(
η, η̂UD

c

)∣∣ ≤ ε/4
}
.

As r, c → ∞ the second term in the RHS above converges to 0 by Lemma A.2.
For the first term note that, by definition, UREQ(µ̂UQ, λ̂

UQ
A , λ̂

UQ
B ) ≤ UREQ(µ̃OD,

λ̃OD
A , λ̃OD

B ) which, combined with Lemma A.3, suggests that

P
{
UREQ(

µ̂UD, λ̂UD
A , λ̂UD

B

) ≤ UREQ(
µ̃OD, λ̃OD

A , λ̃OD
B

) + ε/8
} → 0

as r, c → ∞.(30)

Thus, showing P {L(ηc, η̂
UD
c ) ≥ L(η, η̃OD

c ) + ε/4} → 0 as r, c → ∞ can be re-
duced to showing limr,c→∞ P {A(y;ηc) ≥ B(y;ηc) + ε/8} = 0 where

A(y;ηc) = L
(
ηc, η̂

UD
c

) − UREQ(
µ̂UD, λ̂UD

A , λ̂UD
B

)
,

and

B(y;ηc) = L
(
ηc, η̃

OD
c

) − UREQ(
µ̃OD, λ̃OD

A , λ̃OD
B

)
.

As L(ηc, η̂
UD
c ) = LQ(η, η̂UD) and L(ηc, η̃

OD
c ) = LQ(η, η̂(µ̃OD, λ̃OD

A , λ̃OD
B )), by

using Markov’s inequality we get

P
{
A(y;ηc) ≥ B(y;ηc) + ε/8

} ≤ 8−1ε−1E
{∣∣A(y;ηc) − B(y;ηc)

∣∣}.

Now, by triangle inequality the RHS above is upper bounded by

16ε−1E
{

sup
(µ,λA,λB)∈+r,c

∣∣LQ(
η, η̂(µ,λA,λB)

) − UREQ(µ,λA,λB)
∣∣
}

≤ 16ε−1E
{ ∑

(µ,λA,λB)∈+r,c

∣∣LQ(
η, η̂(µ,λA,λB)

) − UREQ(µ,λA,λB)
∣∣
}

≤ 16ε−1|+r,c| sup
|µ|≤mr,c
λA,λB≥0

E
{∣∣LQ(

η, η̂(µ,λA,λB)
) − UREQ(µ,λA,λB)

∣∣}.
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As |+r,c| = O(dr,c) by Theorem 3.1, the above expression converges to zero when
r, c → ∞. This completes the proof of the theorem. "

PROOF OF THEOREM 3.3. Decompose the loss as the sum of the fol-
lowing components: L(ηc, η̂

URE
c ) − L(ηc, η̂

UD
c ), L(ηc, η̃

OD
c ) − L(ηc, η̃

OL
c ) and

L(ηc, η̂
UD
c ) − L(ηc, η̃

OD
c ). By Lemma A.2, expectations of the absolute values of

the first two terms converge to 0 as r, c → ∞. Write the third term as
{
L

(
ηc, η̂

UD
c

) − UREQ(
µ̂UD, λ̂UD

A , λ̂UD
B

)}

− {
L

(
ηc, η̃

OD
c

) − UREQ(
µ̃OD, λ̃OD

A , λ̃OD
B

)}

+ {
UREQ(

µ̂UD, λ̂UD
A , λ̂UD

B

) − UREQ(
µ̃OD, λ̃OD

A , λ̃OD
B

)}
.

Now, by definition UREQ(µ̂UQ, λ̂
UQ
A , λ̂

UQ
B ) ≤ UREQ(µ̃OD, λ̃OD

A , λ̃OD
B ) which, com-

bined with Lemma A.3, suggests that the last term above has asymptotically non-
positive expectation. Thus, there exist constants κr,c with κr,c → 0 as r, c → ∞
such that E{L(ηc, η̂

UD
c ) − L(ηc, η̃

OD
c )} is

≤ 2E
{

sup
(µ,λA,λB)∈+r,c

∣∣LQ(
η, η̂(µ,λA,λB)

) − UREQ(µ,λA,λB)
∣∣
}

+ κr,c

≤ 2E
{ ∑

(µ,λA,λB)∈+r,c

∣∣LQ(
η, η̂(µ,λA,λB)

) − UREQ(µ,λA,λB)
∣∣
}

+ κr,c

≤ 2|+r,c| sup
|µ|∈mr,c;λA,λB≥0

E
{∣∣LQ(

η, η̂(µ,λA,λB)
) − UREQ(µ,λA,λB)

∣∣} + κr,c.

As |+r,c| = O(dr,c), the above expression tends to zero when r, c → ∞ by Theo-
rem 3.1. This completes the proof of Theorem 3.3. "

PROOF OF COROLLARY 3.1. (a) and (b) are direct consequences, respectively,
of Theorems 3.2 and 3.3, since LQ(η, η̂(µ̂, λ̂A, λ̂B)) ≥ LQ(η,ηOL), and hence,
also E{LQ(η, η̂(µ̂, λ̂A, λ̂B))} ≥ E{LQ(η,ηOL)}. Unlike in the above two theo-
rems, here we only have optimality over the loss LQ defined over the observed
cells with Q in (16). As explained in Section 2.3, the loss LQ for the observed
cells is the same as the (normalized) sum-of-squares loss over all (observed and
missing) rc cell means for an estimator of the form ZcZ

†η̂(µ̂, λ̂A, λ̂B), where
µ̂, λ̂A, λ̂B are any estimates of the hyper-parameters. "

A.3. Computations for implementing the URE method. By definition,
( = Z&&TZT + M . By the matrix inverse identity, we have (−1 = M−1 −
M−1Z&(&TZTM−1Z& + Iq)

−1&TZTM−1. Hence, we get

M(−1 = Irc − Z&
(
&TZTM−1Z& + Iq

)−1
&TZTM−1,

M(−1M = M − Z&
(
&TZTM−1Z& + Iq

)−1
&TZT.
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Using the above, we get

tr
(
(−1M2) = tr

(
M(−1M

) = tr(M) − tr
(
Z&

(
&TZTM−1Z& + Iq

)−1
&TZT)

.

Therefore, the URE expression in (10) multiplied by rc can be written as

−σ 2tr(M) + 2σ 2tr
{(

&TZTM−1Z& + Iq
)−1(

&TZTZ&
)} + ∥∥M(−1(y − 1µ)

∥∥2
.

In computing the above expression:

1. The middle term is computed as the sum of the elementwise product of
(&TZTM−1Z&+Iq)

−1 and &TZTZ&, using the property tr(ATB) = ∑
i,j AijBij .

2. (&TZTM−1Z& + Iq)−1 is computed efficiently employing a sparse
Cholesky factorization of &TZTM−1Z& + Iq similar to the implementation in
the lme4 package in R.

3. The quantity minµ ‖M(−1(y − 1µ)‖2 is computed by regressing M(−1y
on M(−11rc using the lm function in R. In doing that, the vector M(−1x (for
x = y and x = 1rc) is computed as

M(−1x = x − Z&
(
&TZTM−1Z& + Iq

)−1
&TZT(

M−1x
)
,(31)

where (31) is implemented proceeding “from right to left” to always compute a
product of a matrix and a vector, instead of two matrices: First, find M−1x, then
find (&TZT)(M−1x), and so on.
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SUPPLEMENTARY MATERIAL

Supplement to “Empirical Bayes estimates for a two-way cross-classified
model” (DOI: 10.1214/17-AOS1599SUPP; .pdf). The supplement [Brown,
Mukherjee and Weinstein (2018)] contains detailed proofs of the lemmas that
were used in the Appendix for proving the results in Section 3; and derivations
and further discussions on the results of Sections 2 and 4.
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The supplement contains derivations and further discussions on

the results whose proofs were not provided in the main paper. Details

for the empirical studies and additional insights on the asymptotic

theory are also presented here.

S.1. Introduction. Additional proofs, supporting results and discussions related to

Section 2, 3 and 4 of the main paper are presented in the following three sections, which

are organized according to their corresponding main paper section numbers. Thereafter,

Section S.5 provides discussions on URE estimation in two-way layouts with balanced

designs and Section S.6 contains a list of basic results used in this paper.

S.2. Detailed remarks and proofs for results of Section 2.

Lemma S.2.1. The Bayes estimate of ⌘ in the hierarchical Gaussian model (3) is

E[⌘|y] = y �M⌃�1(y � µ · 1) .

Proof. The distribution of (y,✓)T is Gaussian because it is a linear transformation

of (✓, ✏)T. Now, since cov(✓,y) = �2⇤⇤TZT, E[✓|y] = cov(✓,y)[cov(y)]�1(y � µ1) =

1



2

⇤⇤TZT⌃�1(y � µ1). Hence,

E[⌘|y] = E[1 · µ+ Z✓|y] = µ1+ ZE[✓|y]

= 1 · µ+ (⌃�M)⌃�1(y � 1 · µ) = y �M⌃�1(y � 1 · µ).

Lemma S.2.2. An unbiased estimate of the risk Rr,c(⌘, b⌘(µ,�A,�B)) is

URE(µ,�A,�B) =
1

rc

�
�2tr(M)� 2�2tr(⌃�1M2) + (y � 1µ)t[⌃�1M2⌃�1](y � 1µ)

 
.

Proof. This is immediate from the formula in Berger (1985, p. 362) after noticing that

y|⌘ ⇠ Nrc(⌘,�2M) and writing b⌘(µ,�A,�B) = y � �2M(�2⌃)�1(y � µ · 1).

S.2.1. Estimating Equations for Model (1).

Estimating Equations for the ML method. ML estimates are computed based on

the likelihood of y in the hierarchical model (3). Our derivation is similar to the analysis

conducted in Chapter 6.3, 6.4, 6.8 and 6.12 of Searle and McCulloch (2001). Since y ⇠
Nrc(1µ,�2⌃), its density is given by:

f(y) =
1

(2⇡�2)rc/2|⌃|1/2
exp

⇢
� 1

2�2
(y � 1µ)t⌃�1(y � 1µ)

�
(S.2.1)

and the corresponding log-likelihood is

l(µ,✓) = �(rc)/2 · log(2⇡�2)� 1

2
log |⌃|� 1

2�2
(y � 1µ)t⌃�1(y � 1µ)(S.2.2)

Using chain rule, we have

(S.2.3)
@l

@µ

(7)

= � 1

�2
(y � 1µ)t⌃�1

@{y � 1µ}
@µ

=
1

�2
(y � 1µ)t⌃�1

1

Also,

@l

@�2

A

(R8)
= �1

2
tr

✓
⌃�1

@⌃

@�2

A

◆
� 1

2�2
(y � 1µ)t


@⌃�1

@�2

A

�
(y � 1µ)

= �1

2

⇢
tr

✓
⌃�1

@⌃

@�2

A

◆
+

1

�2
(y � 1µ)t


@⌃�1

@�2

A

�
(y � 1µ)

�

(R9)
= �1

2

⇢
tr

✓
⌃�1

@⌃

@�2

A

◆
� 1

�2
(y � 1µ)t⌃�1


@⌃

@�2

A

�
⌃�1(y � 1µ)

�

= �1

2

⇢
tr
⇣
⌃�1ZAZ

T
A

⌘
� 1

�2
(y � µ1)t⌃�1ZAZ

T
A⌃

�1(y � µ1)

�
(S.2.4)

where in the last equality we use the fact that

⌃ = �2

AZAZ
T
A + �2

BZBZ
T
B + �2M.(S.2.5)
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On equating to zero, we get from (S.2.3) that the optimal estimate of the location parameter

is given by

µ̂1 =
1
T⌃�1y

1
T⌃�11

,(S.2.6)

the GLS estimate of µ. If µ̂1 /2 [â⌧ , b̂⌧ ], µ̂ takes the nearest boundary value in the set. From

(S.2.4), we get the estimating equations for �A,

tr
⇣
⌃�1ZAZ

T
A

⌘
� 1

�2
(y � 1µ)t⌃�1ZAZ

T
A⌃

�1(y � 1µ) = 0.(S.2.7)

By symmetry, taking the partial derivative w.r.t. �2

B gives

tr
⇣
⌃�1ZBZ

T
B

⌘
� 1

�2
(y � 1µ)t⌃�1ZBZ

T
B⌃

�1(y � 1µ) = 0.(S.2.8)

If µ̂1 2 [â⌧ , b̂⌧ ], plugging (S.2.6) into (S.2.7) and (S.2.8) gives the estimating equations for

�2

A and �2

B as

tr
⇣
⌃̂�1ZAZ

T
A

⌘
� 1

�2
yT(I � P )t⌃̂�1ZAZ

T
A⌃̂

�1(I � P )y = 0(S.2.9)

tr
⇣
⌃̂�1ZBZ

T
B

⌘
� 1

�2
yT(I � P )t⌃̂�1ZBZ

T
B⌃̂

�1(I � P )y = 0(S.2.10)

where P is the Generalized Least Square projection matrix:

P = 1(1T⌃̂�1
1)�1

1
T⌃̂�1.(S.2.11)

Estimating Equations for the URE method. For URE estimates, note that in (10),

in comparison to (S.2.2), ⌃�1M2V �1 replaces ⌃�1. Hence the partial derivative w.r.t. µ

vanishes for

µ̂1 =
1
T[⌃�1M2V �1]y

1
T[⌃�1M2V �1]1

.(S.2.12)

Again, if µ̂1 /2 [â⌧ , b̂⌧ ] it takes the nearest boundary value of the set. Furthermore,

@

@�2

A

URE
(R10)
= �2�2tr

✓
@⌃�1

@�2

A

M2

◆
+ (y � 1µ)t

⇢
@⌃�1

@�2

A

M2⌃�1 + ⌃�1M2
@⌃�1

@�2

A

�
(y � 1µ)

= �2�2tr

✓
@⌃�1

@�2

A

M2

◆
+ 2(y � 1µ)t


@⌃�1

@�2

A

M2⌃�1

�
(y � 1µ)

(R9)
= 2�2tr

✓
⌃�1

@⌃

@�2

A

⌃�1M2

◆
� 2(y � 1µ)t


⌃�1

@⌃

@�2

A

⌃�1M2⌃�1

�
(y � 1µ)

= 2�2tr(⌃�1ZAZ
T
A⌃

�1M2)� 2(y � 1µ)t[⌃�1ZAZ
T
A⌃

�1M2⌃�1](y � 1µ) .(S.2.13)
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Hence, on equating (S.2.4) to zero we obtain

tr(⌃�1ZAZ
T
A⌃

�1M2)� 1

�2
(y � 1µ)t[⌃�1ZAZ

T
A⌃

�1M2⌃�1](y � 1µ) = 0 .(S.2.14)

By symmetry, equating the partial derivative w.r.t. �2

B to zero gives

tr(⌃�1ZBZ
T
B⌃

�1M2)� 1

�2
(y � 1µ)t[⌃�1ZBZ

T
B⌃

�1M2⌃�1](y � 1µ) = 0 .(S.2.15)

If µ̂1 2 [â⌧ , b̂⌧ ], plugging (S.2.12) into (S.2.14) and (S.2.15) gives the estimating equations

for �2

A,�
2

B as

tr
⇣
⌃̂�1ZAZ

T
A⌃̂

�1M2

⌘
� 1

�2
yT(I � P )t⌃�1ZAZ

T
A⌃̂

�1M2⌃̂�1(I � P )y = 0(S.2.16)

tr
⇣
⌃̂�1ZBZ

T
B⌃̂

�1M2

⌘
� 1

�2
yT(I � P )t⌃�1ZBZ

T
B⌃̂

�1M2⌃̂�1(I � P )y = 0(S.2.17)

where P is given by:

P = 1(1T⌃̂�1M2⌃̂�11)�11T⌃̂�1M2⌃̂�1.(S.2.18)

Proof of Lemma 2.4. This is an immediate consequence of Theorem 5 in Searle (1966),

because ⌘c = Zc✓ is estimable if and only if vT✓ is estimable for each row v of Zc.

Lemma S.2.3. An unbiased estimator of the generalized risk RQ
r,c(⌘, b⌘(µ,�A,�B)) of

estimators of the form b⌘(µ,�A,�B) is given by

UREQ(µ,�A,�B) = �2tr(QM)� 2�2tr(⌃�1MQM)

+ (y � µ1)t
⇥
⌃�1MQM⌃�1

⇤
(y � µ1).

Proof. Similar to Lemma S.2.2.

S.3. Section 3: Proof details and further insights.

In this section, we provide additional details for Section 3 and its associated appendix A.1.

We first prove the following interesting property of the Q matrix defined in (15).

Lemma S.3.1. For Q defined in (15) we have �1(Q) = �1

�
(ZT

c Zc)(ZTZ)†
�
. Also, �1(Q) �

1 and �1(Q) = 1 if Z = Zc.

Proof of Lemma S.3.1. By definition (15) we have

�1(Q) = �1((ZcZ
†)TZcZ

†) = �1(ZcZ
†(ZcZ

†)T ) = �1(Zc(Z
TZ)†ZT

c )
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where the last equality follows as Z† = (ZTZ)†ZT and so (Z†)TZ† = (ZTZ)†. Thus we have

�1(Q) = �1

�
(ZT

c Zc)(ZTZ)†
�
.

If Z = Zc, then �1(Q) = �1((ZT
c Zc)(ZT

c Zc)†
�
= 1 by definition of Moore-Penrose inverse.

We will prove by contradiction that �1(Q) � 1 for any Q under which ⌘ is estimable. If

possible assume �1(Q) < 1 which would imply (ZT
c Zc)1/2(ZTZ)†(ZT

c Zc)1/2 � I. Again, as

⌘ is estimable, rank(ZT
c Zc) = rank(ZTZ) = r + c � 1. The last two inferences combined

suggest that �j(ZTZ) > �j(ZT
c Zc) for some j 2 {1, · · · , r+c�1}. By the Cauchy interlacing

theorem, this is a contradiction as Z was produced by deleting rows of Zc, and so ZTZ is

a compression of ZT
c Zc.

We next prove the seven inequalities that we had used in our proofs in Appendix A.1. Then,

we provide proof of Lemma A.4. Thereafter, detailed proofs for lemmas A.2, A.3, A.5 used

in the appendix for proving the results of Section 3 are provided. We end this section by

providing insights for the weighted loss case and with some remarks on the assumptions

used in our theory.

Lemma S.3.2. With matrices G, H defined in Appendix A.1 and M , ⌃�1 and Q as defined

in Section 2.3 and eQ = M
1
2QM

1
2 we have the following inequalities:

�1(HMH)  �1(M
�1)�2

1( eQ) .(S.3.1)

tr(HMHM)  rc�2

1( eQ) .(S.3.2)

�1(QGMGTQ)  �1(M
�1)�2

1( eQ) .(S.3.3)

�1(H1)  �1(M
�1)�2

1( eQ) .(S.3.4)

�1(H3)  �1(M
�1)�2

1( eQ).(S.3.5)

tr( eGM eGM)  4 rc�2

1( eQ) where eG = QG+GTQ .(S.3.6)

�1(G
TQMQG)  �1(M

�1)�2

1( eQ) .(S.3.7)

In Appendix A.1, the above bounds are used with �1( eQ)  �1(Q) and ⌫r,c = �1(M�1).

Proof of Lemma S.3.2. For the first inequality note that

�1(HMH) = �1(⌃
�1MQM⌃�1M⌃�1MQM⌃�1)

= �1(⌃
�1MQM

1
2W 2M

1
2QM⌃�1)

 �1(⌃
�1MQMQM⌃�1).

The last inequality above uses W 2 � I. Again, by R6 of Section S.6, the RHS above equals
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�1(M
1
2QM⌃�1⌃�1MQM

1
2 ). Thus, we have

�1(HMH) = �1(M
1
2QM⌃�1⌃�1MQM

1
2 )

= �1(M
1
2QM

1
2WM�1WM

1
2QM

1
2 )

 �1(M
�1)�1(M

1
2QMQM

1
2 )

= �1(M
�1)�2

1(M
1
2QM

1
2 ).

where, the inequality above follows by using WM�1W � �1(M�1)I.

The second inequality stated in the lemma follows as

tr(HMHM) = tr(M
1
2HMHM

1
2 )

= tr(M
1
2⌃�1MQM⌃�1M⌃�1MQM⌃�1M

1
2 )

= tr(WM
1
2QM

1
2W 2M

1
2QM

1
2W )

 tr(WM
1
2QMQM

1
2W ) [using W 2 � I]

= tr(M
1
2QM

1
2W 2M

1
2QM

1
2 ) [we use R6 here]

 tr(M
1
2QMQM

1
2 ) [again using W 2 � I]

 (rc) · �1(M
1
2QMQM

1
2 )

= (rc) · �2

1(M
1
2QM

1
2 ),

where the last equation above follows by using R6 again.

The third inequality uses

�1(QGMGTQ) = �1(QM⌃�1M⌃�1MQ) = �1(QM
1
2W 2M

1
2Q)

 �1(QM
1
2M

1
2Q)  �1(M

�1)�2

1(M
1
2QM

1
2 ) .

For the proof of the forth inequality note that:

�1(H1) = �1(QM
1
2WM

1
2QM

1
2WM� 1

2 )

= �1(M
� 1

2M
1
2QM

1
2WM

1
2QM

1
2WM� 1

2 )

 �1(M
� 1

2 ) · �1(M
1
2QM

1
2WM

1
2QM

1
2W ) · �1(M

� 1
2 )

 �1(M
� 1

2 ) · �1(M
1
2QM

1
2 ) · �1(W ) · �1(M

1
2QM

1
2 ) · �1(W ) · �1(M

� 1
2 )

 �1(M
�1) · �2

1(M
1
2QM

1
2 )
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where the last inequality above uses W � I. For the fifth inequality:

�1(H3) = �1(M
1
2QM⌃�1⌃�1MQM

1
2 )

= �1(M
1
2QM

1
2M

1
2⌃�1M

1
2M�1M

1
2⌃�1M

1
2M

1
2QM

1
2 )

= �1(M
1
2QM

1
2WM�1WM

1
2QM

1
2 )

 �1(M
1
2QM

1
2 )�1(W )�1(M

�1)�1(W )�1(M
1
2QM

1
2 )

 �2

1(M
1
2QM

1
2 )�1(M

�1) .

For the sixth inequality, denote Ġ = QG. Thus, eG = Ġ+ ĠT, and so,

tr( eGM eGM) = tr(ĠMĠM) + tr(ĠTMĠTM) + 2tr(ĠMĠTM).(S.3.8)

Substituting the expression of Ġ we get

ĠMĠM = QM⌃�1MQM⌃�1M = QM
1
2WM

1
2QM

1
2QM

1
2WM

1
2 ,

and so we can upper bound its trace as

tr(ĠMĠM) = tr(WM
1
2QM

1
2WM

1
2QM

1
2 )  �1(W )tr(M

1
2QM

1
2WM

1
2QM

1
2 )

 tr(M
1
2QM

1
2M

1
2QM

1
2 )  rc · �2

1(M
1
2QM

1
2 )

for any ⌃�1. For the second term in (S.3.8) note that tr(ĠTMĠTM) = tr(MĠMĠ) =

tr(ĠMĠM). For the third term we have

ĠMĠTM = QM⌃�1M⌃�1MQM = QM
1
2W 2M

1
2QM � QMQM,

and so its trace is upper bounded by

tr(ĠMĠTM)  tr(QMQM) = tr(M
1
2QM

1
2 )2 = rc · �2

1(M
1
2QM

1
2 )

and the result is proved.

Finally, the last inequality stated in this lemma follows as

�1(G
TQMQG) = �1(⌃

�1MQMQM⌃�1)

= �1(⌃
�1M

1
2M

1
2QM

1
2M

1
2QM

1
2M

1
2⌃�1)

= �1(M
1
2QM

1
2M

1
2⌃�1⌃�1M

1
2M

1
2QM

1
2 )

 �1(M
1
2QM

1
2 )�1(M

1
2⌃�1⌃�1M

1
2 )�1(M

1
2QM

1
2 )

= �1(M
1
2QM

1
2 )�1(WM�1W )�1(M

1
2QM

1
2 )

 �2

1(M
1
2QM

1
2 )�1(M

�1) .
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Proof of Lemma A.4. Without loss of generality we can assume that there are no missing

cells. As â⌧ , b̂⌧ is the ⌧/2 th and (1� ⌧/2) th quantile of y:

max(|â⌧ |, |b̂⌧ |)  quantile(|yij | : (i, j) 2 E ; 1� ⌧/2)

= quantile(|⌘ij |+ |✏ij | : (i, j) 2 E ; 1� ⌧/2)

where ✏ij are i.i.d. standard normal variables. The RHS is bounded above by:

max
�
|⌘ij |+ |✏ij | : (i, j) 2 E and |⌘ij |  q⌧ (|⌘|), |✏ij |  q⌧ (|✏|)

 
 q⌧ (|⌘|) + q⌧ (|✏|) ,

where q⌧ (|⌘|) = quantile(|⌘ij | : (i, j) 2 E ; 1 � ⌧/2) and q⌧ (|✏|) = quantile(|✏ij | : (i, j) 2
E , 1� ⌧/2). Thus,

max(|â⌧ |, |b̂⌧ |)  q⌧ (|⌘|) + q⌧ (|✏|).

Again,

q⌧ (|⌘|)  max{1, quantile(⌘2ij : (i, j) 2 E ; 1� ⌧/2)}  max

⇢
1,

1

⌧/2 ·RC

X

i,j

⌘2ij

�
< 1

which follows from Assumption A1. The second inequality above is due to the fact that

the highest possible value of the 1 � ⌧/2 quantile of a series of positive numbers with a

constraint on their sum is attained when all the values above that quantile are all same.

Also, as sample quantiles are asympotically normally distributed we have:

(rc)1/2 ·
�
q⌧ (|⌘|)� x0

�
⇠ N(0, 8�1⌧(1� ⌧/2)��2(x0)) where x0 = ��1(1� ⌧/4).

Thus, we have P (max(|â⌧ |, |b̂⌧ |)  log(rc)) ! 1 as r, c ! 1. This, completes the proof of

the lemma.

Proof of Lemma A.2 With a slight abuse of notation, we use LQ
�
⌘, b⌘(µ, e�A, e�B)

�

to denote the loss LQ
�
⌘, b⌘(µ,�A,�B)

�
= LQ

�
⌘, b⌘(µ, 1/e�2

A � 1, 1/e�2

B � 1)
�
. As

LQ
�
⌘, b⌘(µ, e�A, e�B)

�
is everywhere di↵erentiable, for any triplet (µ, e�A, e�B) and any point

(µ[i], e�A[j], e�B[k]) on the grid ⇥r,c we have:

��LQ
�
⌘, b⌘(µ, e�A, e�B)

�
� LQ

�
⌘, b⌘(µ[i], e�A[j], e�B[k])

���

 D[1]

r,c ·
��µ� µ[i]

��+D[2]

r,c ·
��e�A � e�A[j]

��+D[3]

r,c ·
��e�B � e�B[k]

��,
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where,

D[1]

r,c(⌘,y) = sup
|µ|mr,c;e�A,e�B2[0,1];

����
@

@µ
LQ

�
⌘, b⌘(µ, e�A, e�B)

����� ,(S.3.9)

D[2]

r,c(⌘,y) = sup
|µ|mr,c;e�A,e�B2[0,1];

����
@

@e�A

LQ
�
⌘, b⌘(µ, e�A, e�B)

����� and,(S.3.10)

D[3]

r,c(⌘,y) = sup
|µ|mr,c;e�A,e�B2[0,1];

����
@

@e�B

LQ
�
⌘, b⌘(µ, e�A, e�B)

����� .(S.3.11)

Thus, based on the construction of the grid ⇥r,c we have for any triplet (µ,�A,�B) 2
[�mr,c,mr,c]⌦ [0,1]⌦ [0,1]:

inf
(µ[i],�A[j],�B [k])2⇥r,c

��LQ
�
⌘, b⌘(µ,�A,�B)

�
� LQ

�
⌘, b⌘(µ[i], e�A[j], e�B[k])

���(S.3.12)

 D[1]

r,c(⌘,y) · �[1]r,c +D[2]

r,c(⌘,y) · �[2]r,c +D[3]

r,c(⌘,y) · �[3]r,c = Dr,c(⌘,y) (say).(S.3.13)

Thus, on the set Ar,c(Y ) = {[â⌧ , b̂⌧ ] ✓ [�mr,c,mr,c]} we have:

��LQ
�
⌘, b⌘(µOD,�OD

A ,�OD

B )
�
� LQ

�
⌘, b⌘(µOL,�OL

A ,�OL

B )
���  Dr,c(⌘,y) .

By the construction of ⇥r,c as shown afterwards in Lemma S.3.3 we have:

E[Dr,c(⌘,y) I{Ar,c(Y )}] ! 0 as r, c ! 1 under assumptions A1-A2. It implies by Markov’s

inequality that P (Dr,c(⌘,y) > ✏ and Ar,c(Y )) ! 0 as r, c ! 1. These coupled with

Lemmas A.4 and A.5 provide us the results A and B of the lemma.

Again, note that by definition (27), on the set Ar,c(Y ) we have:

��LQ
�
⌘, b⌘(µUD,�UD

A ,�UD

B )
�
� LQ

�
⌘, b⌘(µURE,�URE

A ,�URE

B )
���

 D[1]

r,c(⌘,y) · �[1]r,c +D[2]

r,c(⌘,y) · �[2]r,c +D[3]

r,c(⌘,y) · �[3]r,c = Dr,c(⌘,y).

and so the results C and D of the lemma follows using Lemma A.4 and result B of Lemma A.5.

Lemma S.3.3. With Dr,c(⌘,y) defined in (S.3.9)-(S.3.12), for any ⌘ obeying assumption

A1 and under assumption A2 on the design we have:

E[Dr,c(⌘,y)] ! 0 as r, c ! 1.

Proof of Lemma S.3.3. First, note that the quadratic loss is

LQ
�
⌘, b⌘(µ,�A,�B)) = (rc)�1(⌘ � y +Gy � µG1)TQ(⌘ � y +Gy � µG1) ,
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where G = M⌃�1 and ⌃ = (�AZAZT
A + �BZBZT

B + M) involves the scale parameters.

Di↵erentiating the loss with respect to µ we have:

@

@µ
LQ

�
⌘, b⌘(µ,�A,�B)

�
= (rc)�1

@

@µ

�
µ2

1
TGTQG1� 2µ1

TGTQ(⌘ � y +Gy)
 

= (rc)�1
�
2µ1

TGTQG1� 21TGTQ(⌘ � y +Gy)
�
.

Note that,

(rc)�1|µ|1TGTQG1  mr,c�1(H) where H = GTQG

and by calculations in Section A.1 of the appendix it follows that �1(H)  ⌫r,c�1(Q) for

any �A,�B � 0.

Also, 1TGTQ(⌘ � y + Gy) ⇠ N(1TH⌘, 1TGTQ(I � GT)M(I � G)G)1) and by moment

calculations similar to Section A.1 we have:

(rc)�1E{|1TGTQ(⌘ � y +Gy)|}  O(⌫r,c�1(Q)) for any �A,�B � 0.

Therefore, D[1]

r,c(⌘,y)  O(mr,c ⌫r,c �1(Q)) and so, E{D[1]

r,c(⌘,y)�
[1]

r,c} ! 0 as r, c ! 1.

Now, we concentrate on the scale hyper-parameters. Di↵erentiating the loss with respect to

�A we have:

@

@�A
LQ

�
⌘, b⌘(µ,�A,�B)

�
= (y � µ1)T

@(GTQG)

@�A
(y � µ1) + 2(y � µ1)T

@GT

@�A
Q(⌘ � y) ,

where,
@

@�A
(GTQG) =

@GT

@�A
QG+GTQ

@G

@�A
and

@G

@�A
= M⌃�1ZAZ

T
A⌃

�1.

Again, note that for the transformed scale hyper-parameter e�A:

@

@e�A

LQ
�
⌘, b⌘(µ, e�A, e�B)

�
=

@

@�A
LQ

�
⌘, b⌘(µ,�A,�B)

�
⇥ @�A

@e�A

= �2(1 + �A)
3/2 @

@�A
LQ

�
⌘, b⌘(µ,�A,�B)

�
.

Note that the change of scale to e� was chosen cleverly such that not only the range of e� is

bounded but also the subsequent change in scale does not lead to the derivative to blow up

as �A varies over 0 to 1. As such:

�1

2
M�1

@G

@e�A

= (1 + �A)
3/2⌃�1ZAZ

T
A⌃

�1

�
✓
�A(1 + �A)

�3/4ZAZ
T
A + �B(1 + �A)

�3/4ZBZ
T
B + (1 + �A)

�3/4M

◆�1

.

As �A ! 1, (1 + �A)�3/4M becomes negligible but �A(1 + �A)�3/4ZAZT
A contributes

massively and using moment calculations similar to Section A.1 of the Appendix, it can
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be shown that:E{D[2]

r,c(⌘,y)}  O(m2
r,c⌫r,c �1(Q)). Similar, calculations hold for the other

scale hyper-parameter. Combining the bounds on the three hyper-parameters, we get:

E[Dr,c(⌘,y)] ! 0 as r, c ! 1.

Proof of Lemma A.3 The proof is very similar to that of Lemma A.2 and is avoided here

to prevent repetition.

Proof of Lemma A.5 To prove the L1 convergence results of the lemma, we apply Cauchy-

Schwarz inequality and convert our problem to showing convergence of the products of the

respective expected values. As such,

E
�
|Lr,c(⌘c, e⌘

OD

c )� Lr,c(⌘c, e⌘
OL

c )| · I{Ar,c(Y )}
 
 2E

�
|Lr,c(⌘c, e⌘

OD

c )|I{Ar,c(Y )}
 

 2
�
E
�
LQ
r,c(⌘, e⌘

OD)}2P (Ar,c(Y ))
 1/2

.

Based on the calculations made in the proof of Lemma A.4, it follows that P (Ar,c(Y )) =

O((rc)�1). Using moment bounding techniques used in Section A.1, under assumptions

A1 and A2, it can be shown that (rc)�1E
�
LQ
r,c(⌘, e⌘OD)}2, (rc)�1E

�
LQ
r,c(⌘, b⌘URE)}2 and

(rc)�1E
�
LQ
r,c(⌘, b⌘UD)}2 all converges to 0 as r, c ! 1 which will complete the proof of the

lemma.

S.3.1. Brief Outline of the results for the Weighted loss case. We now briefly discuss

estimation under weighted loss Lwgt
r,c (⌘, b⌘) defined in Section 2. For simplicity, we describe

the case where there are no unobserved cells. Under this weighted loss, applying the following

linear transformation

ey = M�1/2y, ⌘̃ = M�1/2⌘, Z̃ = M�1/2Z, eµ1 = M�1/2µ1

the problem reduces to estimating ⌘̃ from ey ⇠ N(⌘̃,�2I) under the usual sum-of-squares

loss. As the problem can be converted into a homoskedastic case, estimation here is easier

than the cases discussed before. Assuming the hierarchical Gaussian prior structure like

before, the complete Bayes model is given by:

⌘̃ ⇠ Nrc(1eµ,�2M�1/2Z⇤⇤TZtM�1/2)

and the corresponding Bayes estimate of ⌘̃ is

⌘̂ = ey � eV �1(ey � 1eµ), where eV = M�1/2Z⇤⇤TZtM�1/2 + I

which unlike the shrinkage matrix in (5) is symmetric. The oracle optimality proof can be

worked out following in verbatim the proofs with the LQ loss. However, in this case due to

the presence of symmetric shrinkage matrix, the estimation problem reduces to the easier

situation when ⌫r,c = 1.
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S.3.2. Discussions on the relevance of the Assumptions made. Here, we discuss the genesis

of Assumption A2 in our asymptotic optimality proofs. Our Assumption A1 is not very

restrictive and so discussions on it is avoided here. On the other hand, assumption A2 put

an asymptotic control on the imbalance in our design matrix as r, c ! 1. It is peculiar to

the two-way nature of the problem and is not usually seen in the huge literature around

shrinkage estimation of the normal mean in the one-way problem.

Assumption A2 is needed in several parts of our proof. Let us concentrate on Lemma 3.1

which shows that our risk estimation strategy indeed approximates the true risk uniformly

well for estimators with the location hyper-parameter µ set at 0. By equation (23), the

approximation error was exacted evaluated to be:

E
n
UREQ

r,c(0,�A,�B)�RQ
r,c(⌘, b⌘(0,�A,�B))

o2

= (rc)�2{2tr(HMHM) + 4⌘tHMH⌘}.

We need to show that the RHS is o(d2r,c) uniformly over any choices of the scale hyper-

parameters and for all ⌘ satisfying Assumption A1. Recall, d2r,c rate of control of the

square error was needed due to the discretization process. We concentrate on the component

⌘tHMH⌘. Based on the equality condition on the von-Neumann trace inequality we can

say that

⌘tHMH⌘ = tr({HMH}{⌘⌘T}) = �1(HMH)⌘T⌘

when the eigen vector corresponding to the largest eigen value of HMH matches ⌘/⌘T⌘.

This, can indeed happen as for uniform convergence we not only have to consider all possible

values ⌘ but also all possible values of the H matrix as �A, �B changes. To simplify further

let us assume Q = I. We now provide heuristic reasons why �1(HMH) can be close to the

upper bound ��1

1
(M) that we use for it in our proofs. As shown before:

�1(HMH) = �2

1(M
�1/2WM).

Now, M is a diagonal matrix with 0 � M � I and 0 � W � I. W depends on �A, �B

as they vary over [0,1]2. We relax the range and consider M and W to be any possible

p.d. diagonal matrix and n.n.d. matrix respectively. It is di�cult to gauge the degree of

tightness of this relaxation as M and W are related, but we can expect them to be close

as �A and �B span over the entire first quadrant. Simplifying the scenario further assume

a 2⇥ 2 situation where

M =

"
1 0

0 b

#
and W =

"
w11 w12

w12 w22

#
.
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where b 2 (0, 1] and w11, w12 and w22 are chosen such that 0 � W � I. Thus,

(M�1/2WM)(M�1/2WM)t is given by:

"
c11 = w2

11
+ b4a2

12
c12 = b�1w11w21 + b3w22w12

c12 c22 = b�2w2
12

+ b2w2
22

#

and its eigenvalues are given by:

2�1
�
(c11 + c22)±

q
(c11 + c22)2 + 4c2

12

 
.

We would like to evaluate the maximum of the eigenvalue as b decreases. We consider finding

the eigenvalue asymptotically as b ! 0. Under the asymptotic regime b ! 0, we have:

c11 ⇠ w2

11; c12 ⇠ b�1w11w21, and c22 ⇠ b�2w2

12 .

Thus, for any fixed positive value of w11, w12 the highest eigenvalue is of the order of

b�1 = �1(M�1) as b approaches zero.

S.4. Details for the empirical studies of Section 4.

S.4.1. Details for simulation studies.

(a) Hierarchical Gaussian Model. For L 2 {20, 60, ..., 180} we set r = c = L and �2 =

25. Kij are independent such that P (Kij = 1) = 0.9 and P (Kij = 9) = 0.1. For 1 
i, j  L, ↵i,�j are drawn from a N(0,�2/(4L)) distribution independently of the Kijs.

The joint distribution of the row e↵ects, column e↵ects and the Kijs in this example obeys

the Bayesian model under which the parametric estimator (5) is derived. Hence the true

Bayes rule is of that form, and the EBMLE is expected to perform well estimating the

hyperparameters from the marginal distribution of y. Indeed, the risk curve of the EBMLE

approaches that of the oracle rule and seems to perform best for relatively small value of

L. The MSE of the URE estimator, however, converges to the oracle risk as L increases.

Interestingly, the performance of the XKB estimator seems to be comparable to that of

URE and EBMLE for large values of L.

(b) Gaussian model with dependency between e↵ects and cell counts. For L 2 {20, 60, ..., 180}
we set r = c = L and �2 = 100. In this example the Kij are no longer independent of the

random e↵ects. We take Kij = 1 · (1� Zi) + 25 · Zi where Zi ⇠ Bin(1, 0.5) independently,

so that the cell frequencies are constant in each row. If Zi = 1, ↵i is drawn from a

N(1,�2/(100 · 2L)) distribution, and otherwise from a N(0,�2/(2 · L)) distribution. �j
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are drawn independently from a N(0,�2/(2L)) distribution. The advantage of our URE

method over the EBMLE is clear in Figure 1; in fact, even the LS estimator seems to do

better than the EBMLE for the values of L considered here, a consequence of the strong

dependency between the cell frequencies and the random e↵ects. Again the XKB estimator

performs surprisingly well.

(c) Scenario (b) for di↵erent number of row and column e↵ects. This example is the same as

example (b), except that we fix c = 40 throughout and study the performance of the di↵erent

estimators as number of row levels r = L 2 {20, 60, ..., 180} varies. The performance of the

LS estimator relative to the other methods is much worse than in the previous examples.

The performance the URE estimator gets closer to that of the oracle as r = L increases.

The MSE of the XKB is significantly higher than that of the URE but much lower than

that of the EBMLE.

(d) Non-Gaussian row e↵ects. For L 2 {20, 60, ..., 180} we set r = c = L and �2 = 100. In

this example the row e↵ects are determined by the Kij . We take Kij = 1 · (1�Zi) + 25 ·Zi

where Zi ⇠ Bin(1, 0.5) independently, and set ↵i = 1 · (1� Zi) + (1/25) · Zi. �j are drawn

independently from a N(0,�2/(2L)) distribution. The URE estimator performs significantly

better than the other estimators for large values of L, with about 50% smaller estimated

risk for L = 180 than that of the XKB estimator, and even much better compared to the

other methods.

(e) Correlated Main E↵ects. For L 2 {20, 60, ..., 180} we set r = c = L and �2 = 100.

In this example both the row and the column e↵ects are determined by the Kij . The cell

frequencies Klj = max(Tl, 1), 1  l  L, 1  j  L, where Tl, 1  l  L, are drawn

independently from a mixture of a Poisson(1) and Poisson(5) distributions with weights

0.9 and 0.1, respectively. The row and column e↵ects are ↵l,�l = 1/Tl, 1  l  L. The

MSE of the URE estimator is smaller than that of EBMLE by 14.7% ( bsd(di↵) < 4 · 10�5)

for L = 200, but di↵erence is not as big as in previous examples. The LS estimator performs

considerably worse than the rest.

(f) Missing Cells. In the last example we study the performance of the estimators when

some cells are empty. The setting is exactly as in example (b), except that after the Kij are

drawn, each Kij is independently set to 0 (corresponding to an empty cell) with probability

0.2. In accordance with the theory, the performance of the URE estimator approaches the

oracle loss, and for L = 180 achieves significantly smaller risk than that of the EBMLE,

although not as significantly smaller as in example (b) with all cells filled ( 40% vs 75%
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smaller than EBMLE for examples (f) and (b), respectively). The performance of the LS

estimator is comparable to that of the EBMLE. The XKB estimator is not considered here

as it is not applicable when some data are missing.

Next we describe a simulation study that was mentioned in the main article but not

included in Figure 1. Here we evaluate the performance of the di↵erent estimators under

misspecification of the model. The setup is analogous to that of simulation example (a), but

an interaction term is added to the main e↵ects. Thus, now yij ⇠ N(µ+↵i+�j+�ij ,�2K�1

ij )

where ↵i,�j ⇠ N(0,�2/(4l)), �ij ⇠ N(0,�2/4) and Kij are drawn independently; while the

estimators (and the oracle) are based on the additive model (no interactions). Figure 1

below displays the results. When the number of rows (and columns) is su�ciently large,

the risk of each of the estimators is almost constant, and all but the LS estimator achieve

approximately the oracle risk. We tried to fit also the “full” LS estimator, which includes

interaction terms, and its risk was significantly higher in our simulation than that of the

additive LS estimator (and the other estimators compared here).

50 100 150

24
.0

24
.5

25
.0

25
.5

26
.0

26
.5

27
.0

(g) Kij ~ 0.9 ⋅ δ3 + 0.1 ⋅ δ9,  αi, βj ~ N(0,σ2/(4l) )
 γij ~ N(0,σ2/4 ), yij ~N(αi + βj + γij,σ2 Kij)

l= num. row levels

es
tim

at
ed

 ri
sk

LS
XKB
EBML

EB SURE
oracle

Fig 1. Risk of the various estimators in a simulation under misspecification.

S.4.2. Details for real data example.

We analyze data collected on Nitrate levels measured in water sources across the US.

Nitrates are chemical units found in drinking water that may lead to adverse health e↵ects.
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According to the U.S. Geological Survey (USGS), excessive nitrate levels can result in

restriction of oxygen transport in the bloodstream. The data was obtained from the Water

Quality Portal cooperative (http://waterqualitydata.us/).

We consider estimating the average Nitrate levels based on the location of the water resource

and time when the measurement was taken. Specifically, we fit the homoscedastic Gaussian,

additive two-way model

(S.4.1) yijk = ⌘ij + ✏ijk, ⌘ij = µ+ ↵i + �j k = 1, ...,Kij

where ↵i is the e↵ect associated with the i-th level of a categorical variable indicating the

hour of the day when the measurement was taken (by rounding to the past hour, e.g., for

14:47 the hour is 14); �j is the e↵ect associated with the j-th US county; and yijk is the

corresponding log-transformed measurement of Nitrate level (in mg/l). The errors ✏ijk are

treated as i.i.d. Gaussian with a fixed (known) variance equal to the the LS estimate �̂2.

We used records from January and February of 2014, and concentrated on measurements

made between 8:00 and 17:00 as those were the most active hours. This yielded a total

of 858 observations categorized into 9 di↵erent hour-slots (8-16) and 108 counties across

the entire country. The data is highly unbalanced: 57% of the cells are empty, and the cell

counts among the nonempty cells vary between 1 to 12. Figure 2 (left panel) shows the

residuals from the standard LS fit for the data (note that this assumes independence of the

noise terms). The alignment with the normal quantiles is better around the center of the

distribution.

A two-way Analysis-of-Variance yielded a highly significant p-value for county (< 10�5)

but not for hour (0.25), for comparing the models with an without each variable (i.e., using

Type II sums of squares). For the estimation problem, we considered the two-way shrinkage

estimators, EBMLE and URE, as well as the “pre-test” estimator which, failing to reject the

null hypothesis for the overall e↵ect of hour, proceeds with fitting the one-way LS estimate

by county. We will refer to the latter as the “one-way” estimator or as “LS-county”. As

a two-way estimator, it can be interpreted as shrinking all the way to zero on hour, while

providing no shrinkage at all for county. The “usual” estimator is the LS estimator based

on (S.4.1).

Applying the shrinkage estimators to the entire data set, we observe that both shrink the LS

estimates, but the shrinkage factors are quite di↵erent. Table 1 shows the estimates of the

relative variance components �A and �B, corresponding to hour and county, respectively,

as well as the estimates of the fixed term µ, for each of the shrinkage estimators. There is a
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Fig 2. Left: Normal Q-Q plot for the residuals of the LS fit to the two-way model for water data. Right:
Plot of Shrinkage estimates vs. LS estimates of the cell means. The horizontal coordinate is the LS estimate
and the vertical coordinate is an alternative estimate: EBMLE, URE or LS-county. EBMLE exhibits most
shrinkage. The gray line is the identity line.

marked di↵erence between the two methods in the estimates of the two variance components.

Figure 2 displays fitted values based on the two competing methods, as well as the one-

way estimator (LS-county), against the corresponding LS estimate. In terms of shrinkage

magnitude, it seems that EBMLE exhibits the most shrinkage among the three, and URE

the least among the three, although the di↵erences are not very big. Note that the individual

shrinkage patterns could not be immediately anticipated from the values in Table 1 because

of the imbalance in the data.

µ county hour

EBMLE 1.10 0.57 0.05

URE 0.78 0.07 0.80

Table 1
Estimated fixed e↵ect (µ) and components �county and �hour, which determine shrinkage. This is the same

as Table 2 in the main article.

To compare the performance of the di↵erent estimators we carried out two separate analyses.

In the first one, we split the data evenly and used the first portion for estimation and the

second portion for validation. The second analysis is a data-informed simulation intended

to compare performance of the estimators when the additive model (S.4.1) is correctly

specified.

We begin with comparing the predictive performance against a holdout set. Recall that in

the case of missing cells our aim is to estimate the vector ⌘c of all estimable cell means.
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For a random even split of the data into two subsets y(1),y(2), denote by ⌘̂(1)

c an estimate

of ⌘c based on y(1) and denote by ⌘̂LS(2)
c the Least Squares estimate of ⌘c based on y(2).

As reflected in notation, we assume that the set of estimable cells is the same for the two

portions. Then under (S.4.1), ⌘̂LS(2)
c is an unbiased estimator of ⌘c and

(S.4.2) SSPE[⌘̂(1)

c ] = k⌘̂(1)

c � ⌘̂LS(2)
c k2

is the Sum of Squared Prediction Error of ⌘̂(1)

c . Instead of averaging (S.4.2) directly over

random splits, we could use the average of the estimated Total Squared Error

dTSE[⌘̂(1)

c ] = SSPE[⌘̂(1)

c ]� R(⌘c, ⌘̂
LS(2)
c )

where for any fixed split R(⌘c, ⌘̂
LS(2)
c ) = tr[Cov(ZcZ†⌘̂LS(2)

c )] and is as an unbiased estimator

of the expected risk of ⌘̂(2)

c under a random even split (assuming that �̂2 is the true variance).

Unlike in the other sections we use the un-normalized sum-of-squares loss here, but this will

not make any di↵erence because relative estimated risks are compared. Note that under

(S.4.1) the average of k⌘̂LS(1)
c � ⌘̂LS(2)

c k2/2 over random splits of the data is an unbiased

estimator of the expected risk of ⌘̂LS(2)
c under a random even split; we use it for our

calculations in place of R(⌘c, ⌘̂
LS(2)
c ) to allow more flexibility in case of departures from

the assumed model.

The first row of Table 2 shows the average dTSE for the two shrinkage estimators and the

one-way estimator, as fraction of dTSELS, the average dTSE for the LS estimator ⌘̂LS(1)
c , over

N = 1000 random splits of the data. We removed from the analysis all counties for which

there was a total of less than 8 observations, and recorded the estimated TSEs for each

of the N rounds where the random split resulted in the same set of estimable cells for the

two portions of the split. Hence the averages (and standard errors) are based on a slightly

smaller e↵ective number of simulation rounds, N 0 = 927.

Both shrinkage estimators show significant improvement over LS in terms of estimating the

cell means. The EBMLE performs slightly better, with TSE 16% smaller than URE. The

estimated relative risk of the one-way estimator is smaller than LS but bigger than the two

(empirical) linear shrinkage methods. The pre-test estimator is known to be dominated by

a positive-part James-Stein estimator, and, for small values of the parameter, to perform

better than the standard (LS) estimator (Sclove et al., 1972); this assumes balanced design,

a correctly-specified model, and would entail testing the ‘preliminary’ hypothesis at each

round to decide whether to use the one- or two-way LS; none of these is exactly true of the

current analysis, but the outcome of our analysis (also of the simulation analysis, reported
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next, in which at least misspecification is not a concern) is still in some informal sense

consistent with the theoretical results.

EBMLE URE LS-county

validation 0.42 0.5 0.72

simulation 0.81 0.72 0.98

Table 2
Estimated relative TSE for various estimators. The first row of the table corresponds to analysis with
validation. The second row corresponds to the data-informed simulation, in which data was simulated

according to the additive model. Standard errors are < 0.005. The URE method seems to perform better
under the assumed additive model.

As the estimators discussed in this paper are designed for the additive model (S.4.1), for

our second analysis we compare the performance of the di↵erent methods (LS, LS-county,

EBMLE and URE) when the data is actually generated from the additive model. We set

the LS estimate ⌘LS for the model (S.4.1) and the corresponding b�2– based on all 858

observations from all 108 counties – as the “truth”, then draw an independent vector y⇤ ⇠
Nn(⌘LS, �̂2I), n =

P
i,j Kij , and compute the sum of squared loss k⌘̂⇤

c � ⌘ck2 for each

estimator ⌘̂⇤
c , where the asterisk indicates that the estimate is based on y⇤ only. This

process was repeated N = 500 times. The second row of Table 2 shows the estimated risk of

the two shrinkage estimators and the one-way estimator as a fraction of the risk of LS. All

three estimators have higher risks (relative to LS) compared to the previous analysis, and

the URE now has estimated relative risk about 10% smaller than EBMLE. The one-way

estimator now barely improves over the standard LS estimator. As both EBMLE and the

URE estimators (as well as the pre-test estimator) are designed for the additive model, the

results from this analysis might be considered a better basis for comparison between the

methods.

S.5. URE in the balanced design. In this section we inspect the case of a balanced

design, Kij = k, 1  i  r, 1  j  c. We show that under a balanced design the problem

essentially decouples into two independent one-way problems, in which case the URE and

EBMLE estimates coincide (see also Xie et al., 2012, Section 2). As a bonus, the analysis will

suggest another class of shrinkage estimators for the general, unbalanced two-way problem

by utilizing the one-way estimates of Xie et al. (2012).

To carry out the analysis, suppose without loss of generality that K = 1. Let the grand

mean and the row and column main e↵ects be

m = µ+ ↵· + �·, ai = ↵i � ↵·, bj = �j � �·(S.5.1)

and let a = (a1, ..., ar)T, b = (b1, ..., bc)T. Then, in the balanced case, the Bayes estimator
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b⌘(y··,�A,�B), obtained by substituting the mean of y for µ in (5), is

b⌘ij(y··,�A,�B) = bmLS + c↵(�A) baLSi + c�(�B) bbLSj ,(S.5.2)

where bmLS = y··, baLSi = yi· � y.., bbLS
i = y·j � y.. are the least squares estimators, and

c↵ := c↵(�A) = �A/(�A+�2/c) and c� := c�(�B) = �B/(�B+�2/r) are functions involving,

respectively, only �A or only �B. Its risk decomposes as R(⌘, b⌘(y··,�A,�B)) equals

1

rc
E
n rX

i=1

cX

j=1

[(bmLS �m) + (c↵baLSi � ai) + (c�bbLSj � bj)]
2

o
(S.5.3)

=
1

rc
E
n
rc(bmLS �m)2 + c

rX

i=1

(c↵baLSi � ai)
2 + r

cX

j=1

(c�bbLSj � bj)
2

o
(S.5.4)

= E
n
(bmLS �m)2

o
+

1

r
E
n rX

i=1

(c↵baLSi � ai)
2

o
+

1

c
E
n cX

j=1

(c�bbLSj � bj)
2

o
(S.5.5)

where equality (S.5.4) is due to orthogonality of the vectors corresponding to the three

sums-of-squares. Note that that independence of bmLS,baLS,bbLS, which holds in the balanced

case, is not needed in (S.5.3)-(S.5.5). Specifically, (S.5.4) holds also for unbalanced design

because of the side conditions satisfied by a, b and baLS,bbLS; and (S.5.6) holds, with some

known covariance matrices, in general for the generalized least squares estimators. Hence

the calculation goes through for unbalanced data as well.

Consequently, one obtains URE by writing URE for each of summands above. Hence,

minimizing URE jointly over (c↵, c�) therefore consists of minimizing separately the “row”

term over c↵ and the “column” term over c� . Since

bmLS ⇠ N(m,�2�2

m), baLS ⇠ Nr(a,�
2⇤a), bbLS ⇠ Nc(b,�

2⇤b),(S.5.6)

each of these is a “one-way” Gaussian homoscedastic problem, except that the covariance

matrices ⇤↵,⇤� are singular because the main e↵ects are centered. The unbiased risk

estimator will naturally take this into account and will possess the “correct” degrees-of-

freedom.

The maximum-likelihood estimates for the two-way random-e↵ects additive model do not

have a closed-form solution even for balanced data (Searle et al., 2009, Ch. 4.7 d.), so

it is not possible that they always produce the same estimates as discussed above. On the

other hand, the REML estimates coincide with the positive-part Moments method estimates

(Searle et al., 2009, Ch. 4.8), which, in turn, reduce (for known �2) to solving separately

two one-way problems involving baLS for the rows and bbLS for the columns. These have

closed-form solutions and are easily seen to coincide with the URE solutions.
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In the unbalanced case, (S.5.2) no longer holds, and so the Bayes estimates for a and b are

each functions of both baLS and bbLS. We can nevertheless use shrinkage estimators of the

form (S.5.2) and look for “optimal” constants c↵ = c↵(�A) and c� = c�(�B). Appealing to

the asymptotically optimal one-way methods of Xie et al. (2012), we consider the estimator

b⌘XKB

ij = bmLS + bcXKB

↵ baLSi + bcXKB

�
bbLSj , 1  i  r, 1  j  c ,(S.5.7)

where, bcXKB

↵ = argmin
c↵2[0,1]

URE
n rX

i=1

(c↵baLSi � ai)
2

o
,(S.5.8)

bcXKB

� = argmin
c�2[0,1]

URE
n cX

j=1

(c�bbLSj � bj)
2

o
.(S.5.9)

A slight modification of the parametric SURE estimate of Xie et al. (2012) that shrinks

towards 0 is required to accommodate the covariance structure of the centered random

vectors baLS, bbLS. Contrasting the performance of the optimal empirical Bayes estimators

corresponding to this class of shrinkage estimators with that corresponding to the class S[⌧ ]
of EB estimators can be taken to quantify the relative e�ciency of using one-way methods

in the two-way problem.

S.6. A list of some basic results used in our proofs. The following basic matrix

algebra results are used in our proofs:

R1. For p.s.d. matrices A,B, if 0 � B � A, then A�1 � B�1 and �k(B)  �k(A) for any k.

R2. For p.s.d matrices A,B, BAB is also p.s.d.

R3. For p.s.d matrices A,B, �k(AB)  �k(A) · �k(B) for any k.

R4. For any matrices C and D, �1(CD)  �1(C) · �1(D).

R5. (Von Neumann Trace inequality) If C and D are n⇥ n Hermitian matrices then:

nX

i=1

�i(A)�n�i+1(B)  tr(AB) 
nX

i=1

�i(A)�i(B).

Equality holds on the right when B =
Pn

i=1
�i(B)UiU⇤

i , and equality holds on the left

when B =
Pn

i=1
�n�i+1(B)UiU⇤

i where Ui is the right eigenvector of A for the eigen

value �i(A), i = 1, . . . , n.

R6. For any matrix C, �1(CTC) = �1(CCT)

The following facts about derivatives involving matrix expressions are used in our paper.

For matrices U,B and V where B is independent of x we have:

R7. @
@x{x

TBx} = xT(B +BT)
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R8. @
@x log |A| = tr(A�1 @A

@x )

R9. @
@xA

�1 = �A�1 @A
@xA

�1

R10. @
@x{UBV } = @U

@xBV + UB @V
@x
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