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ABSTRACT
We develop a constrained extremely zero in!ated joint (CEZIJ) modeling framework for simultaneously
analyzing player activity, engagement, and dropouts (churns) in app-based mobile freemium games. Our
proposed framework addresses the complex interdependencies between a player’s decision to use a
freemium product, the extent of her direct and indirect engagement with the product and her decision
to permanently drop its usage. CEZIJ extends the existing class of joint models for longitudinal and survival
data in several ways. It not only accommodates extremely zero-in!ated responses in a joint model setting
but also incorporates domain-speci"c, convex structural constraints on the model parameters. Longitudinal
data from app-based mobile games usually exhibit a large set of potential predictors and choosing the
relevant set of predictors is highly desirable for various purposes including improved predictability. To
achieve this goal, CEZIJ conducts simultaneous, coordinated selection of "xed and random e#ects in high-
dimensional penalized generalized linear mixed models. For analyzing such large-scale datasets, variable
selection and estimation are conducted via a distributed computing based split-and-conquer approach
that massively increases scalability and provides better predictive performance over competing predictive
methods. Our results reveal codependencies between varied player characteristics that promote player
activity and engagement. Furthermore, the predicted churn probabilities exhibit idiosyncratic clusters of
player pro"les over time based on which marketers and game managers can segment the playing popu-
lation for improved monetization of app-based freemium games. Supplementary materials for this article,
including a standardized description of the materials available for reproducing the work, are available as an
online supplement.
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1. Introduction
Mobile games have become an integral part of modern life
(Koetsier 2015). While their almost ubiquitous presence is
increasingly reshaping the recreational, socialization, educa-
tional and learning media (Statista 2018; Hwong 2016, chaps.
1 and 3; Garg and Telang 2013), the monetization policies
associated with these new mobile apps is rapidly revolutionizing
the digital marketing and advertisement space in information
systems (Appel et al. 2019; Liu, Au, and Choi 2014). As such
mobile games (as per industry standards formally de!ned as
any app-based game played on an Internet enabled mobile
device such as tablets, phones, etc.) currently comprise 42%
of the market share of global gaming products (McDonald
2017) and more than 800,000 mobile games were available
for download in the iOS App Store alone, with approximately
400 new submissions arriving each day (Pocket Gamer 2018).
To understand how quickly the gaming market is growing,
a new industry study from Spil Games (Diele 2013) reports
that 1.2 billion people are now playing games worldwide, with
700 million of those online. The unprecedented growth and
popularity of mobile games has resulted in a market with some
very unique consumer characteristics (Boudreau, Jeppesen, and
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Miric 2019). It is an extremely crowded market with signi!cant
proportion of revenue accumulated through advertisement
based on free products (Appel et al. 2019). Speci!cally, app
retention rates are much lower than the observed retention rates
in classical products and services, with reports suggesting that
more than 80% of all app users churn (dropout) within the !rst
quarter (Perro 2016; MarketingCharts 2017). The freemium
business model (Niculescu and Wu 2011), which o"ers a
certain level of service without cost and sells premium add-
on components to generate revenue, is a popular strategy for
monetization of these mobile games. As such, industry reports
indicate that more than 90% of the mobile games start as free,
and more than 90% of the pro!ts currently come from products
that began as free (AppBrain 2017; Taube 2013). User character-
istics in freemium models di"er in fundamental aspects from
traditional marketing models. This necessitates development of
new analytical methods for modeling freemium behavior.

1.1. Freemium Model: Player Activity and Engagement

In the freemium market, !rms initially attract customers with
free usage of their products, with the expectation that free
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usage will lead customers to engage in future purchase of
premium components. However, customers can always remain
free users and never need to enjoy the premium components
of the product. This is an important distinction with non-
freemium business models, where customers must purchase
to use the product. While the free to use part of freemium
products helps to attract the consumer base quickly (Kumar
2014), managers are uncertain on whether and how freemium
can generate pro!ts (Needleman and Loten 2012) as majority
of the consumers do not use the premium part of freemium.
As such, unless a game is very popular, in-app purchases (IAP)
contribute an insigni!cant proportion of its revenue. Mobile
marketing automation !rm Swrve (Swrve 2016) found that
over 48% of all in-game revenue are derived from 0.19% of all
players, which is a tiny segment. While in-game (direct) revenue
is important, there are several indirect ways of monetizing
the free users by involving them to engage with the game via
social media (through facebook or twitter likes and posts of
game achievements, inviting social media friends to join game,
watching, liking or posting youtube videos related to the game)
or the app center. To measure the daily engagement of a player,
we judiciously combine her IAP (direct source of revenue)
with her varied involvements with the game in media (indirect
source of monetization), under the notion that purchase is the
highest form of engagement. We de!ne a player’s daily activity
as the time she spends playing the game in the day. Positive
daily activity does not always lead to positive engagement. It is
commonly believed that as a game grows with increasing and
prolonged player activities, it will have more positive as well as
higher engagement values.

For game managers it is extremely important to accurately
measure player activity, engagement, and their codependencies.
Also, varied retention strategies are o#en used to curb high
churn rates and their e"ects need to be properly analyzed.
Here, we develop a constrained extremely zero in!ated joint
(CEZIJ) modeling framework that provides a disciplined statis-
tical program for jointly modeling player activity, engagement,
and churn in online gaming platforms. Our proposed frame-
work captures the codependencies between usage (activity),
direct and indirect revenue (engagement), and dropouts (which
is a time-to-event) and provides a systematic understanding of
how the dependent variables in$uence each other and are in$u-
enced by the covariates. Furthermore, the CEZIJ framework
can be used to predict the activity, engagement, and attrition of
new players. The ability to forecast behavior of new players is
critical for managers, as this enables them to better predict the
e"ectiveness of their gaming platform in engaging customers
and thus attract future advertisers to their platform.

1.2. Joint Modeling of Player Characteristics

Our joint modeling framework uses generalized linear mixed
e"ect models (GLMM) and relies on a joint system of equations
that model the relationships between activity, engagement, and
churn. In the activity equations, we separately assess whether
consumers are active (i.e., play the game) and the extent of
their activity through the amount of time they spend playing

the game. Engagement is modeled by the probability of having
positive engagement and by a conditional model on the positive
engagement values. In the churn equations, we account for per-
manent churn identi!ed as those players who are not active for
more than 30 consecutive days. Our modeling systems addresses
the complex interdependencies between (1) the decision to
use the free product, (2) how much time will be spent using
the free product, (3) the decision to engage, (4) the extent of
engagement, and (5) the decision to churn. That is, the joint
equation system comprehensively uncovers positive, negative,
or zero codependencies among activity, engagement, and churn
in freemium markets. In recent times, joint modeling of multi-
ple outcomes have received considerable attention (Rizopoulos
2012). Many applications consider the modeling of single or
multiple longitudinal outcomes and a time-to-event outcome
(e.g., Jiang 2007; McCulloch 2008; Rizopoulos, Verbeke, and
Lesa"re 2009; Rizopoulos, Verbeke, and Molenberghs 2010;
Banerjee, Carlin, and Gelfand 2014; Rizopoulos and Lesa"re
2014). Our motivation for jointly modeling the drivers of player
gaming traits and dropout arises from the fact that there is
heterogeneity across player’s outcomes and one must combine
these e"ects by correlating the multiple responses. Since these
responses are measured on a variety of di"erent scales (viz.
time spend in hours, revenue in dollars), a $exible solution is
to model the association between di"erent responses by cor-
relating the random heterogeneous e"ects from each of the
responses. Such a model not only gives us a covariance structure
to assess the strength of association between the responses, but
also o"ers useful insights to managers, since despite huge popu-
larity of mobile games among users, managers are not certain
whether freemium is pro!table. Furthermore, it is important
for managers to understand how activity and engagement are
related to player churn. While customers who frequently use
the free product could be more satis!ed, thus reducing their
probability of churn (Gustafsson, Johnson, and Roos 2005), free
usage could be related to a greater probability of churn as there
is little switching cost for customers due to their lower perceived
value (Yang and Peterson 2004). Earlier studies used simpler
models for churn that are independent of the purchase rate
(Jerath, Fader, and Hardie 2011). Here we model churn allowing
for possible codependencies with activity and engagement.

1.3. Statistical Challenges

The online gaming data, which is the application case described
in detail in Section 2, and the particular business model of
freemium, pose several statistical challenges and necessitates
novel extensions of the joint modeling framework. We describe
the details below.

(i) Extreme zero-in!ation: Freemium behavior suggests that
even if a player is active on a day, it very rarely leads to pur-
chases or social media engagement on her part. Thus, though
both activity and engagement are zero-in$ated, engagement
has an extremely zero-in$ated distribution. Mixture distribu-
tions of which zero-in$ated distributions are a special case are
commonly used in this kind of data. While there are multiple
models that have been developed to accommodate data with
excess zeros (see, e.g., Olsen and Schafer 2001; Min and Agresti
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2005; Han and Kronmal 2006; Alfò, Maruotti, and Trovato
2011; Greene 2009, and the references therein), there is not
much attention on extreme zero-in$ated data. Few recent works,
for example, Hat!eld et al. (2012) show promise though. We
develop a joint modeling framework that can accommodate
extreme zero-in$ation. The proposed framework allows us to
accommodate large incidences of no-engagement by active play-
ers, such as that observed in freemium markets and helps man-
agers more accurately forecast sales potential for businesses
with large active customer bases but small incidence of engage-
ment by separating the confound between non-active and non-
engaged. We highlight that this extreme zero in$ated data are
not only relevant to freemium markets but are also common
in other businesses wherein a sizable portion of the active con-
sumer base engages in very little purchase activity. For example,
in the online setting, we may observe low incidences of online
ratings (i.e., 1–5 star rating), user generated content creation,
banner ad click-through, and search ad conversion (see, e.g.,
Urban et al. 2013; Haans, Raassens, and van Hout 2013). Like-
wise in the o"ine setting of purchase data, for example, most
product categories comprise less than 5% planned or actual
purchase for an individual’s visit to the grocery store (Hui et al.
2013). Thus, if managers are interested in assessing promotion
on sales or individual level purchase activity in these contexts,
we may be confronted with data that contains an extreme num-
ber of zeros.

(ii) Parametric constraints: We develop a framework for
incorporating domain speci!c structural constraints in our
model for one may have prior knowledge that a vector of
parameters lies on a simplex or follows a particular set of
inequality constraints. It is quite common in gaming data to
have prior information available on various activities of the
player. For example, it is well-known that player characteristics
will have a burgeoning weekend e"ect or marketers have
prior knowledge on the comparative e%cacies of the retention
strategies particularly if they have known dosage demarcations.
Using these side information is extremely important (James,
Paulson, and Rusmevichientong 2013; Banerjee, Mukherjee,
and Sun 2018) and the CEZIJ framework incorporates these
domain expertise though convexity constraints in our model.

(iii) Hierarchical variable selection: In online gaming data one
usually encounters numerous covariates related to both game
speci!c and player speci!c variables and choosing the relevant
set of covariates is highly desirable for improving predictability.
It is also important that the inferential problems associated
with these data properly account for the presence of a lot of
possibly spurious covariates. The high-dimensionality of these
datasets, however, renders classical variable selection techniques
incompetent. We develop a novel algorithm for estimation in
the CEZIJ framework that conducts variable selection from a
large set of potential predictors in GLMM based joint model.
To produce interpretable e"ects CEZIJ imposes a hierarchical
structure on the selection mechanism and includes covariates
either as !xed e"ects or composite e"ects where the latter are
those covariates that have both !xed and random e"ects (Hui,
Müller, and Welsh 2017a) (see Section 4 for details). E%cient
selection of !xed and random e"ect components in a mixed
model framework has received considerable attention in recent
years (Bondell, Krishna, and Ghosh 2010; Fan and Li 2012;

Lin, Pang, and Jiang 2013; detailed background is provided
in Section 4). Penalized quasi likelihood (PQL) approach has
been used by Hui, Müller, and Welsh (2017b) to conduct simul-
taneous (but nonhierarchical) selection of mixed e"ects in a
GLMM framework with adaptive lasso and adaptive group lasso
regularization. The CREPE (composite random e"ects penalty)
estimator of Hui, Müller, and Welsh (2017a) conducts hierar-
chical variable selection in a GLMM with a single longitudinal
outcome and employs a Monte Carlo EM (MCEM) algorithm of
Wei and Tanner (1990) to maximize the likelihood. The CREPE
estimator ensures that variables are included in the !nal model
either as !xed e"ects only or as composite e"ects. Our proposed
CEZIJ framework is related to Hui, Müller, and Welsh (2017a) in
its ability to conduct hierarchical variable selection in GLMMs.
However, unlike Hui, Müller, and Welsh (2017a), CEZIJ per-
forms hierarchical variable selection in a joint model of mul-
tiple correlated longitudinal outcomes. Additionally, it can also
incorporate any convexity constraint on the !xed e"ects.

(iv) Scalability: For any mobile game app, gargantuan
volumes of user activity data are automatically accumulated.
Analyzing such big datasets not only involves inferential
problems associated with high-dimensional data analysis but
also the computational challenges of processing large-scale
(sample) longitudinal data. To process large longitudinal
datasets, CEZIJ leverages the bene!ts of distributed computing.
Recently, algorithmic developments for increased scalability and
reduced computational time without sacri!cing the requisite
level of statistical accuracy have received signi!cant attention
(see, e.g., Jordan 2013; Jordan, Lee, and Yang 2018; Lee et al.
2015, and references therein). A popular approach is to conduct
inference independently and simultaneously on K subsets of
the full dataset and then form a global estimator by combining
the inferential results from the K nodes in a computation-
e%cient manner. We take a similar approach for the hierarchical
selection of !xed and random e"ects by using the split-and-
conquer approach of Chen and Xie (2014) that splits the original
dataset into K nonoverlapping groups, conducts variable
selection separately in each group and uses a majority voting
scheme in assimilating the results from the splits.

(v) Prediction and segmentation: Predictive analysis of new
player behavior is fundamental for the maintenance of existing
as well as for the creation of new advertisement based mon-
etization routes in these gaming platforms. Statistically, this
necessitates construction of prognostic models that cannot only
forecast new user activity, engagement and dropout behavior but
also dynamically update such forecasts over time as new longi-
tudinal information about them arrives. Based on our !tted joint
model, we construct dropout probability pro!les (over time) for
an out-of-sample generic player population and use them for
segmentation of idiosyncratic player behaviors. Segmentation
is a key analytical tool for managers. Users in di"erent seg-
ments respond di"erently to varied marketing promotions. This
enables managers to use relevant marketing promotions that
better match user responses in di"erent segments and increase
e%ciency of their marketing campaign.

We develop our joint modeling framework which accommo-
dates all of the above mentioned extensions through an e%cient
and scalable estimation procedure. To the best of our knowledge,
we are the !rst to study constrained joint modeling of high-
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dimensional data. Though we demonstrate the applicability of
the CEZIJ inferential framework for the disciplined study of
freemium behavior, it can be used in a wide range of other
applications that needs analyzing multiple high-dimensional
longitudinal outcomes along with a time-to-event analysis. To
summarize, the key features of our CEZIJ framework are:

• Joint modeling of the highly related responses pertaining
to daily player activity and engagement as well as the daily
dropout probabilities using the freemium mobile game data
described in Section 2;

• The possibility of acute zero-in$ation in the player engage-
ment distribution is addressed by modeling the conditional
probability of no engagement given that the player had used
the app in the day (see Figure 3);

• Convexity constraints pertinent to domain expertise and
prior beliefs are incorporated in the modeling framework in
Section 3;

• A penalized EM algorithm (Wei and Tanner 1990) is used for
simultaneous selection of !xed and random e"ects wherein
data-driven weighted !1 penalties are imposed on the !xed
e"ects as well as on the diagonal entries of the covariance
matrix of the random e"ects while the common regular-
ization parameter λ is chosen by a BIC-type criterion (see
Equation (9));

• Hierarchical selection of the !xed and random e"ects is con-
ducted in Section 4 by using a reweighted !1 minimization
algorithm that alternates between estimating the parameters
and rede!ning the data-driven weights such that the weights
used in any iteration are computed from the solutions of the
previous iteration;

• The divide and conquer approach in Section 5 distributes
the problem into tractable parallel subgroups resulting in
increased scalability;

• Prediction of the dropout probabilities as well as the activ-
ity and engagement characteristics of new players with the
predictions being dynamically updated as additional longi-
tudinal information is recorded (see Section 6). Based on
these dynamic churn probability curves from our !tted joint
model, we conduct segmentations of player pro!les that can
be used by game managers to develop improved promotion
and retention policies speci!cally targeting di"erent domi-
nant player-types.

2. Motivating Data: Activity, Engagement, Churn and
Promotion E!ects in Freemium Mobile Games

We consider daily player level gaming information for a mobile
app game where users use robot avatars to !ght other robots
till one is destroyed. There were 38,860 players in our database
and we tracked daily player level activity and purchases for 60
consecutive days starting from the release date of the game.
We use a part of the data (players) for estimation and the
other part as the hold out set for prediction (see details in
Section 6). There were three modes of the game and level
progression can only be attained through the principal mode.
However, the players get rewards (henceforth called in-game
rewards) if they win games in all three modes. For the two

nonprincipal modes, collecting rewards is the main objective.
The players can use these rewards for improving their !ghting
equipments through upgrades of their existing inventories or
in getting access to powerful new robots or for acquiring fancy
game themes and background changes. The player can also buy
these facilities (add-ons) using real money through direct IAP.
There were only 0.28% of the players who used real money for
buying add-ons. The players are given premium rewards, which
has much higher order of magnitudes than regular rewards, if
they promote the game or the developers through social media
(inviting friends on facebook for games, facebook likes, youtube
likes, tweets) or through the app center or by downloading
other related apps from the developer. Approximately 7.2% of
the players in our data had premium rewards. We record daily
engagement of a player by appropriately combining her real
money purchases (direct source of revenue) with her varied
involvement in promoting the game in media (indirect source
of monetization) with the notion being that the highest form of
engagement is the one leading to purchases. Daily engagement
is an extremely zero-in$ated variable. We assess player behavior
in terms of her daily total playing time (activity), engagement
value, and dropout probability. We say that a player has dropped
out if she has not logged-in for a month consecutively. For each
player we have a host of time-dependent covariates generated
through the game-play which we model as composite e"ects.
They include current level of the game, number of games played
daily in the three di"erent modes of the game, how are the in-
game rewards spent, etc. (see Table 3 and summary Table 4 in
Section D of the supplementary materials for details). From a
gaming perspective, it is very interesting to study the e"ects
on gaming time of the amount of in-game rewards that the
players spend on either upgrading existing robots or purchasing
new robots. Another interesting feature of the game, was the
usage of “gacha” mechanism (Toto 2012) which allowed the
players to gamble in-game currency through lottery draws. The
“gacha” is a very popular feature in freemium games (Kanerva
2016). We use the currency employed by players in “gacha” as
well as their gains, as covariates in modeling engagement. Also,
several promotional and retention strategies were used by the
developers, which encourage player activity. Figure 1 contains
a $owchart summarizing the key components of the game.
The promotions intrinsically were of four di"erent $avors: (a)
award more reward percentages and battery life, (b) sale on
robots, (c) thanksgiving holiday promotions, (d) E-mail and
app-message based noti!cations for retention. Also, there were
three di"erent kinds of sales on robots. Thus, there were six
di"erent promotional strategies, with only one of them (if at all)
being employed on a single day (see Table 4 and Figure 3 in
Section D of the supplementary materials). In Figure 2(a) and
(b), we present the activity, engagement, and churn pro!les of
the players in our data. Interestingly, the proportion of players
with positive engagement is below 10% from day 3 onward and
drops to less than 1% a#er the !rst 21 days. Figure 2(c) and
(d), respectively, shows the 25th, 50th, and 75th percentiles of
the distribution of total time played and the average engage-
ment amount on each of the 60 days. Note that from day 20
onward the distribution of average engagement shows increased
variability. This is not unexpected given the observation from
Figure 2(a) which shows that the proportion of players with pos-
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Figure 1. Game play !owchart.

itive engagement falls steadily. Also, note that the heavy tailed
nature of the distributions of positive time played and positive
engagement amount is evident from Figure 2 (Section D of the
supplementary materials) which plots the empirical CDF of the
two variables. So, in the following section we use log-normal
distributions to model the nonzero activity and engagement
values. Further details regarding the data are available in Section
D of the supplementary materials.

3. CEZIJ Modeling Framework

Using the aforementioned motivation example, we now intro-
duce our generic joint modeling framework. Consider data from
n independent players where every player i = 1, . . . , n is
observed over m time points. Let Aij and Eij denote, respec-
tively, the activity and engagement of player i at day j with
Ai = (Ai1, . . . ,Aim) and Ei = (Ei1, . . . ,Eim) denoting the
corresponding vector of longitudinal measurements taken on
player i. Let Di denote the time of dropout for player i and
Ci the censoring time. We assume Ci’s are independent of
Di’s. Thus, Ci = m if player i never drops out. The observed
time of dropout is D∗

i = min(Di,Ci), and the longitudinal
measurements on any player i are available only over mi ≤ D∗

i
time points. Suppose αij be the indicator of the event that player
i is active (Aij > 0) on day j and εij be the indicator that she
positively engages (Eij > 0) on day j. Let πij = Pr(αij = 1),
qij = Pr(εij = 1|αij = 1), αi = (αi1, . . . , αim), and εi =
(εi1, . . . , εim). Note that, αij = 0 implies Aij = Eij = 0 and
also εij = 0. In these gaming apps, it is usually witnessed that
any player’s usage of the app always produces positive activity
(however small). Thus, αij here corresponds to a player’s daily
activity indicator (AI). It forms the base (!rst level) of our joint
model. The πij corresponds to daily usage probability whereas
qij corresponds to the conditional probability of positive player
engagement given that the player has used the app in the day.
In Figure 3, we provide a schematic diagram of our joint model
where we use two binary random variables: AI and engagement
indicator (EI) to be, respectively, denoted αij and εij. We jointly
model the !ve components [αi,Ai, εi,Ei,Di] := [Y(s)

i : s ∈

{1, 2, 3, 4, 5}] given the observations. Let I be the full set of p
predictors in the data with If ⊂ I as the set of !xed e"ects
(time invariant or not) and Ic = I \ If as the set of composite
e"ect predictors, which are modeled by combination of !xed
and random e"ects. Let pf = |If | and pc = |Ic| and so,
pc + pf = p. For each of the !rst four submodels, s = 1, . . . , 4,
we consider p !xed e"ects β(s) (pf of those are from the time
invariant and the rest from the composite components) and pc
random e"ects b(s) while for the dropout model, s = 5, we
consider p new !xed e"ects β(5) but share the random e"ects
from the four submodels and calibrate their e"ects on dropouts
through an association parameter vector η. See Section 3.1 for
further details.

Let x(s)
ijk denote the observed kth covariate value for the ith

player on the jth day. Let x(s)
ij = {x(s)

ijk | k ∈ I} and z(s)
ij =

{z(s)
ijk | k ∈ Ic} denote the set of covariate values pertaining to the

in-model !xed and random e"ects; X(s) and Z(s), respectively,
denote the data for these e"ects across all n players and β =
{β(s) : s ∈ {1, 2, 3, 4}} and b = {b(s) : s ∈ {1, 2, 3, 4}} be
all the !xed and random e"ects across all players. To join the
four models, we take a correlated random e"ects approach and
assume that the random e"ects governing the four submodels
have a multivariate Gaussian distribution. For player i, represent
all her random e"ects by bi = (b(s)

i : 1 ≤ s ≤ 4). We
assume that {bi : 1 ≤ i ≤ n} iid N(0, #) where # is the
4pc × 4pc unknown covariance matrix. To model the dropouts,
we again consider p new !xed e"ects β(5) but share the random
e"ects from the four submodels and calibrate their e"ects on
dropouts through an association parameter vector η. We model[
Y(s) : 1 ≤ s ≤ 5|X,Z, β , #

]
as

n∏

i=1

[
bi

] [
αi |X(1)

i , β(1),Z(1)
i , b(1)

i
]

[
Ai | αi,X(2)

i , β(2),Z(2)
i , b(2)

i
]

[
εi | αi,X(3)

i , β(3),Z(3)
i , b(3)

i
]

[
Ei | αi, εi,X(4)

i , β(4),Z(4)
i , b(4)

i
] [
Di |X(5)

i , β(5), bi
]

.
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Figure 2. (a) Proportion of players active and proportion of players with positive engagement over 60 days. (b) Proportion of player churn from day 31 to day 60. (c) Median
activity sandwiched between its 25th and 75th percentile. (d) Mean engagement amount and the total engagement amount over the 60 days.

Note that the dimension of each b(s)
i in bi is pc and that of x(s)

ij
is p. In the context of our mobile app game data, pc = 25 and
so # is 100 × 100 and p = 31 for each of the !ve submodels,
thus making a set of 155 !xed e"ects (time invariant or not). See
Section 6 for more details.

Remark 1. If we have data pertaining to social media inter-
actions among players, it would be bene!cial to include
network or group e"ects among players. In the absence
of such network information, we model b(s)

i as iid across
players.
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Figure 3. Schematic diagram of our joint model for player i. The su#x denoting the day number is dropped for presentational ease.

3.1. Longitudinal Submodels and Model for Dropouts

3.1.1. Zero In!ated Log-Normal for Modeling Activity
Since player i is active only at some time points j, the observed
activityAi has a mix of many zeros and positive observations. In
Equation (1), we consider a zero in$ated (ZI) log normal model
forAij to capture both the prevalence of these excess zeros and
possible large values observed in the support of Aij. Thus, the
model for activityAij has a mixture distribution with pdf

g1(αij,Aij | b(1)
i , b(2)

i )

= (1 − πij) I{αij = 0}

+ πij(σ1Aij)
−1φ

( logAij − µij
σ1

)
I{αij = 1}, (1)

where

logit(πij) = x(1)T
ij β(1) + z(1)T

ij b(1)
i → Binary part, (2)

and µij = x(2)T
ij β(2) + z(2)T

ij b(2)
i → Positive activity part.

(3)

The AI αij is modeled using a logistic regression model with
random e"ects in Equation (2). In Equation (3), we use an iden-
tity link to connect the expected log activity with the covariates
and the random e"ects. For convenience, hereon the depen-
dence on the !xed e"ects and covariates are kept implicit in
the notations and only the involved random e"ects are explicitly
demonstrated.

3.1.2. Extreme ZI Log-Normal for Modeling Engagement
Note that, Ei also has a mix of zeros and positive observations
but the extreme zero events in the engagement variable are due
to: (a) players are inactive on days and, (b) active players on a
day may not exhibit engagement on the same day. To account for
this excess prevalence of zeros, we use an extreme zero in$ated

(EZI) log normal model that models (αij, εij,Eij, ) as a $exible
mixture distribution with joint pdf

g2(αij, εij,Eij | b(1)
i , b(3)

i , b(4)
i )

= (1 − πij)I{αij = 0} + πijg3(εij,Eij | b(3)
i , b(4)

i )I{αij = 1},
(4)

where, g3(εij,Eij | b(3)
i , b(4)

i )

= (1 − qij)I{εij = 0} (5)

+ qij(σ2Eij)
−1φ

( logEij − γij
σ2

)
I{εij = 1}

logit(qij) = x(3)T
ij β(3) + z(3)T

ij b(3)
i → Binary part, (6)

γij = x(4)T
ij β(4) + z(4)T

ij b(4)
i → Positive engagement part. (7)

Note that a player can potentially engage (Eij ≥ 0) only if she
is active (αij = 1) on that day. Thus, g3(εij,Eij | b(3)

i , b(4)
i ) in

Equation (4) represents the joint pdf of (εij,Eij) conditional on
the event that the player is active, that is, αij = 1. However,
even if the player is active, distribution of engagement again can
have a mixture distribution, as the particular player may or may
not exhibit positive engagement (Eij > 0). Thus, conditional
on the player being active, we further model (εij,Eij) using
another zero-in$ated log normal model as shown in Equation
(5). By combining Equations (4) and (5), intuitively, we use
the EZI model to split the players into two groups: (1) who
are not active and (2) who are active. Then conditional on
being active, we further split the latter group of players into
two additional segments: (1) who do not engage (εij = 0)
and, (2) who engage (εij = 1) and thus demonstrate positive
engagement (Eij > 0). Finally, we complete the speci!cation of
the EZI log normal model by connecting the binary response
εij|αij = 1 with the covariates and the random e"ects through
a logit link in equation (6) and use an identity link for expected
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log engagement γij in Equation (7). Note that even though we
model αij in Equations (1) and (4) using g1 and g2, respectively,
there is no discordance as g1(αij) = g2(αij) for all (i, j).

3.1.3. Model for Dropouts
For the discrete time hazard of dropout, we model λij :=
P(Di = j|Di ≥ j, bi) as

logit(λij) = x(5)T
ij β(5) + ηTbi , (8)

and the pmf ofD∗
i is

g4(D
∗
i = d | bi) =






d−1∏

j=1
(1 − λij)




 λ
δDi
id (1 − λid)

1−δDi ,

where δDi = I(Di ≤ Ci) is the indicator of dropout occur-
rence. Here η is a parameter vector that relates the longitudinal
outcomes and the dropout time via the random e"ects bi. This
approach to modeling the dropouts through Equation (8) is
analogous to the shared parameter models in clinical trials
that are used to account for potential not missing at random
(NMAR) responses (see, e.g., Vonesh, Greene, and Schluchter
2006; Guo and Carlin 2004). If η = 0 then the dropout is
ignorable given the observed data. Figure 3 contains a schematic
diagram of our joint model.

3.1.4. Correlating the Random E"ects and Linking the
Submodels

All the submodels described above carry information about the
playing behavior of individuals and are therefore inter-related.
To get the complete picture and to account for the heterogeneity
across individual’s outcomes, one must combine these e"ects
by correlating the multiple outcomes. Without inter-relating
or jointly considering these outcomes, it is not only hard to
answer questions about how the evolution of one response (e.g.,
activity) is related to the evolution of another (e.g., engagement)
or who is likely to dropout, but also problematic to model the
heterogeneity. In such cases, it is natural to consider models
where the dependency among the responses may be incorpo-
rated via the presence of one or more latent variables. A $exible
solution is to model the association between di"erent responses
by correlating the random heterogeneous e"ects from each of
the responses. In our joint modeling approach, random e"ects
are assumed for each longitudinal response and they are associ-
ated by imposing a joint multivariate distribution on the random
e"ects, that is, bi = (b(s)

i : 1 ≤ s ≤ 4) ∼ N(0, #). Such a
model borrows information across the various touch points and
o"ers an intuitive way of describing the dependency between
the responses. For example, questions such as, “is engagement
related to activity for an individual?”, or “does higher activ-
ity increase the probability of engagement” can be answered
using the estimated covariance structure of #. Furthermore, we
assume that the dependency between the longitudinal outcomes
and the risk of dropout are described by the random e"ects bi
and the covariates. In our context this is reasonable since, for
instance, the longitudinal outcome AI may characterize player
engagement, and player engagement can in turn in$uence the
risk of dropout.

Table 1. Parameter constraints and their interpretation.

Constraint Description

β
(s)
weekend ≥ 0, ∀ s Expect increased player activity on weekends

β
(s)
timesince ≤ 0, ∀ s Expect lower player activity as time since last

login increases

β
(1)
promV, β(1)

promIV ≥ 0 Expect promotions IV, V to increase player activ-
ity

β
(1)
promV ≥ β

(1)
promIV Expect promotion V to have a higher positive

impact on player activity than promotion IV

β
(2)
prom(i) ≥ 0 for i += IV All promotions other than IV to have a nonneg-

ative impact on activity
β

(2)
promIII ≥ β

(2)
promV Promotions III leads to a higher increase in activ-

ity than promotion V
β

(2)
promVI ≥ β

(2)
promII ≥ β

(2)
promV Promotions VI has the largest positive impact

on activity followed by promotions II and V
β

(2)
promV ≥ β

(2)
promIV Promotion V leads to a higher increase in activ-

ity than promotion IV

NOTES: Here β
(s)
prom(i) indicates the "xed e$ect coe#cient for promotion i =

I, . . . , VI under model s = 1, . . . , 5.

3.2. Parametric Constraints

The CEZIJ framework can incorporate any convexity con-
straints on the !xed e"ects: f(s)(β(s)) ≤ 0, s = 1, . . . , 5,
where f is any prespeci!ed convex function. In the mobile
game platform modeling application, domain expertise can
be incorporated into our framework via these constraints. For
example, industry belief dictates that all other factors remaining
!xed, players have higher chance of being active in the game
on weekends than on week days. Thus, a sign constraint on the
unknown !xed e"ect coe%cient for the variable (β(s)

weekend > 0)
that indicates whether day j is a weekend, is a simple yet e"ective
way to include this additional information into our estimation
framework. Also, di"erent promotional and retention strategies
used in these games are incorporated in the model as !xed
e"ects through the binary variables demarcating the days they
were applied (see Figure 3 in Section D of the supplementary
materials for a distribution of the various promotion strategies
across the m = 60 days). These strategies o#en have previously
known e%cacy levels which imply monotonicity constraints
on their e"ects. For example, E-mail and app messaging based
retention scheme should have at least a nonnegative increment
e"ect on the daily usage probabilities πij’s; the engagement
e"ect of a promotion that o"ers sale on only selected robots
cannot exceed the increment e"ect of sale on all robots. As
such, in our mobile game application, we assimilate these side
information through structured a%ne constraints: C(s)β(s) ≤
κ(s), s = 1, . . . , 5 where C(s) and κ(s) are known. Details
about these constraints are provided in Table 1 (and Table 5 in
Section D of the supplementary materials), where we describe
the six promotion strategies and the constraints that have been
included in our estimation framework along with their business
interpretation.

4. Variable Selection in CEZIJ

In the absence of any prior knowledge regarding variables that
may appear in the true model, we conduct automated variable
selection. Selection of !xed and random e"ect components in
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a mixed model framework has received considerable attention.
Under the special case of a linear mixed e"ect model, Bondell,
Krishna, and Ghosh (2010) and Ibrahim et al. (2011) proposed
penalized likelihood procedures to simultaneously select !xed
and random e"ect components, while Fan and Li (2012),
Peng and Lu (2012), and Lin, Pang, and Jiang (2013) conduct
selection of !xed and random e"ects using a two stage approach.
Procedures to select only the !xed e"ects or the random e"ects
have also been proposed under a GLMM framework (see
Pan and Huang 2014 and references therein). Simultaneous
selection of !xed and random e"ect components in a GLMM
framework is, however, computationally challenging. The high-
dimensional integral with respect to the random e"ects in the
marginal likelihood of GLMM o#en has no analytical form
and several approaches have been proposed to tackle this
computational hurdle: for example, Laplacian approximations
(Tierney and Kadane 1986), adaptive quadrature approxi-
mations (Rabe-Hesketh, Skrondal, and Pickles 2002), PQL
(Breslow and Clayton 1993), and EM algorithm (McCulloch
1997). We use a penalized EM algorithm and for proper
interpretation of composite e"ects we conduct joint variable
selection of !xed and random e"ects in a hierarchical manner,
which ensures that nonzero random e"ects in the model are
accompanied by their corresponding nonzero !xed e"ects. Let
$ =

{
β(1), . . . , β(5), σ1, σ2, η, vec(#)

}
:=

{
θ , vec(#)

}
denote

the vector of all parameters to be estimated. The marginal log-
likelihood of the observed data under the joint model is

!($) =
n∑

i=1
log

∫
p
(
αi,Ai, εi,Ei,D∗

i | bi, θ
)

p
(
bi|#

)
dbi

=
n∑

i=1
!i($), where,

!i($) = −1
2

log |#|

+ log
∫

exp




mi∑

j=1
log p(αij,Aij, εij,Eij,D∗

i | bi, θ)

− 1
2

bT
i #−1bi



 dbi.

We estimate $ using the EM algorithm for joint models
(Rizopoulos 2012) where we treat the random e"ects bi as
“missing data” and obtain $̂ by maximizing the expected value
of the complete data likelihood !cl($, b) where

!cl($, b) = −n
2

log #

+
n∑

i=1




mi∑

j=1
log p(αij,Aij, εij,Eij,D∗

i | bi, θ)

− 1
2

bT
i #−1bi



 =
n∑

i=1
!cl

i ($, bi).

Denote the Q-function !Q($) = ∑n
i=1 E !cl

i ($, bi) where
the expectation is over the conditional distribution of bi given
the observations at the current parameter estimates. We solve

the following maximization problem involving a penalized Q-
function for variable selection

max
θ , #,0

!Q($) − nλ

5∑

s=1

p∑

r=1

(
csr| βsr| + dsr #(s)

rr I{r ∈ Ic}
)

subject to f(s)(β(s)) ≤ 0, s = 1, . . . , 5 . (9)

Here, β(s) = {βsr : r ∈ I} and # is notationally generalized
to include random e"ects corresponding to all p !xed e"ects—
time invariant or not by introducing harmless zero rows and
columns corresponding to time-invariant e"ects. This is done
for presentational ease only to keep the indices same for the !xed
and random e"ects and such degenerate large # matrix never
crops in the computations. Also, #

(s)
rr is the rth element of the

vector
(
#1+pc(s−1),1+pc(s−1), . . . , #pcs,pcs

)
which represents the

segmented covariance matrix corresponding to the sth model,
Ic is the index set of all composite e"ects and λ > 0 is the
common regularization parameter which is chosen using a BIC-
type criterion (Bondell, Krishna, and Ghosh 2010; Lin, Pang,
and Jiang 2013; Hui, Müller, and Welsh 2017a) given by BICλ =
−2!Q($̂) + log(n)dim($̂) where dim($̂) is the number of
nonzero components in $̂.

In many practical applications the composite e"ects impose
the following hierarchy between !xed and random e"ects: a
random component can have a nonzero coe%cient only if its
corresponding !xed e"ect is nonzero (Hui, Müller, and Welsh
2017a). To induce such hierarchical selection of !xed and ran-
dom e"ects, we solve Equation (9) using a reweighted !1 min-
imization algorithm that alternates between estimating $ and
rede!ning the data-driven weights (csr , dsr) ∈ R2

+ such that the
weights used in any iteration are computed from the solutions
of the previous iteration and are designed to maintain the hier-
archy in selecting the !xed and random e"ects through their
construction (see Candes, Wakin, and Boyd 2008; Zhao and
Kočvara 2015; Lu, Lin, and Yan 2015, for details on these kind of
approaches). Suppose ,(t) denote the solution to the maximiza-
tion problem in Equation (9) at iteration t. Then we set c(t)

sr =
min

(
|β(t)

sr |−ν , ε−1
1

)
and d(t)

sr = min
(
|#(s,t)

rr |−ν |β(t)
sr |−ν , ε−1

2
)

for
iteration (t + 1) with ν = 2. We take ε1 = 10−2 to provide
numerical stability and to allow a nonzero estimate in the next
iteration given a zero valued estimate in the current iteration
(Candes, Wakin, and Boyd 2008) and !x ε2 = 10−4 to enforce
a large penalty on the corresponding diagonal element of #

in iteration (t + 1) whenever |β(t)
sr | = 0. Note that whenever

r ∈ Ic, the penalty dsr on the diagonal elements of # encourages
hierarchical selection of random e"ects. In Section C.2 of the
supplementary materials, we conduct simulation experiments
to demonstrate this property of our reweighted !1 procedure for
solving Equation (9). We end this section with the observation
that although the maximization problem based on criterion (9)
does not conduct any selection on the association parameters
η, it achieves that goal implicitly through the selection of the
random e"ects.

5. Estimation Procedure

In this section, we discuss two key aspects of the estimation
process.
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5.1. Solving the Maximization Problem

We use an iterative algorithm to solve the maximization problem
in Equation (9) which is analogous to the MCEM algorithm of
Wei and Tanner (1990). Let $(t) denote the parameter estimates
at iteration t. In iteration t + 1, the MCEM algorithm performs
the following two steps until convergence:

E-step:Recall Yi = [Y(s)
i , s = 1, . . . , 5]. Evaluate !Q

(t)($) =
∑n

i=1 Ebi|$(t),Yi
!cl

i ($, bi) where the expectation above is
taken with respect to the conditional distribution of bi given
the observationsYi at the current estimates $(t). Thus,

Ebi|$(t),Yi
!cl

i ($, bi)

=
∫

!cl
i ($, bi) p(bi | αi,Ai, εi,Ei,D∗

i , $(t)) dbi

= exp {−!i($
(t))}

∫
!cl

i ($, bi) p(αi,Ai, εi,Ei,D∗
i | θ (t), bi, ) φpc(bi|0, #(t)) dbi,

where, φpc( · | 0, #(t)) is the pc dimensional normal density
with mean 0 and variance #(t). Note that the expectation
involves a multivariate integration with respect to the ran-
dom e"ects bi which is evaluated by Monte Carlo integration.
We approximate it as

( D∑

d=1
!cl

i ($, bd
i ) p(αi,Ai, εi,Ei,D∗

i | θ (t), bd
i )

)

/( D∑

d=1
p(αi,Ai, εi,Ei,D∗

i | θ (t), bd
i )

)

,

where bd
i is a random sample from φpc( · | 0, #(t)) and D =

2000 is the number of Monte Carlo samples.
M-step:Solve the following maximization problem with data

driven adaptive weights (c(t)
sr , d(t)

sr )

$(t+1) = arg max
θ , #,0

!Q
(t)($) − nλ

5∑

s=1

p∑

r=1

(
c(t)

sr | βsr| + d(t)
sr #(s)

rr I{r ∈ Ic}
)

subject to f(s)(β(s)) ≤ 0, s = 1, . . . , 5 .

The maximization problem above decouples into separate
components that estimate β(s) as solutions to convex prob-
lems and # as a solution to a nonconvex problem. To solve
the convex problems involving β(s), we use a proximal gra-
dient descent algorithm a#er reducing the original prob-
lem to an !1 penalized least squares !t with convex con-
straints. See James, Paulson, and Rusmevichientong (2013)
for related approaches of this kind. For estimating #, we use
the coordinate descent algorithm of Wang (2014) that solves
a lasso problem and updates # one column and row at a
time while keeping the rest !xed. Further details regarding
our estimation procedure is presented in Section A of the
supplementary materials.

5.2. Split and Conquer

To enhance the computational e%ciency of the estimation pro-
cedure, we use the split-and-conquer approach of Chen and Xie
(2014) to split the full set of n players into K nonoverlapping
groups and conduct variable selection separately in each group
by solving K parallel maximization problems represented by
Equation (9). Following Chen and Xie (2014), the selected !xed
and random e"ects are then determined using a majority voting
scheme across all the K groups as described below.

Let β̂
(s)[k] and #̂

(s)[k] denote, respectively, the estimate of
the !xed e"ect coe%cients for model s and the estimate of the
pc diagonal elements of # for model s on split k obtained by
solving the maximization problem (9), where k = 1, . . . , K. We
construct the set of selected e"ects as

Set of !xed e"ects:

Î(s) =
{

r :
K∑

k=1
I(β̂sr[k] += 0) ≥ w0, r = 1, . . . , p

}

Set of random e"ects:

Î(s)
R =

{

r :
K∑

k=1
I(#̂(k)

r+pc(s−1),r+pc(s−1) >0)≥w1, r = 1, . . . , pc

}

.

Here w0, w1 are prespeci!ed thresholds determining the sever-
ity of the majority voting scheme. For large datasets as in mobile
apps application, a distributed computing framework utilizing
the above scheme leads to substantial reduction in computation
time. Section C of the supplementary material presents a discus-
sion of the split-and-conquer approach along with numerical
experiments that demonstrate the applicability of this method
in our setting where data driven adaptive weights are used in
the penalty and variable selection is conducted simultaneously
across multiple models. Finally, based on the selected !xed and
random e"ect components in Î(s) and Î(s)

R , we use the entire
data and estimate their e"ects more accurately by maximizing
the likelihood based on only those components using the stan-
dard EM algorithm.

6. Analysis of Freemium Mobile Games Using CEZIJ

We apply our proposed CEZIJ methodology to the freemium
mobile game data discussed in Section 2. This dataset holds
player level gaming information for 38,860 players observed
over a period of 60 days. The analyses presented here uses
a sample of 33,860 players for estimation and the remaining
5000 players for out of sample validation. See Section D in the
supplementary materials for a detailed description of the data.
For submodels s = 1, . . . , 4, we consider a set of 30 predictors,
of which 24 can have composite e"ects. The 24 composite e"ects
are listed in Table 3 (Serial No. 1–24) of the supplementary mate-
rials. The remaining 6 predictors are the 6 promotion strategies
summarized in Section D and Table 5 of the supplementary
materials. We treat these promotion strategies as potential !xed
e"ects with no corresponding random e"ect counterparts. For
the dropout model, which shares its random e"ects with the four
submodels, the entire list of 30 candidate predictors is taken as
potential !xed e"ects. Overall, the selection mechanism must
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Table 2. Selected "xed e$ect coe#cients and their estimates under the submodels act. indicator, activity time, engag. indicator, engagement amount, and dropout.

Predictors Act. indicator Activity time Engag. indicator Engag. amount Churn
β̂

(1)
β̂

(2)
β̂

(3)
β̂

(4)
β̂

(5)

intercept −4.648∗ 0.932∗ −1.560∗ 0.953∗ −1.902
avg_session_length – 0.269∗ 0.198∗ – –
p_"ghts 0.378∗ 0.169∗ −0.126∗ – –
a1_"ghts 0.303∗ 0.379∗ 0.274∗ – –
a2_"ghts 0.334∗ 0.216∗ −0.492∗ – –
level 0.084∗ 0.304∗ 0.282∗ – –
robot_played – – – – –
gacha_sink – 0.201∗ 0.509∗ – 0.129
gacha_premium_sink – – – – –
p"ght_source – 0.144∗ – – –
a1"ght_source 0.030 −0.239∗ −0.727∗ – –
a2"ght_source −0.240∗ −0.192∗ 0.482∗ 0.331∗ –
gacha_source 0.182∗ −0.212∗ – – –
gacha_premium_source – – 0.133∗ – –
robot_purchase_count 0.134∗ – – – –
upgrade_count 0.093∗ 0.112∗ 0.404∗ – –
lucky_draw_wg – – −0.240∗ – –
timesince −2.065∗ −0.641∗ −0.229∗ – 3.502
lucky_draw_og −0.230∗ – −0.469∗ – –
fancy_sink – – −0.110∗ – –
upgrade_sink 0.037∗ – −0.272∗ – –
robot_buy_sink – – 0.159 – –
gain_gachaprem – – – – –
gain_gachagrind −0.127∗ 0.180∗ – – –
weekend 0.302∗ 0.358∗ – – –
promotion I – – – −1.153 −0.894
promotion II 0.178 0.134 −0.189 – −0.934
promotion III −0.129 – −0.166 −1.791 −3.500
promotion IV – – 0.164 −3.345 −0.673
promotion V – – −5.000 – 0.828
promotion VI 0.290 0.249 0.131 −2.389 −1.509

NOTES: The selected random e$ects are those variables that exhibit a (∗) over their estimates. See Table 3 in Section D of the supplement for a detailed description of the
covariates.

select random e"ects from a set of 100 potential random e"ects
(24 for each of the four submodels and their 4 intercepts) and
select !xed e"ects from a set of 155 potential !xed e"ects (30
for each of the !ve submodels and their 5 intercepts).

To model the responses at time point j, we consider time
j − 1 values of the predictors that contain gaming character-
istics of a player simply because at time j these characteristics
are known only up to the previous time point j − 1. These
gaming characteristics are marked with an (∗) in Table 3 of
the supplementary materials. All the remaining predictors like
weekend indicator and the 6 indicator variables corresponding
to the promotion strategies are applied at time j. We initialize
the CEZIJ algorithm by !tting a saturated model on a subset of
200 players, which was also used to initialize the weights csr , dsr
in criterion (9). Finally, our algorithm is run on K = 20 splits
where each split holds nk = 1693 randomly selected players
with the majority voting parameters w0, w1 !xed at 12 and
the regularization parameter λk is chosen as that value of λ ∈
{10−4, 10−3, 10−2, 10−1, 0.25, 0.5, 1, 5} which minimizes BICλ.
Table 6 in Section E of the supplementary materials presents the
voting results for each candidate predictor across the 20 splits.

6.1. The Fitted Joint Model and Its Interpretations

The !nal list of selected predictors and their estimated !xed
e"ect coe%cients for the submodels of AI, activity time (daily
total time played), EI, engagement amount, and dropout is pre-
sented in Table 2. See Table 3 (Section D of the supplementary
materials) for the description of the covariates. The selected

composite e"ects are those predictors that exhibit a (∗) over
their coe%cient estimates in Table 2. All the selected !xed and
random e"ects obey the hierarchical structure discussed in Sec-
tion 4. We next discuss the !tted coe%cients for each submodel.

Activity indicator: For modeling probability of AI, the CEZIJ
methodology selects 18 !xed e"ects of which 14 are composite
e"ects. As AI forms the base of our joint model, the !xed e"ects
of its estimated marginal distribution have the least nuanced
interpretation among the 5 submodels. All other things remain-
ing constant, there is an overall increase in the odds for AI
by 35% on the weekends and an 8% increase in odds for each
level advancement in the game. Similarly, the conditional odds
is boosted by 20%, 14%, and 9%, respectively, if the gacha game
was played or robot purchases or upgrades were made in the
previous days. Absence of log-in in the previous day adversely
a"ects the odds with an average decrement of 88% for each
absent day. Promotions II and VI, which provide sale on robots
at di"erent dosages are positively associated and increase odds
of AI by approximately 20% and 30%, respectively.

Activity time: In this case the selection mechanism selects
17 !xed e"ects of which 15 are composite e"ects. The signs on
the coe%cients of timesince and weekend align with the
constraints imposed on them and along with the game charac-
teristics like number of primary and auxiliary !ghts played, level
progressions, and robot upgrades, continue to provide a similar
interpretation as with the AI model. This is the second layer of
joint model which is conditioned on positive login occurrence.
A key di"erence between these two models, however, lies
in the inclusion of predictors avg_session_length,
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gacha_sink, and pfight_source. They indicate that,
keeping other things !xed, players interacting with the game
through spending in-game currencies or winning the same
through principal !ghts on the previous day have the natural
incentive to spend more in-game time on the following
day. In line with the monotonicity constraints imposed on
the promotion strategies for this model, the coe%cient for
promotion VI is both positive and bigger than the coe%cient
for promotion II thus indicating that the strategy to promote
sale on all robots has a higher impact on activity time than
the strategy to o"er the special particular “Boss” robots at a
discount.

Engagement indicator and amount: Recall from Section 3 that
we use an EZI log normal model for the engagement amount
by !rst building a separate model for the probability of EI given
activity. For the submodels that model EI and the engagement
amount, the CEZIJ methodology selects, respectively, 22 !xed
e"ects of which 16 are composite e"ects and 6 !xed e"ects
of which 2 are composite e"ects. Direct interpretation of the
!xed e"ect coe%cients is di%cult here, as this submodel is
conditioned on the !rst two submodels. We see that some of
the key player engagement characteristics like number of aux-
iliary !ghts played, level progression, in-app virtual currency
spent and earned seem to positively impact the conditional
likelihood of positive engagement at subsequent time points. A
signi!cant !nding is that among the three di"erent !ght modes,
only auxiliary !ght second mode which involve time restricted
!ghts seems to lead to substantially higher player engagement
implying that all other variables remaining constant, player
engagement in game promotion through social media is more
while playing time attack !ghts.

Dropout: In this case, the selection mechanism selects 9
!xed e"ects. The sign on the coe%cient for timesince is
positive, which is natural, and indicates that players who do
not frequent the game o#en (low frequency of AI) exhibit a
high likelihood of dropping out at subsequent time points. It
is also interesting to see, through gacha_sink, that all else
being equal, players who spend more of their virtual currencies
on gacha exhibit a high likelihood of dropping out at subse-
quent time points. This can potentially be explained through a
“make-gacha-work-for-all-players” (Agelle 2016)
phenomenon where the player spends a major portion of her
virtual currency on gacha however the value of the items won
is largely worthless when compared to the amount of currency
spent, thus inducing a lack of interest in the game at future
time points. All the promotions with exception of promotion V,
reduce the odds of dropouts validating their usage as retention
schemes.

From the heatmap in Figure 4, the random e"ects of the
selected composite e"ect predictors demonstrate correlations
within the four submodels that were modeled jointly, indicating
that players exhibit idiosyncratic pro!les over time. Moreover,
we notice several instances of cross correlations across the four
submodels. For example, from Figure 5, the random e"ect asso-
ciated with the number of championship !ghts played (predictor
p_fights) in the AI model has a positive correlation with the
amount of virtual currency earned through auxiliary !ghts (pre-
dictor a2_fights_source) played in the model for activity
time which suggests that the modeled responses are correlated

Figure 4. Heatmap of the 47 × 47 correlation matrix obtained from #̂. On
the horizontal axis are the selected composite e$ects of the four submodels: AI,
activity time, EI, and engagement amount. The horizontal axis begins with the
intercept from the AI model and ends with a2fight_source from the
engagement amount model.

for a player. Our joint model allows us to borrow information
across these related responses and may aid game managers and
marketers in understanding how the outcomes depend on each
other.

6.2. Out-of-Sample Validation

We use the hold-out sample of 5000 players from the original
data for assessing the predictive accuracy of our model. Our
scheme consists of predicting the four outcomes—AI, activity
time, EI, and engagement amount, dynamically over the next
29 days using the !tted model discussed in Section 6.1. Note
that the time frame of prediction covers the !rst 30 days of
game usage for each player, and so by de!nition, no player drops
out which leaves us with the aforementioned four outcomes to
predict. As benchmarks to our !tted model, we consider four
competing models—Benchmark I to Benchmark IV which we
describe below.

For Benchmark I we consider a setup where there are no
random e"ects, the outcomes are not modeled jointly and vari-
able selection is conducted using the R-package glmmLasso
(Schelldorfer, Meier, and Bühlmann 2014) that uses an !1-
penalized algorithm for !tting high-dimensional GLMMs with
logit links for AI, EI and identity link for the two continuous
outcomes of positive activity time and engagement amount.
In case of Benchmark II, we continue to model the outcomes
separately and use the R-package rpql (Hui, Müller, and Welsh
2017b) that performs joint selection of !xed and random e"ects
in GLMMs using a regularized PQL (Breslow and Clayton 1993)
with similar link functions as used in Benchmark I. The remain-
ing two Benchmark models rely on the selected variables from
the CEZIJ model itself and do not conduct their respective
variable selection. In particular, Benchmark III uses the selected
predictors from the CEZIJ methodology and models the out-
comes via generalized linear models with logit links for AI, EI
and identity link for the two continuous outcomes of positive
activity time and engagement amount. Thus Benchmark III, like
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Figure 5. Two networks that demonstrate several cross correlations across the models. Blue line represents positive correlation and red line represents negative correlation.
The model numbers are inside the parenthesis next to the predictor names. Left: Key cross correlations between the submodels AI and activity time. Right: Key cross
correlations between the submodels activity time and EI.

Benchmark I, represents a setup where there are no random
e"ects and the outcomes are not modeled jointly. Benchmark
IV, on the other hand, represents a more sophisticated setup
wherein it resembles the !tted CEZIJ model in every aspect
except that the random e"ects across the four submodels are
not correlated. It achieves this by using the selected !xed and
composite e"ects from CEZIJ model but employs a slightly
modi!ed covariance matrix #̆ where the covariances between
random e"ects originating from the di"erent submodels are
set to 0, thus representing a setup where the outcomes are not
modeled jointly.

The out-of-sample validation requires predicting the responses
dynamically over time. For Benchmarks I and III this step is
easily carried out by running the !tted model on the validation
data. However, for Benchmark II, IV and CEZIJ model the
prediction mechanism must, respectively, estimate the latent
random e"ects and appropriately account for the endogenous
nature of the responses. To do that we utilize the simulation
scheme discussed in Rizopoulos (2012, sec. 7.2) and Rizopoulos
(2011, sec. 3), and calculate the expected time j responses given
the observed responses until time j−1, the estimated parameters
and the event that the player has not churned until time j − 1
(details provided in Section B of the supplementary materials).
Table 3 summarizes the results of predictive performance of
CEZIJ and the benchmark models. For AI and EI, Table 3
presents, for each model, the false positive (FP) rate and the
false negative (FN) rate, respectively, averaged over the 29
time points. The FP rate measures the percentage of cases
where the model incorrectly predicted activity (or engagement)
whereas the FN rate measures the percentage of cases where the
model incorrectly predicted no activity (or no engagement).
Benchmark II, for example, exhibits the lowest FP rate and
has the highest FN rate followed by Benchmark III. The
low FP rate of Benchmark II, however, belies the relatively
poor performance of this model in predicting zero in$ated
responses which becomes apparent in the higher FN rates
especially for the EI model. The CEZIJ model along with
Benchmark IV, on the other hand, have the lowest FN rates

demonstrating their relatively superior ability in predicting the
zero in$ated responses of AI and EI. For positive activity times
and positive engagement values we take a slightly di"erent
approach and !rst calculate the time j prediction errors PEj
for the Benchmark models and CEZIJ as follows. For any
model M ∈ {Benchmark I, …, Benchmark IV, CEZIJ}, we
de!ne PEM

j for submodel s = 2 at time j = 1, . . . , 29
as

PEM
j (Y∗(s), Ŷ∗(s)) =

n∑

i=1

∣∣∣ logY∗(s)
ij − log Ŷ∗(s)

ij

∣∣∣, (10)

where Y∗(s)
ij = Y(s)

ij if αij = 1 and 1 otherwise, and Ŷ∗(s)
ij =

Ŷ(s)
ij if α̂ij = 1 and 1 otherwise with Ŷ(s)

ij , α̂ij being model
M predictions of activity time, AI, respectively, for player i
at time j. The time j prediction error for submodel s = 4
is also de!ned in a similar fashion with αij, α̂ij replaced with
εij, ε̂ij, respectively, and measures the total absolute deviation
of the prediction from the truth at any time j. For notational
convenience the dependence of PEM

j on αij, α̂ij (or εij, ε̂ij)
have been suppressed but the inclusion of these predicted and
observed indicators in Equation (10) is aimed at exploiting
the dependencies between the responses, if any. For the two
submodels (s = 2, 4), Table 3 presents the ratio of the prediction
errors of the Benchmarks to the CEZIJ model averaged over the
29 time points where a ratio in excess of 1 indicates a larger
absolute deviation of the prediction from the truth when com-
pared to CEZIJ model. All Benchmark models exhibit predic-
tion error ratios bigger than 1 with Benchmarks II and III being
the worse for engagement amount and activity time models,
respectively. Benchmark IV, on the other hand, pro!ts from
the structure of the various components of CEZIJ model but is
unable to account for the dependencies between the responses
which is re$ected in its prediction error ratios being slightly
bigger than 1 but along with the CEZIJ model, it continues
to demonstrate superior prediction error ratios across the two
submodels.
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Table 3. Results of predictive performance of CEZIJ model and Benchmarks I to IV.

Submodel Benchmark I Benchmark II Benchmark III Benchmark IV CEZIJ

Activity indicator 1.32%/6.71% 0.27%/7.83% 1.19%/6.33% 5.92%/4.15% 5.86%/4.12%
Total time played 1.742 1.961 4.662 1.041 1
Engagement indicator 0.09%/1.87% 0%/1.89% 0.05%/1.89% 3.56%/1.48% 3.54%/1.47%
Engagement amount 1.408 8.619 1.217 1.067 1

NOTES: For activity and engagement indicators, the false positive (FP) rate/the false negative (FN) rate averaged over the 29 time points are reported. For nonzero activity
time and engagement amounts, the ratio of prediction errors (10) of Benchmarks I to IV to CEZIJ model averaged over the 29 time points are reported.

6.3. Player Segmentation Using Predicted Churn
Probabilities

Player subpopulations with similar churn characteristics over
time provide valuable insights into user pro!les that are more
likely to dropout and can be used to design future retention
policies speci!cally targeting those characteristics. In this sec-
tion, we use the !tted churn model of Section 6.1 to predict the
temporal trajectories of churn probabilities on a sample of 1000
players who are 30 days into the game and use the predicted
probabilities over the next 25 days to cluster the players into
homogeneous subgroups. The churn probabilities are predicted
in a similar fashion as discussed in Section 6.2 and Section B
of the supplementary materials where the churn probability at
time j is predicted conditional on the estimated parameters,
the observed responses until time j − 1 and the event that
the player has not churned until time j − 1. To determine the
player subgroups, we use R package fda.usc to cluster the
rows of the 1000 × 25 predicted churn probability matrix using
functional K-means clustering. We use the prediction strength
algorithm of Tibshirani and Walther (2005) to determine the
number of clusters.

In Figure 6, the three cluster centroids segment the sample
into groups which demonstrate distinct temporal churn pro!les.
For instance, cluster 3, which holds almost 48% of the players,
exhibits rising churn probabilities until day 5 but tapers down

under the in$uence promotions I, II, and VI. Cluster 2, with
34% of the players, has a di"erent trajectory than cluster 3 and
appears to respond favorably to promotion VI. Of particular
importance are those players that belong to cluster 1 which
holds 18% of the players and is characterized by rising churn
probabilities over time. The churn pro!le of this cluster repre-
sents players who have been relatively inactive in the game and
continue to do so even under the in$uence of various promotion
strategies. During days 17 to 19, their churn probabilities are
predicted to diminish under the e"ect of promotion VI however
subsequent promotions do not appear to have any favorable
impact. These segment curves suggest that there are some key
di"erences in customer attrition patterns. For example, Cluster
1 shows increasing attrition rates over time, which suggests that
the game is not able to retain these players. Cluster 2 shows
increasing attrition initially, but then the attrition rate starts to
decline signi!cantly a#er 45 days. This segment is potentially
bene!cial to the platform as it demonstrates that there is a core
set of players who are loyal to the game. Players in Cluster 3 on
average start with a much higher attrition rate than the other
two segments, but their attrition rate tapers down signi!cantly
a#er !ve days and then stays at a very low level over time.
Interestingly, Cluster 3 seems to be responding to promotions
I, II, and IV. These di"erences in user behavior across the
segments can be leveraged to increase the e%ciency of player

Figure 6. Functional cluster analysis of predicted dropout probabilities over time. The plot presents three cluster centroids. The shaded band around the centroids are
the 25th and 75th percentiles of the churn probabilities. The vertical shaded regions in the graph correspond to the days on which di$erent promotion strategies were on
e$ect. The number of clusters were identi"ed using prediction strength (Tibshirani and Walther 2005).
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retention policies. They also suggest that the platform should
adopt di"erent business strategies. For instance, in Cluster 3
many players have been weeded out early. This indicates that
short term visitors to the gaming portal have le# the platform
more quickly in Cluster 3 compared to the other two segments.
So it is important for the platform to emphasize promotional
activities that increase player engagement. On the contrary, for
Clusters 1 and 2, it is important for the platform to emphasize
promotional activities that increase player log-in or activity. This
relative emphasis across the segments can increase the e%ciency
of marketing campaigns.

7. Discussion

We propose a very scalable joint modeling framework CEZIJ
for uni!ed inference and prediction of player activity and
engagement in freemium mobile games. The rapid growth of
mobile games globally has generated signi!cant research inter-
est in di"erent business areas such as marketing, management,
and information sciences. Our proposed algorithm conducts
variable selection by maintaining the hierarchical congruity
of the !xed and random e"ects and produces models with
interpretable composite e"ects. A key feature of our framework
is that it allows incorporation of side information and domain
expertise through convexity constraints. We exhibit the superior
performance of CEZIJ in producing dynamic predictions. It is
also used to segment players based on their churn rates, with
the analysis revealing several idiosyncratic player behaviors
that can be used for targeted marketing of players in future
freemium games. The segmentation !ndings have important
business implications for monetization of the platforms. They
can be used to enhance the e"ectiveness and e%ciency of
promotional activities and also future user acquisition and
retention strategies.

Our inferential framework is based on modern optimiza-
tion techniques and is very $exible. It can be used in a wide
range of big-data applications that need analyzing multiple high-
dimensional longitudinal outcomes along with a time-to-event
analysis. In future, we would like to extend our joint mod-
eling program for providing comprehensive statistical guid-
ance regarding the growth, development and optimal pricing
of generic digital products that use the freemium model. For
that purpose, it will be interesting to investigate extensions of
our CEZIJ modeling framework, in particular, the possibility
of incorporating nonparametric components for modeling the
nonlinear time e"ects since player behavior may change over
time. Furthermore, the current dropout model in Equation
(8) may be enhanced to include more sophisticated structures
involving cumulative e"ects parameterization and conduct vari-
able selection on the high-dimensional vector of association
parameter η, which the current CEZIJ framework implicitly
achieves through the selection of the random e"ects. An alter-
native and computationally less demanding approach may be to
consider the following low dimensional representation wherein
the dropout model is of the form logit(λij) = x(5)T

ij β(5) +
∑4

s=1 ηsz(s)T
ij b(s)

i so that η is then only a 4 × 1 vector. Finally,
while the focus of this article is the CEZIJ modeling framework

and its applicability in the disciplined study of freemium behav-
ior and other applications that needs analyzing multiple high-
dimensional longitudinal outcomes along with a time-to-event
analysis, a natural extension of our work, as future research, will
be targeted toward estimating standard errors of the estimated
coe%cients and con!dence intervals under the CEZIJ frame-
work using ideas from recent developments in post-selection
inference (see, e.g., Javanmard and Montanari 2014; Lee et al.
2016).

Of the thousands of freemium games that are developed
every month, very few of them go on to make adequate amount
through IAP. Most games resemble our data where a signi!cant
part of the revenue is earned through in-game ads and social
media usages. In these games, such low incidence of real money
purchases present a challenge in model development as the
robustness of the estimated model coe%cients will be signi!-
cantly impacted in case real money purchases are modeled as
a separate response variable. Thus, in very low IAP incidence
games it is useful to model the combined revenue using game
speci!c weights to blend direct and indirect engagement as is
done in this article. For games with signi!cant amount of IAP,
we envision modeling direct and indirect engagement separately
and study their interactions.

Supplementary Materials

The supplementary materials contain the following items: details around
the maximization problem in equation (9), the prediction equations used
in section 6.3, discussion around the split-and-conquer approach, data
description and variable selection voting results.
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This supplementary material holds the following items: details around the maximization

problem in equation (9) (section A), the prediction equations used in section 6.3 of the

main paper (section B), discussion around the split-and-conquer approach (section C),

data description (section D) and variable selection voting results (section E).

A Technical details around the maximization problem

in equation (9)

In this section, we will first show that the maximization problem in equation (9) decouples

into separate components that estimate �(s) (and �1, �2 for the activity and engagement

models) and ⌃ as solutions to independent optimization problems (section A.1). There-

after, we show that the optimization problems involving �(s) are convex and can be solved

after reducing the original problem to an `1 penalized least squares fit with convex con-

straints (section A.2), while the coordinate descent algorithm of Wang (2014) provides a
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solution to the non-convex problem involving ⌃ (section A.3).

A.1 Simplifying equation (9)

Note that in the E-step of section 5, `Q(t)(⇥) is approximated by
Pn

i=1

PD
d=1 `

cl
i (⇥, bdi )w

(t)
id

where

w
(t)
id = p(↵ij, ij, ✏ij, ij,

⇤
i | bdi ,✓(t))/

DX

d=1

p(↵ij, ij, ✏ij, ij,
⇤
i | bdi ,✓(t))

is a known constant at iteration (t) and

`
cl
i (⇥, bdi ) = �1

2
log⌃� 1

2
bdTi ⌃�1bdi +

miX

j=1

log p(↵ij, ij, ✏ij, ij,
⇤
i | bdi ,✓).

Moreover given the random e↵ects bdi , log p(↵ij, ij, ✏ij, ij,
⇤
i | bdi ,✓) factorizes into

log p(↵ij|bd(1)i ,�(1)) + log p( ij|↵ij, b
d(2)
i ,�(2)

, �1) + log p(✏ij|↵ij, b
d(3)
i ,�(3))+

log p( ij|✏ij,↵ij, b
d(4)
i ,�(4)

, �2) + log p( ⇤
i |bdi ,�(5)

,⌘)

wherein the s
th term, for s = 1, · · · , 5, in the display above is solely a function of the

unknown parameter �(s) (and �1, �2,⌘ for s = 2, 4, 5 respectively). This su�ces to show

that the maximization problem in equation (9) decouples into six separate problems for

estimating �(1)
, (�(2)

, �1),�(3)
, (�(4)

, �2), (�(5)
,⌘) and ⌃.

A.2 Estimating �
(s)

In what follows, we will show that the optimization problems involving �(s) (and �1, �2

for the activity and engagement models) are convex and can be solved after reducing the

original problem to an `1 penalized least squares fit with convex constraints.

AI model - First note that
Pn

i=1

Pmi

j=1

PD
d=1 log p(↵ij|bd(1)i ,�(1))w(t)

id can be written as

f1(�(1)) + f2(�(1)) + terms independent of �(1) where

f1(�
(1)) = �

nX

i=1

miX

j=1

DX

d=1

log
h
1 + exp

⇣
x(1)T
ij �(1) + z(1)T

ij bd(1)i

⌘i
w

(t)
id
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is concave in �(1) and

f2(�
(1)) =

nX

i=1

miX

j=1

DX

d=1

↵ijx
(1)T
ij �(1)

w
(t)
id

is a�ne in �(1). Now from equation (9), the minimization problem for �(1) is

min
�(1)

f(�(1)) + h(�(1)) (1)

where f(�(1)) = �f1(�(1))� f2(�(1)) is convex and di↵erentiable with respect to �(1), and

h(�(1)) = n�
Pp

r=1 c1r|�1r| + IC(�(1)) is convex but non-di↵erentiable, with IC(�(1)) as the

indicator function of the closed, convex set C = {�(1) : f(1)(�(1))  0}. To solve equation

(1), we use the proximal gradient method that updates �(1) in iteration k = 1, 2, 3, . . . as

�(1)
(k) = proxtk,h

⇣
�(1)
(k�1) � tkrf(�(1)

(k�1))
⌘

(2)

where tk > 0 is the step size determined by backtracking line search and

proxtk,h(u) = argmin
�

⇣
h(�) +

1

2tk
||� � u||22

⌘
(3)

is the proximal mapping of h with u = �(1)
(k�1) � tkrf(�(1)

(k�1)) and

rf(�(1)
(k�1)) =

nX

i=1

miX

j=1

DX

d=1

w
(t)
id

nh
1 + exp

⇣
� x(1)T

ij �(1)
(k�1) � z(1)T

ij bd(1)i

⌘i�1

� ↵ij

o
x(1)
ij

being the derivative of f(�(1)) with respect to �(1) evaluated at �(1)
(k�1). The proximal

mapping in equation (3) for our specific application is, unfortunately, not available in an

analytical form. We resort to computing the proximal mappings numerically by re-writing

the minimization problem in equation (3) as an `1 penalized least squares fit with convex

constraints as follows:

min
e�(1)

1

2t
||u�A(1) e�(1)||22 + n�||e�(1)||1 (4)

subject to ef(1)(e�(1))  0

where t = tk, e�1r = c1r�1r, A(1) is a p⇥p diagonal matrix with A
(1)
r,r = 1/c1r and ef(1) are the

transformed convexity constraints on e�(1). For instance, if f(1)(�(1)) = C(1)�(1) for some
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matrix C(1) with p columns thenef(1)(e�(1)) = C(1)A(1) e�(1). Finally, we solve (4) using CVX

(Grant et al., 2008).

Activity Time model - Define ⌧1 = �
�1
1 , �̄(2) = ⌧1�(2) and re-write

Pn
i=1

Pmi

j=1

PD
d=1 log p( ij|↵ij, b

d(2)
i ,�(2)

, �1)w
(t)
id as �f(⌧1, �̄(2)) + constant terms, where

f(⌧1, �̄
(2)) =

nX

i=1

miX

j=1

DX

d=1

↵ijw
(t)
id

h1
2

⇣
⌧1 log ij � x(2)T

ij �̄(2)
⌘2

� log ⌧1
i

is convex in (⌧1, �̄(2)). Thus from equation (9), the minimization problem for (⌧1, �̄(2)) is

min
⌧1,�̄(2)

f(⌧1, �̄
(2)) + h(⌧1, �̄

(2)) (5)

where f(⌧1, �̄(2)) is convex and di↵erentiable with respect to (⌧1, �̄(2)), and h(⌧1, �̄(2)) =

n�
Pp

r=1 c2r|�̄2r|+ IC(⌧1, �̄(2)) is convex but non-di↵erentiable, with IC(⌧1, �̄(2)) as the indi-

cator function of the closed, convex set C = {(⌧1, �̄(2)) : f(2)(�̄(2))  0, ⌧1 � �}. Here � is

a small positive number used to enforce ⌧1 > 0. To solve (5) we use the proximal gradient

method discussed in equations (2) and (3) wherein the proximal mapping of h is given by

proxtk,h(u) = argmin
⌧1,�̄

⇣
h(⌧1, �̄) +

1

2tk
||(⌧1, �̄)T � u||22

⌘

where u = (⌧ (k�1)
1 , �̄(2)

(k�1))
T � tkrf(⌧ (k�1)

1 , �̄(2)
(k�1)) and rf(⌧ (k�1)

1 , �̄(2)
(k�1))

=

2

4
Pn

i=1

Pmi

j=1

PD
d=1 ↵ijw

(t)
id

n
�1/⌧ (k�1)

1 + log ij

⇣
⌧
(k�1)
1 log ij � x(2)T

ij �̄(2)
(k�1)

⌘o

�
Pn

i=1

Pmi

j=1

PD
d=1 ↵ijw

(t)
id

⇣
⌧
(k�1)
1 log ij � x(2)T

ij �̄(2)
(k�1)

⌘
x(2)
ij

3

5

being the derivative of f(⌧1, �̄(2)) with respect to (⌧1, �̄(2)) evaluated at (⌧ (k�1)
1 , �̄(2)

(k�1)).

The above proximal mapping is computed in CVX by solving an `1 penalized least squares

fit with convex constraints as shown in equation (4).

EI model - Like the AI model,
Pn

i=1

Pmi

j=1

PD
d=1 log p(✏ij|↵ij, b

d(3)
i ,�(3))w(t)

id can be written

as f1(�(3)) + f2(�(3)) + terms independent of �(3) where

f1(�
(3)) = �

nX

i=1

miX

j=1

DX

d=1

↵ij log
h
1 + exp

⇣
x(3)T
ij �(3) + z(3)T

ij bd(3)i

⌘i
w

(t)
id
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is concave in �(3) and

f2(�
(3)) =

nX

i=1

miX

j=1

DX

d=1

↵ij✏ijx
(3)T
ij �(3)

w
(t)
id

is a�ne in �(3). So the minimization problem for �(3) in (9) is

min
�(3)

f(�(3)) + h(�(3)) (6)

where f(�(3)) = �f1(�(3))� f2(�(3)) is convex and di↵erentiable with respect to �(3), and

h(�(3)) = n�
Pp

r=1 c3r|�3r| + IC(�(3)) is convex but non-di↵erentiable, with IC(�(3)) as the

indicator function of the closed, convex set C = {�(3) : f(3)(�(3))  0}. To solve equation

(6), we use the proximal gradient method discussed in equations (2) and (3) wherein the

proximal mapping of h is given by

proxtk,h(u) = argmin
�

⇣
h(�) +

1

2tk
||� � u||22

⌘

where u = �(3)
(k�1) � tkrf(�(3)

(k�1)) and

rf(�(3)
(k�1)) =

nX

i=1

miX

j=1

DX

d=1

↵ijw
(t)
id

nh
1 + exp

⇣
� x(3)T

ij �(3)
(k�1) � z(3)T

ij bd(3)i

⌘i�1

� ✏ij

o
x(3)
ij

being the derivative of f(�(3)) with respect to �(3) evaluated at �(3)
(k�1). The above proximal

mapping is finally computed in CVX by solving an `1 penalized least squares fit with convex

constraints as shown in equation (4).

Engag. Amount model - Like the Activity time model, define ⌧2 = �
�1
2 , �̄(4) = ⌧2�(4)

and re-write
Pn

i=1

Pmi

j=1

PD
d=1 log p( ij|↵ij, ✏ij, b

d(4)
i ,�(4)

, �2)w
(t)
id as �f(⌧2, �̄(4))+constant terms, where

f(⌧2, �̄
(4)) =

nX

i=1

miX

j=1

DX

d=1

↵ij✏ijw
(t)
id

h1
2

⇣
⌧2 log ij � x(4)T

ij �̄(4)
⌘2

� log ⌧2
i

is convex in (⌧2, �̄(4)). Thus from equation (9), the minimization problem for (⌧2, �̄(4)) is

min
⌧2,�̄(4)

f(⌧2, �̄
(4)) + h(⌧2, �̄

(4)) (7)
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where f(⌧2, �̄(4)) is convex and di↵erentiable with respect to (⌧2, �̄(4)), and h(⌧2, �̄(4)) =

n�
Pp

r=1 c4r|�̄4r|+ IC(⌧2, �̄(4)) is convex but non-di↵erentiable, with IC(⌧2, �̄(4)) as the indi-

cator function of the closed, convex set C = {(⌧2, �̄(4)) : f(4)(�̄(4))  0, ⌧2 � �}. Here � is

a small positive number used to enforce ⌧2 > 0. To solve (7) we use the proximal gradient

method discussed in equations (2) and (3) wherein the proximal mapping of h is given by

proxtk,h(u) = argmin
⌧2,�̄

⇣
h(⌧2, �̄) +

1

2tk
||(⌧2, �̄)T � u||22

⌘

where u = (⌧ (k�1)
2 , �̄(4)

(k�1))
T � tkrf(⌧ (k�1)

2 , �̄(4)
(k�1)) and rf(⌧ (k�1)

2 , �̄(4)
(k�1))

=

2

4
Pn

i=1

Pmi

j=1

PD
d=1 ↵ij✏ijw

(t)
id

n
�1/⌧ (k�1)

2 + log ij

⇣
⌧
(k�1)
2 log ij � x(4)T
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(k�1)

⌘o

�
Pn

i=1

Pmi

j=1

PD
d=1 ↵ij✏ijw

(t)
id

⇣
⌧
(k�1)
2 log ij � x(4)T

ij �̄(4)
(k�1)

⌘
x(4)
ij

3

5

being the derivative of f(⌧2, �̄(4)) with respect to (⌧2, �̄(4)) evaluated at (⌧ (k�1)
2 , �̄(4)

(k�1)).

Finally, CVX is used to compute the above proximal mapping by solving an `1 penalized

least squares fit with convex constraints as shown in equation (4).

Dropout model - For the dropout model, we re-write
Pn

i=1

Pmi

j=1

PD
d=1 log p(

⇤
i |bdi ,�(5)

,⌘)w(t)
id as f1(�(5)

,⌘)+f2(�(5)
,⌘)+constant terms where

f1(�
(5)
,⌘) = �

nX

i=1

miX

j=1

DX

d=1

log
h
1 + exp

⇣
x(5)T
ij �(5) + ⌘Tbdi

⌘i
w

(t)
id

is concave in (�(5)
,⌘) and

f2(�
(5)
,⌘) =

nX

i=1

miX

j=1

DX

d=1

�i

⇣
x(5)T
ij �(5) + ⌘Tbdi

⌘
w

(t)
id

is a�ne in (�(5)
,⌘). Now from equation (9), the minimization problem for (�(5)

,⌘) is

min
�(5),⌘

f(�(5)
,⌘) + h(�(5)) (8)

where f(�(5)
,⌘) = �f1(�(5)

,⌘) � f2(�(5)
,⌘) is convex and di↵erentiable with respect to

(�(5)
,⌘), and h(�(5)) = n�

Pp
r=1 c5r|�5r| + IC(�(5)) is convex but non-di↵erentiable, with

IC(�(5)) as the indicator function of the closed, convex set C = {�(5) : f(5)(�(5))  0}. To
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solve equation (8), we use the proximal gradient method discussed in equations (2) and (3)

wherein the proximal mapping of h is given by

proxtk,h(u) = argmin
�,⌘

⇣
h(�) +

1

2tk
||(�,⌘)T � u||22

⌘

where u = (�(5)
(k�1),⌘(k�1))T � tkrf(�(5)

(k�1),⌘(k�1)) and rf(�(5)
(k�1),⌘(k�1))

=
nX

i=1

miX

j=1

DX

d=1

w
(t)
id

nh
1 + exp

⇣
� x(5)T

ij �(5)
(k�1) � ⌘(k�1)b

d
i

⌘i�1

� �i

o
2

4x
(5)
ij

bdi

3

5

being the derivative of f(�(5)
,⌘) with respect to (�(5)

,⌘) evaluated at (�(5)
(k�1),⌘(k�1)). We

use CVX to compute the above proximal mapping by solving an `1 penalized least squares

fit with convex constraints as shown in equation (4).

A.3 Estimating ⌃

From equation (9), the optimization problem for estimating ⌃ in iteration (t) can be

expressed as

min
⌃�0

log |⌃|+ trace(Q⌃�1) + 2�||P ⇤⌃||1 (9)

where Q4pc⇥4pc = n
�1

Pn
i=1

PD
d=1 b

d
i b

dT
i w

(t)
id , P4pc⇥4pc = diag(d(t)s1 , . . . , d

(t)
s4pc). Here ⇤ denotes

elementwise multiplication and for any matrix A, ||A||1 = ||vec(A)||1 =
Ppc

i,j |Aij|. The

above minimization problem in ⌃ is non-convex (Bien and Tibshirani, 2011) and we use

the coordinate descent based algorithm of Wang (2014) that updates ⌃ one row and one

column at a time while keeping the remaining elements fixed to obtain a solution. In

particular, given inputs (Q,P ,�) and iteration (k+1), the aforementioned algorithm first

partitions

⌃(k+1) =

0

@⌃(k)
11 �12

�T
12 �22

1

A , Q =

0

@Q11 q12

qT
12 q22

1

A .

where ⌃(k)
11 and Q11 are the sub-matrices obtained from the first 4pc � 1 columns. Then

with � = �12 and � = �22��T
12⌃

�1(k)
11 �12, it uses coordinate descent algorithms (Friedman

et al., 2007) to obtain the estimates (�̂, �̂) (see equations (5)-(7) in Wang (2014)) and
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finally updates �(k+1)
12 = �̂ and �

(k+1)
22 = �̂ + �̂T⌃�1(k)

11 �̂. This procedure is repeated for

every row and column (keeping others fixed) until convergence.

B Prediction equations

We first focus on the prediction problem discussed in section 6.3 of the main paper. For

player i, let Yi(t) = {↵ij, ij, ✏ij, ij : 0  j  t} denote the observed responses until time t

and ⇢i(u | t) be the conditional probability of drop-out at time u > t > 0 given no drop-out

until time t. Then,

⇢i(u | t) = Pr(D⇤
i = u | D⇤

i > t,Yi(t);⇥)

=

Z
Pr(D⇤

i = u | D⇤
i > t,Yi(t), bi;⇥)p(bi | D⇤

i > t,Yi(t);⇥)dbi

=

Z
Pr(D⇤

i = u | D⇤
i > t, bi;⇥)p(bi | D⇤

i > t,Yi(t);⇥)dbi

Following section 3 of Rizopoulos (2011) and the fitted dropout model in equation (8), an

estimate of ⇢i(u | t) is

b⇢i(u | t) = Pr(D⇤
i = u | D⇤

i > t,bbi; b⇥)

where bbi = argmaxb log p(b | D⇤
i > t,Yi(t); b⇥).

In section 6.2, we are interested in predicting the time u > t expected longitudinal

outcomes of AI, Activity, EI and Engagement given the observed responses Yi(t) for player

i who has not dropped-out at time t. We consider the case of predicting wi(u | t) :=

E{ iu | D⇤
i > t,Yi(t);⇥} as an example as the rest follow along similar lines. Let b↵iu be

the predicted AI at time u conditional on Yi(t) and no dropout until time t. Then note

that

E{ iu | D⇤
i > t,Yi(t);⇥} =

Z
E{ iu | bi;⇥}p(bi | D⇤

i > t,Yi(t);⇥)dbi

and from section 7.2 of Rizopoulos (2012) an estimate of wi(u | t) is given by

bwi(u | t) =

8
><

>:

0, if b↵iu = 0

exp
⇣
x(2)T
iu

b�(2) + z(2)T
iu

bb(2)i +
b�2
1

2

⌘
, otherwise

where bbi = (bb(s)i : 1  s  4) = argmaxb log p(b | D⇤
i > t,Yi(t); b⇥).
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C Split-and-Conquer Approach and Numerical Ex-

periments

In this section, we first discuss the split-and-conquer approach of Chen and Xie (2014) (sec-

tion C.1) and thereafter conduct numerical experiments to demonstrate the applicability

of this approach in our GLMM setup (section C.2).

C.1 Split-and-Conquer approach

To enhance the computational e�ciency of the estimation procedure, CEZIJ uses the split-

and-conquer approach of Chen and Xie (2014) to split the full set of n players into K

non-overlapping groups and conducts variable selection separately in each group by solving

K parallel maximization problems represented by equation (9). In the process, our method-

ology uses data-driven adaptive weights (csr, dsr) 2 R2
+ in the penalty with weights in any

iteration being computed from the solutions of the previous iteration. The selected fixed

and random e↵ects are then determined using a majority voting scheme across all the K

groups as described in Section 5 of the main paper. In their original article however, Chen

and Xie (2014) use this approach in a GLM setup, and conduct selection and thereafter es-

timation of the selected coe�cients, by first solving K penalized likelihood problems (with

fixed penalty � that may vary with K) across the K splits of the data and then averaging

across the selected coe�cients in each split. Theorem 1 in their paper demonstrates that

the estimator so obtained is sign consistent under some regularity conditions and as long as

log(Kp) = o(n/K) where p denotes the number of candidate predictors and n the sample

size. Moreover along with Theorem 1, Theorem 2 establishes that this averaged estimator

is asymptotically equivalent to the estimator obtained by solving the penalized likelihood

problem on the entire data.

While these theoretical results do not directly extend to a GLMM setting, in section

C.2 we empirically demonstrate the applicability of the above scheme in selecting fixed and

random e↵ects in our setting where data-driven adaptive weights are used in the penalty

and variable selection is conducted simultaneously across multiple models. In terms of

9



computational e�ciency, the split-and-conquer approach is e�cient in the sense that if an

estimation procedure requires O(na
p
b) computing steps for some a > 1, b � 0, then the

split-and-conquer approach results in an e�ciency gain of O(Ka�1) in computing steps (see

theorem 5 in Chen and Xie (2014)). Figure 1 presents a comparison of the computing time

for the two simulation settings considered in in section C.2 and demonstrates that in both

these settings CEZIJ, through its split-and-conquer approach for variable selection, o↵ers

a potential gain in computational e�ciency against the conventional and memory intensive

approach of running the selection algorithm on the undivided data.

C.2 Numerical Experiments

Here we present numerical experiments that assess the model selection performance of

CEZIJ under the longitudinal and Dropout models discussed in Section 3.1 of the main

paper. The MATLAB code for these simulation experiments is available at https://github.

com/trambakbanerjee/cezij#what-is-cezij. We consider two simulation settings as follows:

Simulation setting I - We consider a sample of n = 500 players and for each player i,

let Xi = (Xi.1, . . . ,Xi.p) denote the m ⇥ p matrix of candidate predictors where Xi.k =

(xi1k, . . . , ximk)T . We fix m = 30, p = 10 and take If = {1, . . . , 8}, Ic = {9, 10} so that

pf = 8, pc = 2. Thus, the first 8 columns of Xi represent fixed e↵ects while the last 2

represent composite e↵ects.

The five responses [↵i, i, ✏i, i, i] corresponding to equations (2), (3), (6), (7) and (8)

of section 3.1 are generated from the following models: logit(⇡ij) = �
(1)
0 + xij1�

(1)
1 + bi1,

µij = �
(2)
0 +xij2�

(2)
1 +bi2 with �1 = 0.5, logit(qij) = �

(3)
0 +xij3�

(3)
1 +bi3, �ij = �

(4)
0 +xij4�

(4)
1 +bi4

with �2 = 0.5 and logit(�ij) = �
(5)
0 + xij5�

(5)
1 + ⌘1bi1 + . . . + ⌘4bi4 where the true values

of the fixed e↵ect coe�cients are: �(1) = (1,�1.5), �(2) = (3.5,�2), �(3) = (1,�1),

�(4) = (3,�3), �(5) = (�1, 2) and, ⌘ = (⌘1, . . . , ⌘4) = (�0.1, 0.2, 0.1,�0.2). Thus setting

I presents a relatively simple scenario wherein there are no composite e↵ects in the true

model. The random e↵ects bi = (bi1, . . . , bi4) are sampled from N4(0,⌃), independently

10



for each i, where

⌃ =

0

BBBBB@

1 0.2 0.4 0.5

0.2 3 0.9 0.7

0.4 0.9 0.8 0.5

0.5 0.7 0.5 4

1

CCCCCA

Since the CEZIJ framework can incorporate convexity constraints on the fixed e↵ect coef-

ficients, we impose the following sign constraints:

�
(1)
0 > 0, �

(1)
1 < 0; �

(3)
1 < 0; �

(4)
0 > 0, �

(4)
1 < 0.

Finally, to complete the specification, we sample (xij1, . . . , xij4) from N4(0, 4I4), indepen-

dently for each i = 1, . . . , n, j = 1, . . . ,m. To ensure that the generated sample contains

players that have not churned for at least the first 7 to 10 days, we let Xi.5 to be an m

dimensional ordered sample from Unif(�1, 1) so that Xi.5 = (xi15  · · ·  xim5) and,

generate the remaining predictors independently from Unif(�1, 1). In this respect, Xi.5

mimics the variable timesince (see section 6.1 and table 3) that gradually increases with

m and appears in the fitted Dropout model in table 2 of section 6.1.

Simulation setting II - In this setting, we consider a larger design and fix n = 2000,m =

30, p = 20 and, take If = {1, 3, 5 . . . , 8, 11, . . . , p}, Ic = {2, 4, 9, 10} so that pf = 16

and pc = 4. The five responses [↵i, i, ✏i, i, i] are generated from the following mod-

els: logit(⇡ij) = �
(1)
0 + xij1�

(1)
1 + bi1, µij = �

(2)
0 + bi2 + xij2(�

(2)
1 + bi3) with �1 = 0.5,

logit(qij) = �
(3)
0 + xij3�

(3)
1 + bi4, �ij = �

(4)
0 + bi5 + xij4(�

(4)
1 + bi6) with �2 = 0.5 and

logit(�ij) = �
(5)
0 + xij5�

(5)
1 + ⌘1bi1 + . . . + ⌘6bi6 where the true values of the fixed e↵ect

coe�cients are identical to setting I and, ⌘ = (⌘1, . . . , ⌘6)
i.i.d⇠ Unif(�0.3, 0.3). The random

e↵ects bi = (bi1, . . . , bi6) are sampled from N6(0,⌃), independently for each i, where

⌃ =

0

BBBBBBBBBBB@

1 0.2 �0.3 0.4 0.5 0.3

0.2 3 �0.2 0.9 0.7 0.1

�0.3 �0.2 1 0.2 0.3 0.2

0.4 0.9 0.2 0.8 0.5 0.4

0.5 0.7 0.3 0.5 4 0.3

0.3 0.1 0.2 0.4 0.3 1

1

CCCCCCCCCCCA
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Table 1: Simulation setting I (n = 500,m = 30, p = 10, K = 5) - average False Nega-

tives(FN), average False Positives (FP) for fixed (composite or not) and random e↵ects

and, % datasets with non-hierarchical selection.

Fixed E↵ects Random E↵ects

Model FN FP FN FP % Non Hier. Selec.

AI 0 2.76 0.16 0.36 0

Activity Time 0 1.44 0 0.04 0

EI 0 4.48 0 1.12 0

Engage. Time 0 1.52 0 0.04 0

Dropout 0 1.52 - - -

and the convexity constraints on the fixed e↵ect coe�cients continue to resemble that

of setting I. Finally, we continue to let Xi.5 be an m dimensional ordered sample from

Unif(�1, 1) and sample the remaining p � 1 predictors from a multivariate Gaussian dis-

tribution with mean 0 and covariance matrix Cov(xijr, xijs) = 0.5|r�s| independently for

each i = 1, . . . , n, j = 1, . . . ,m.

Recall that CEZIJ uses the split-and-conquer approach of Chen and Xie (2014) to split

the full set of n players into K non-overlapping groups and conducts variable selection sep-

arately in each group by solving K parallel maximization problems represented by equation

(9). The selected fixed and random e↵ects are then determined using a majority voting

scheme across all the K groups as described in Section 5 of the main paper. For settings

I and II, we fix (K, !1 !2) at (5, 3, 3) and (10, 6, 6), respectively, so that n/K is 100 in

setting I and 200 in setting II. For each setting, we generate 50 datasets and assess the

model selection performance in terms of the average False Negatives (in-model predictors

falsely identified as being out of model) and average False Positives (out of model predic-

tors falsely identified as being in-model) for the fixed e↵ects (composite or not) and the

random e↵ects. To evaluate the hierarchical selection property of our framework, we also

report the percentage of datasets where our method conducted non-hierarchical selection

and chose predictors with random e↵ects only.

12



Table 2: Simulation setting II (n = 2000,m = 30, p = 20, K = 10) - average False Neg-

atives(FN), average False Positives (FP) for fixed (composite or not) and random e↵ects

and, % datasets with non-hierarchical selection.

Fixed E↵ects Random E↵ects

Model FN FP FN FP % Non Hier. Selec.

AI 0 4.13 0.07 1 0

Activity Time 0 0.47 0 0 0

EI 0 5.80 0 0.8 0

Engage. Time 0 1.07 0 0 0

Dropout 0 1.13 - - -

Tables 1 and 2 report the results of these simulation experiments. We see that across

both simulation settings, CEZIJ selects the correct in-model predictors for the five mod-

els. The relatively higher fixed e↵ects False positives for the AI and EI models possibly

indicate some over-fitting due to the prevalence of large number of zeros in these models.

However, CEZIJ selects the fixed and random e↵ects in a hierarchical fashion such that

no random e↵ect predictor appears in any of the four models without their fixed e↵ect

counterparts. This is not surprising given the way CEZIJ updates the adaptive weights

(c(t)sr , d
(t)
sr ) are after each iteration. Figure 1 presents a comparison of the computing time

for the two simulation settings considered here. In particular, it demonstrates that in both

these settings CEZIJ, through its split-and-conquer approach for variable selection, o↵ers

a potential gain in computational e�ciency against the conventional and memory intensive

approach of running the selection algorithm on the undivided data. The e�ciency gain

reported in these figures, however, rely on the specific system configuration which in our

case was Windows 7, 64 bit, 32GB RAM on an Intel i7-5820K CPU with 12 cores.
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Figure 1: Computing time comparison for a fixed regularization parameter �. Left: Sim-

ulation setting I with n = 500,m = 30, p = 10, K = 5. Right: Simulation setting II with

n = 2000,m = 30, p = 20, K = 10.

D Data Description

In this section we describe the data that holds player level gaming information for a free-

to-play Robot versus Robot Fighting game based on the movie Real Steel for Windows,

iOS and Android devices. The primary game-play revolves around fighting and upgrading

the robots while the secondary goals are to own as many robots as possible and collect

rewards. A key feature of the game is a Lucky Draw which is a card game where players

bet on their earnings to earn exciting in-app consumables, virtual currencies for robot

upgrades or even robots! There are 38,860 players with first activity date 24-Oct-2014 and

the analyses presented in section 6 uses the cohort of 33,860 players for estimation and the

remaining 5, 000 players for prediction. In table 3, we list the raw covariates along with

their description that were available in the data and table 4 presents a descriptive summary

of the raw covariates.

Promotion strategies - As discussed in Section 2, we also have side information about

the di↵erent retention and promotion strategies that were used across the 60 days. These

14



10-2 100 102 104 106 108

Activity Time, Engagement Amount

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
il

it
y

Activity Time

Engage. Amnt.

Figure 2: Empirical CDF of Activity Time and Engagement Amount.

strategies were carefully designed by the game marketers to induce player activity, boost

engagement and in-app purchases at di↵erent points in time. Table 5 and figure 3 provide a

summary of the 6 di↵erent promotion strategies that were used during the 60 days that the

players were observed. In what follows, we provide a short description of the 6 promotion

strategies.

• Promotion strategy I - awards extra energy points or rewards during fights when the

player wins a combat.

• Promotion strategy II - constitutes the sale of ‘boss’ robots that possess special com-

bat moves not available in other robots and can only be acquired by defeating the

boss robot itself.

• Promotion strategy III - provides discounts on the purchase of powerful robots that

are usually available in higher levels of the game.

• Promotion strategy IV - o↵ered discounts on in-app purchases during the Black-Friday

15



Table 3: List of covariates and the five responses. The gaming characteristics are marked with an (⇤).

Sl No Covariates Description

1 avg session length⇤ Average Session Length in Minutes

2 p fights⇤ Total No. Of Principal Fights Played

3 a1 fights⇤ Auxiliary 1 Fights Played

4 a2 fight⇤ Auxiliary 2 Fights Played

5 level⇤ Last Principal Level Fight Played

6 robot played⇤ Total No. Of Robots Played with

7 gacha sink⇤ Amount of In-Game Currency Spent for Gacha

8 gacha premium sink⇤ Amount of Premium In-Game Currency Spent on Gacha

9 pfight source⇤ Amount of In-Game Currency Earned by Playing Principal Fights

10 a1fight source⇤ Amount of In-Game Currency Earned by Playing Auxiliary 1 Fights

11 a2fight source⇤ Amount of In-Game Currency Earned by Playing Auxiliary 2 Fights

12 gacha source⇤ Amount of In-Game Currency Earned by Playing Lucky Draw

13 gacha premium source⇤ Amount of Premium In-Game Currency Earned by Playing the Lucky Draw

14 robot purchase count⇤ No. Of Robot Purchased per Day

15 upgrade count⇤ No. Of Robot Upgrades Done per Day

16 lucky draw ig⇤ No. Of Lucky Draw played per Day Inside Game

17 timesince⇤ Time Since Last Login in Days

18 lucky draw og⇤ No. Of Lucky Draw played per Day Outside Game

19 fancy sink⇤ Amount of In-Game Currency Spent on Buying Accessories

20 upgrade sink⇤ Amount of In-Game Currency Spent for Robot Upgrade

21 robot buy sink⇤ Amount of In-Game Currency Spent for Robot Purchase

22 gain gachaprem⇤ % gain over gacha premium sink

23 gain gachagrind⇤ % gain over gacha sink

24 weekend Weekend Indicator (0 - No, 1 - Yes)

Sl No Response Description

1 AI Whether active in a day (0 - No, 1 - Yes)

2 activity time Total Time Played in a day in Minutes

3 EI Whether positive engagement from the player in a day (0 - No, 1 - Yes)

4 engagement amount Total positive engagement amount from the player in a day in dollars

5 dropout Whether dropped out on that day (0 - No, 1 - Yes)
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and Thanksgiving holiday week.

• Promotion strategy V - designed to promote di↵erent robots and their combat skills

through emails and notifications

• Promotion strategy VI - provides discounts on the purchase of all robots.

Table 4: Summary statistics of the covariates reporting % of 0, mean, the 25th, 50th, 75th, 95th

percentiles and the standard deviation of all active players (↵ij = 1) across all m = 60 days. For

timesince, however, the statistics are reported for all players and not just active.

Covariates % of 0 Mean 25th 50th 75th 95th Std.

avg session length 0.01 32.55 7.32 2.66 13.63 30.97 5925.89

p fights 43.69 2.83 1.00 0.00 4.00 12.00 5.07

a1 fights 57.11 1.59 0.00 0.00 1.00 8.00 3.57

a2 fight 84.83 0.64 0.00 0.00 0.00 4.00 2.35

level 43.69 3.70 1.00 0.00 5.00 15.00 5.06

robot played 30.68 1.15 1.00 0.00 2.00 3.00 1.16

gacha sink 73.06 6.19 0.00 0.00 1.00 31.50 27.65

gacha premium sink 96.80 0.30 0.00 0.00 0.00 0.00 3.76

pfight source 43.69 27.18 0.98 0.00 10.24 116.82 108.44

a1fight source 57.12 3.07 0.00 0.00 1.56 15.82 10.98

a2fight source 84.83 1.47 0.00 0.00 0.00 5.12 12.27

gacha source 71.81 1.67 0.00 0.00 0.80 8.50 6.56

gacha premium source 88.93 0.85 0.00 0.00 0.00 5.00 3.81

robot purchase count 91.62 0.10 0.00 0.00 0.00 1.00 0.38

upgrade count 55.26 3.30 0.00 0.00 3.00 17.00 6.74

lucky draw wg 55.62 1.18 0.00 0.00 1.00 4.00 3.56

timesince 7.91 22.93 21.00 7.00 37.00 54.00 17.57

lucky draw og 77.97 1.92 0.00 0.00 0.00 10.00 8.56

fancy sink 87.57 0.69 0.00 0.00 0.00 1.60 10.51

upgrade sink 55.50 18.23 0.00 0.00 10.29 85.20 74.21

robot buy sink 91.64 8.68 0.00 0.00 0.00 35.00 56.10

gain gachaprem 98.36 0.04 0.00 0.00 0.00 0.00 0.45

gain gachagrind 77.98 0.13 0.00 0.00 0.00 0.47 1.30

weekend 63.33 0.37 0.00 0.00 1.00 1.00 0.48
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Table 5: Summary of the promotion strategies

Strategy Description No. of days %

- No strategy 20 33.33

I More energy or rewards 8 13.33

II Sale of boss robots 4 6.67

III Discounts on powerful robots 8 13.33

IV Holiday sale 7 11.67

V Promotion via emailing and messaging 5 8.33

VI Sale on all robots 8 13.33

In table 1 of the main paper, we provide the list of convex constraints imposed on the fixed

e↵ects coe�cients while solving the maximization problem in equation (9).

Figure 3: Distribution of the six promotion strategies over 60 days
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E Variable selection by split and conquer : Voting

results

Table 6 provides the voting results of the variable selection by split and conquer approach

of section 5.

Table 6: The number of times each candidate predictor is selected as fixed e↵ect and random e↵ect

across the K = 20 splits for the five sub-models. For each sub-model, the predictors with atleast 12

occurrences across 20 splits were selected.

AI Act. Time EI Engage. Amnt Dropout

Predictors Fixed E↵. Random E↵. Fixed E↵. Random E↵. Fixed E↵. Random E↵. Fixed E↵. Random E↵. Fixed E↵.

Intercept 20 20 20 20 14 14 20 20 17

avg session length 5 5 18 18 14 14 5 3 3

p fights 20 20 18 18 14 14 11 11 3

a1 fights 20 20 18 18 14 14 9 9 3

a2 fights 20 20 18 18 14 14 11 11 3

level 15 14 18 18 14 14 3 0 5

robot played 5 5 11 11 0 0 8 8 3

gacha sink 3 0 18 18 14 14 11 0 14

gacha premium sink 0 0 0 0 0 0 5 5 2

pfight source 3 0 18 18 0 0 9 8 3

a1fight source 12 11 18 18 14 14 8 8 5

a2fight source 17 17 18 18 14 14 12 12 11

gacha source 20 20 18 18 0 0 11 11 3

gacha premium source 11 11 0 0 14 14 5 5 2

robot purchase count 17 17 0 0 0 0 3 0 0

upgrade count 20 20 12 12 14 14 5 5 2

lucky draw wg 2 0 2 2 14 14 9 9 3

timesince 20 20 20 20 14 14 2 0 20

lucky draw og 18 18 0 0 14 14 6 6 3

fancy sink 2 2 0 0 14 14 5 5 0

upgrade sink 17 15 0 0 14 14 6 6 3

robot buy sink 5 5 0 0 14 6 3 2 2

gain gachaprem 3 3 0 0 0 0 2 2 0

gain gachagrind 18 18 18 18 0 0 11 5 3

weekend 20 12 18 18 0 0 2 0 0

promotion I 0 0 0 12 17

promotion II 20 18 14 3 17

promotion III 14 0 14 14 17

promotion IV 0 0 14 14 15

promotion V 0 0 14 0 14

promotion VI 20 18 14 14 17

# selected 18 14 17 15 22 16 6 2 9
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MATLAB implementation of the Constrained Zero
Inflated Joint Modeling (CEZIJ) framework of

Banerjee et al. (2019).

March 18, 2019

1 Introduction

CEZIJ (Banerjee et al., 2019) is a novel framework for parameter estimation in joint mod-

els with multiple longitudinal outcomes along with a time-to-event analysis. Longitudinal

data from modern datasets usually exhibit a large set of potential predictors and choosing

the relevant set of predictors is highly desirable for various purposes including improved

predictability. To achieve this goal, CEZIJ conducts simultaneous selection of fixed and

random e↵ects in high-dimensional penalized generalized linear mixed models and main-

tains the hierarchical congruity of the fixed and random e↵ects, thus producing models

with interpretable composite e↵ects. It not only accommodates extreme zero-inflation in

the responses in a joint model setting but also incorporates domain-specific, convex struc-

tural constraints on the model parameters. For analyzing such large-scale datasets, variable

selection and estimation is conducted via a distributed computing based split-and-conquer

approach (Chen and Xie, 2014) that massively increases scalability.

2 Installation requirements

The GitHub repository holds the MATLAB toolbox cezij.mltbx that provides an im-

plementation of the CEZIJ procedure developed in Banerjee et al. (2019). To install this

1



toolbox, simply download cezij.mltbx in your computer and double click to install it. For

a successful installation, please make sure that the following system requirements are met.

• Access to 32GB RAM and at least 8 CPU cores for parallel computing

• MATLAB 2016b or higher with the following toolboxes (and their dependencies):

– Statistics toolbox

– Optimization toolbox

– Parallel Computing toolbox

– Data Acquisition toolbox

• CVX for MATLAB (version 2.1 or higher)

3 A numerical example

In this section, we will use a numerical example to illustrate the use of the cezij toolbox.

Our goal is to assess the model selection performance of CEZIJ under the longitudinal and

Dropout models discussed in Section 3.1 of Banerjee et al. (2019). To do that, we use the

simulation example of setting I discussed in section C.2 of the supplementary materials

and indicate which files in the toolbox should be edited to test a di↵erent dataset. Figure

1 presents three MATLAB scripts that should be edited to prepare the cezij toolbox for

analyses. In what follows, we discuss these scripts.

3.1 Generating simulated data - simulate data.m

To run the cezij variable selection algorithm on a dataset of your own choice, please edit

the m file simulate data.m and ensure that your data is in the same format as the output

of this m file. In the default setting, simulate data.m generates a simulated dataset that

we describe below.

Consider a sample of n = 500 players and for each player i, let Xi = (Xi.1, . . . ,Xi.p)

denote the m ⇥ p matrix of candidate predictors where Xi.k = (xi1k, . . . , ximk)T , m = 30
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Figure 1: There are three MATLAB scripts, numbered 1-3, that must be edited to prepare

the cezij toolbox for analyses. To reproduce table 4 in the supplementary file or table 1,

script 3 must be executed without making any changes to the default parameters in scripts

1-3.

denotes the number of time points for which we observe each player and p = 10 is number

of candidate predictors. We take If = {1, . . . , 8} as the indices of the fixed e↵ects and,

Ic = {9, 10} as the indices of the composite e↵ects so that pf = |If | = 8, pc = |Ic| = 2.

Thus, the first 8 columns of Xi represent fixed e↵ects while the last 2 represent composite

e↵ects. The five responses [↵i, i, ✏i, i, i] corresponding to AI, positive Activity, EI,

Positive Engagement and Dropout are generated from the following models: logit(⇡ij) =

�(1)
0 + xij1�

(1)
1 + bi1, µij = �(2)

0 + xij2�
(2)
1 + bi2 with �1 = 0.5, logit(qij) = �(3)

0 + xij3�
(3)
1 + bi3,

�ij = �(4)
0 + xij4�

(4)
1 + bi4 with �2 = 0.5 and logit(�ij) = �(5)

0 + xij5�
(5)
1 + ⌘1bi1 + . . .+ ⌘4bi4

where the true values of the fixed e↵ect coe�cients are: �(1) = (1,�1.5), �(2) = (3.5,�2),

�(3) = (1,�1), �(4) = (3,�3), �(5) = (�1, 2) and, ⌘ = (⌘1, . . . , ⌘4) = (�0.1, 0.2, 0.1,�0.2).

Thus this setting presents a scenario wherein there are no composite e↵ects in the true

model. The random e↵ects bi = (bi1, . . . , bi4) are sampled from N4(0,⌃), independently

for each i, where

⌃ =

0

BBBBB@

1 0.2 0.4 0.5

0.2 3 0.9 0.7

0.4 0.9 0.8 0.5

0.5 0.7 0.5 4

1

CCCCCA

Finally, to complete the specification, we sample (xij1, . . . , xij4) from N4(0, 4I4), indepen-

dently for each i = 1, . . . , n, j = 1, . . . ,m. To ensure that the generated sample contains

3



players that have not churned for at least the first 7 to 10 days, we let Xi.5 to be an m

dimensional ordered sample from Unif(�1, 1) so that Xi.5 = (xi15  · · ·  xim5) and, gen-

erate the remaining predictors independently from Unif(�1, 1). Although the MATLAB

file simulate data.m stores the above simulation setting, it can easily be modified to test

di↵erent settings.

3.2 Imposing convex constraints - get constraints sim.m

The CEZIJ framework can incorporate convexity constraints on the fixed e↵ect coe�cients

and this MATLAB file stores the following default constrains:

�(1)
0 > 0, �(1)

1 < 0; �(3)
1 < 0; �(4)

0 > 0, �(4)
1 < 0.

Please modify this file to enforce constraints specific to your application or leave this

file unchanged to reproduce table 4 of the supplementary materials or table 1 in cezij

help.pdf.

3.3 Running the joint model - cezij simulation.m

Recall that CEZIJ uses the split-and-conquer approach of Chen and Xie (2014) to split the

full set of n players into K non-overlapping groups and conducts variable selection sepa-

rately in each group by solving K parallel maximization problems represented by equation

(9) of Banerjee et al. (2019). The selected fixed and random e↵ects are then determined

using a majority voting scheme across all the K groups as described in Section 5 of the

above paper.

In the MATLAB file cezij simulation.m, lines 15-27 can be used to specify a number

of user defined parameters. For this example, we fix K = 5 so that n/K is 100 while q = 3

indicates the number of random e↵ects including a random intercept. We generate nsets =

25 datasets and run cezij simulation.m to assess the model selection performance in

terms of the average False Negatives (in-model predictors falsely identified as being out

of model) and average False Positives (out of model predictors falsely identified as being

in-model) for the fixed e↵ects (composite or not) and the random e↵ects. To evaluate
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Table 1: (n = 500,m = 30, p = 10, K = 5) - average False Negatives(FN), average False

Positives (FP) for fixed (composite or not) and random e↵ects and, % datasets with non-

hierarchical selection.

Fixed E↵ects Random E↵ects

Model FN FP FN FP % Non Hier. Selec.

AI 0 2.76 0.16 0.36 0

Activity Time 0 1.44 0 0.04 0

EI 0 4.48 0 1.12 0

Engage. Time 0 1.52 0 0.04 0

Dropout 0 1.52 - - -

the hierarchical selection property of our framework, the code also reports the percentage

of datasets where cezij conducted non-hierarchical selection and chose predictors with

random e↵ects only.

Running cezij simulation.m with the default parameters generates Table 1 that re-

ports the results of the simulation exercise under setting I that is discussed in section C.2

of the supplementary materials. We see that CEZIJ selects the correct in-model predictors

for the five models. The relatively higher fixed e↵ects False positives for the AI and EI

models possibly indicate some over-fitting due to the prevalence of large number of zeros

in these models. However, CEZIJ selects the fixed and random e↵ects in a hierarchical

fashion such that no random e↵ect predictor appears in any of the four models without

their fixed e↵ect counterparts. This is not surprising given the way CEZIJ updates the

adaptive weights (c(t)sr , d
(t)
sr ) are after each iteration.

4 Simulation flow

In figure 2, we present a simulation flow diagram that depicts the main scripts that are

called when cezij simulation.m is executed. The scripts highlighted in blue are editable

and can be used to run the analyses on a di↵erent data set as described in section 3. The
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Figure 2: Simulation flow diagram that depicts the main scripts that are called when

cezij simulation.m is executed. The scripts highlighted in blue are editable while the

color coding of the scripts indicate their relative contribution to total computation time.

color coding of the scripts indicate their relative contribution to total computation time.

For instance, the iterative maximization step that is executed in parallel across the K

splits is the most computationally intensive step of the cezij algorithm and, as discussed

in section C.2 of the supplementary material, relies on the specific system configuration

and the number of computation cores available. In the default setting that is used to

reproduce table 1, this step takes approximately 5 minutes to execute (see figure 7 of the

supplementary materials). Depending on the number of splits K, availability of additional
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computational cores may further reduce the overall computation time.
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