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Massively Multiplayer Online Role Playing Games (MMORPGs)
offer a unique blend of a personalized gaming experience and a plat-
form for forging social connections. Managers of these digital prod-
ucts usually rely on predictions of key player responses, such as play-
ing time and purchase propensity, to design timely interventions for
promoting, engaging and monetizing their playing base. However,
the longitudinal data associated with these MMORPGs not only ex-
hibit a large set of potential predictors to choose from but often
present several other distinctive characteristics that pose significant
challenges in developing flexible statistical algorithms that can gen-
erate efficient predictions of future player activities. For instance, the
existence of virtual communities or guilds in these games complicate
prediction since players who are part of the same guild have cor-
related behaviors and the guilds themselves evolve over time and,
thus, have a dynamic effect on the future playing behavior of its
members. In this paper, we develop a Crossed Random Effects Joint
Modeling (CREJM) framework for analyzing correlated player re-
sponses in MMORPGs. Contrary to existing methods that assume
player independence, CREJM is flexible enough to incorporate both
player dependence as well as time varying guild effects on the future
playing behavior of the guild members. On a large-scale data from a
popular MMORPG, CREJM conducts simultaneous selection of fixed
and random effects in high-dimensional penalized multivariate mixed
models. We study the asymptotic properties of the variable selection
procedure in CREJM and establish its selection consistency. Besides
providing superior predictions of daily playing time and purchase
propensity over competing methods, CREJM also predicts player cor-
relations within each guild which are valuable for optimizing future
promotional and reward policies for these virtual communities.
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1. Introduction. The online video game industry is revolutionizing the
space of modern entertainment and social networking. As of August 2020,
an estimated 3.1 billion people were playing video games and represented
around 40% of the world population [12]. The COVID-19 pandemic in par-
ticular has contributed to an unprecedented surge in this sector, both in
terms of increased traffic from new subscribers as well as in substantial in-
creases in the per-capita time spent in these games. For instance, Verizon
reported an 82% increase in video game traffic over pre-COVID levels which
was bigger than the increases in traffic related to virtual private network
connections and associated collaboration tools [47]. In the U.S. alone, 35%
of the gamers have reported a higher average time spent on gaming while
until July 2020 nearly 3 out of every 4 people in the U.S. were playing video
games, an increase of 32 million new subscribers to the game since 2018 [32].
This dual growth, in the number of new subscribers and on in-game time
spent, has led to a remarkable increase in consumer spending in video games
which reached 18.6 billion U.S Dollars in the fourth quarter (Q4) of 2020,
an increase of 26% compared to Q4 2019 [33].

A particular genre of video games that have seen prodigious levels of in-
terest from users in recent years are the Massively Multiplayer Online Role
Playing Games (MMORPGs). MMORPGs have been one of the biggest
drivers of growth in the video games sector and are projected to grow at a
historic rate of 9.22% between 2019 - 2023 versus 6.84% between 2015 -2019
[10]. These multiplayer games usually attract millions of active subscribers
and along with the high graphics processing capacity of modern comput-
ers and game consoles, create an alternate fantasy world that provides a
vibrant platform for forging social connections with other players ([44], p.
886). While the technological features of modern video games are quite ap-
pealing, players prefer MMORPGs over single player games for the social
experience that they offer [25]. For example, players with different avatars
in a MMORPG can make friends, form teams, cooperate and combat with
other players in quests and battles. Social connections in these games are
achieved through guilds which are groups of players that have a shared in-
terest. Guild, also known as clan, is a virtual community with hierarchical
ranks that allow players to interact with each other. Facilitated by the in-
game chatting and video systems, a player, in her various avatars, can form
teams to play the game and to share game items with other guild members.
Consequently, players belonging to the same guild are expected to have cor-
related playing behavior. Moreover, the guilds themselves evolve over time
as guild leaders recruit new members, existing members switch guilds, and
the in-game activity and spending of guild members dynamically change
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over time (see figure 2b in Section 2).
These phenomena create a highly dynamic environment which poses sig-

nificant challenges in developing personalized promotional and monetization
strategies for MMORPGs. For instance, game analysts rely on predicting key
player responses, such as daily duration of play (playing time) and purchases,
to develop strategies for monetizing social networks [36] and generating in-
game advertising revenue [45]. For analyzing such multivariate responses,
the modeling framework must first address the complex inter-dependencies
between (1) a player’s decision to play, (2) her time spent playing the game
and (3) her propensity to make an in-game purchase. Additionally, it must
incorporate the two key structural features of MMORPGs wherein (1) play-
ers who are members of a guild have correlated playing behavior and (2)
guilds have a dynamic effect on their member’s playing behavior, such as
their duration of play or purchase decisions. However, for modeling such mul-
tivariate player responses in MMORPGs, the statistical tools employed in
contemporary research either assume that the player responses are not cor-
related or players in MMORPGs play as independent entities [4, 50, 36]. The
first approach fails to uncover the positive, negative, or zero co-dependencies
among the various responses of a player while the second approach ignores
the dynamic influence of the guild and its members on a player’s game be-
havior.

In this article we develop a Crossed Random Effect Joint Modeling (CREJM)
framework for jointly modeling a player’s daily duration of play and her
purchase propensity in MMORPGs. Existing joint modeling frameworks,
such as CEZIJ [1] and APLES [23], can tackle such multivariate player re-
sponses in the setting of single player games and, consequently, assume that
players play the game as independent entities. CREJM, in contrast, relies
on a system of Cross Classified Random Effect Models [39] that is flexible
enough to allow players in MMORPGs to be nested in guilds, thus account-
ing for the fact that players belonging to the same guild have correlated
responses. Moreover, CREJM incorporates time varying idiosyncratic guild
random effects that capture the dynamic influence of the guild on its mem-
ber’s playing behavior. Our proposed framework not only addresses the co-
dependencies between daily duration of play and purchase propensity, but
also provides a systematic understanding of how guilds influence playing be-
havior in MMORPGs. Besides being able to predict the future duration and
purchase propensity of the individual players, the CREJM framework can
be used to predict the time varying player correlations within each guild,
both with respect to their daily duration of play and purchase activities.
The ability to forecast such trajectories of player correlations is valuable
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for managers, as this enables them to better assess the effectiveness of their
promotional activities in engaging players and for tuning their monetization
policies that are based on in-game advertising. While this article demon-
strates the applicability of the CREJM framework for the disciplined study
of MMORPGs, it can be used in a wide range of other applications that
needs analyzing multiple longitudinal outcomes where the subjects, such as
patients or firms, are nested within a dynamically evolving group structure,
such as hospitals or firm size, and within those groups the subjects are not
necessarily independent of each other. We summarize the key features of the
CREJM framework below:

Joint modeling of daily playing time and purchase decisions of
players in MMORPGs – We propose a unified approach, CREJM, for
jointly modeling a player’s daily duration of play as well as her purchase
decisions in MMORPGs. In the context of single player mobile games, joint
modeling of such player responses have been shown to be of significant impor-
tance for developing efficient marketing policies and for improved prediction
of future playing behavior [1]. However, it is well known in the marketing
literature [50, 36, 49] that a player’s activities in MMORPGs are deeply
influenced by her friends. Thus, in addition to a player’s individual playing
and purchase history that are natural predictors of her future behavior, the
CREJM framework also relies on the past activities of the focal player’s
friends for modeling her daily duration of play and purchase propensity.
While MMORPGs focus on the development of a player’s in-game virtual
character through persistent exploration of the gaming environment, one of
their key distinguishing features from single player games is that they not
only develop a player’s gaming skill but also aim to provide an enhanced ex-
perience by involving collaboration and team building in game-play [11, 4].
As such, a player’s motivation for playing MMORPGs and making purchases
of premium features can be broadly attributed to two factors: (a) her in-
dividual achievements in the game, and (b) social interactions with peers.
Here, controlling for these varied effects we jointly model player responses
pertaining to daily duration of play and her purchase propensity using the
MMORPG data described in Section 2.

A flexible framework that incorporates the dynamic influence of
online communities such as guilds on the playing behavior – In
MMORPGs the social influence of fellow gamers on a player can be from (a)
team mates in the game-play, such as combat team mates, and (b) affiliations
to online communities such as guilds. While team mates greatly vary across
games, each player can belong to only one guild at any time point. A guild



CREJM: CROSSED RANDOM EFFECTS JOINT MODELING FRAMEWORK 5

would typically have its unique objectives, discussion forums and character-
istics [29]. We incorporate the effects of fellow team mates (whose number
can be very large in a player’s lifetime) using global parameters in a Gen-
eralized Linear Mixed Models (GLMM) based joint estimation framework.
To incorporate the effects of guilds we use guild specific random intercepts.
Thus, to model a player’s characteristics we use a cross-classified set-up with
the crossing being a player’s individual characteristics and her guild’s influ-
ences (see equation (3.1) in Section 3.1). Additionally, we model the dynamic
influences of the guilds by extending (3.1) through time-varying random in-
tercepts (see equation (3.2) in Section 3.2). Thus, our proposed CREJM
relies on a system of cross classified random effect models that incorporate
the key structural features of MMORPGs wherein guilds have a dynamic
effect on their member’s playing behavior and players who are members of a
guild have correlated playing behavior. Estimation in such large scale cross-
classified designs involve several fundamental statistical challenges and is
a topic of vibrant current research [17, 16, 15, 35, 18]. To the best of our
knowledge, the use of cross classified models as analytical tools for studying
MMORPGs is new and we develop a disciplined algorithm for estimating
the parameters in CREJM.

Simultaneous selection of fixed and random effects in high-dimensional
penalized multivariate mixed models – The MMORPG data discussed
in Section 2 involves longitudinal data on several daily player and guild
characteristics. Existing literature [50, 36, 49, 20] judiciously uses a subset
of these available attributes in a regression model. It is desirable to use all
the available features and to choose the relevant set of gaming characteris-
tics that provides best predictive performance. Our proposed GLMM based
CREJM framework conducts simultaneous selection of fixed and random
effects. It imposes a hierarchical structure on the selection mechanism and
includes covariates either as fixed effects or composite effects where the latter
are those covariates that have both fixed and random effects [21]. Following
[22, 21, 1], we use data-driven weighted `1 penalties on the fixed effects as
well as on the diagonal entries of the covariance matrix of the player specific
random effects (see Section 4). However, compared to the aforementioned
works, CREJM involves an additional penalty for estimating the covariance
matrix of the time varying guild specific random effects (see equation (4.1)).
We study the asymptotic properties of the variable selection procedure in
CREJM and establish its selection consistency in Section 4.1.

Prediction of the daily duration of play and purchase propensities
of players in MMORPGs – We conduct prediction of daily duration of
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play and purchase propensities of players conditional on the observed lon-
gitudinal information (see Section 6). Based on these dynamic predictions
of individual player duration of play and purchase propensity, game man-
agers may develop personalized promotional and improved in-game adver-
tising policies. In Section 6.3 we use the CREJM framework for predicting
the temporal trajectories of player correlations within each guild and with
respect to their daily duration of play and purchase activity. Guilds with
similar predicted correlation profiles over time provide valuable insights into
the future playing behavior of their members and can be used to design and
optimize promotional or reward policies specifically targeting those guild
members (see figure 8).

The rest of the paper is organized as follows. In Section 2 we describe
our data from a popular MMORPG. In Section 3 we discuss our CREJM
framework in details. Section 4 describes the variable selection procedure in
CREJM and the associated asymptotic properties while Section 5 describes
the estimation procedure. In Section 6, we use the CREJM framework to
analyze the MMORPG dataset introduced in Section 2. The paper con-
cludes with a discussion in Section 7. Proofs and other technical details are
relegated to the supplementary materials.

2. Motivating Data. In this paper we consider the daily player level
gaming information from a popular MMORPG wherein the players use one
of the following four avatars; warrior, archer, sorceress and cleric, to play.
The game is typically played on personal computers and is a “freemium”
game [27] as any player can download and play the game for free with-
out paying any subscription fee. Figure 1 provides the game play wherein
our MMORPG involves two main playing modes: player-versus-environment
(PVE) mode and player-versus-player (PVP) mode. In the PVE mode, play-
ers accumulate experience points by completing missions and fighting mon-
sters and villains in instanced dungeons. In the PVP mode, players practice
and improve game skills in one-on-one or group combats. The main goal is
character level progression and a player can elevate her game level by ac-
cumulating experience points, mainly through accomplishing missions and
killing monsters in PVE combats. Social connections with other players are
forged through friendship networks and guilds, and combat teams with guild
members, friends and random players are formed to complete adventure mis-
sions. Moreover, within a guild members are ranked hierarchically, from a
leader at the top to associate leaders, senior members, junior members and
finally new members at the bottom. Purchases constitute one of the primary
revenue streams for the game managers and players purchase in-game items,
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Fig 1: Game play flowchart.

such as weapons and costumes, to perform better in the PVE mode and thus
complete their tasks more efficiently.

There are 5,188 players in our database that stores daily player level
activity and their real money purchases for 30 consecutive days. We use a
part of the data for estimation and the other part as the hold out set for
prediction (see details in Section 6). For each player the database holds a
host of time dependent covariates that are generated through the game-
play and include the focal player’s in-game characteristics, characteristics
that capture the focal player’s interaction with her friends and the in-game
activities of those friends. Additionally, on any one of the 30 days every
player in our data has been part of a guild and so our data also hold time
varying guild characteristics and covariates that capture the focal player’s
interaction with her guild. This information is available for K = 50 guilds
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that the players have been part of in those 30 days (See table 1 and summary
table 2 in Appendix C of the supplementary material for details).
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Fig 2: 2a - Left: Percentage of players who logged into the game by each
guild over 30 days. The thick red curve represents the overall login percent-
ages in the data over the 30 days while each pink curve is a guild specific
representation of the login percentages across time. The black vertical lines
indicate weekends while the blue dotted lines represent, respectively, the
Chinese New Year (day 6) and Valentine’s Day (day 17). Center: Average
duration of play in minutes for each guild and conditional on login. The
thick red curve represents the overall average duration in the data across
the 30 days. Right: Percentage of players with purchases > 0 by each guild
and conditional on login. The thick red curve represents the overall purchase
percentages in the data across the 30 days.
2b - Heatmaps of the temporal evolution of three characteristics in each
guild. Left: the number of guild members who played in a team. Center: the
average game sessions played in the guild. Right: the number of purchases
made in the guild.
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In figure 2a left, we present, for each guild, the percentage of players who
logged into the game over the 30 days. The thick red curve represents the
overall login percentages across time while each pink curve is a guild spe-
cific representation of the login percentages across the 30 days. The black
vertical lines indicate weekends while the blue dotted lines represent, re-
spectively, the Chinese New Year (day 6) and Valentine’s Day (day 17). The
remaining two charts in figure 2a are guild specific representation of the aver-
age duration of play in minutes (center plot) and the percentage of players
with positive purchase (right plot), both conditional on login. The thick
red curve in these two plots are respectively, the average duration and the
overall percentage of players with positive purchase over the 30 days. These
charts indicate that playing behavior, in terms of login, duration of play and
purchase, is substantially different across guilds. For instance, the observed
login percentages across the 50 guilds range from 40% to 80% on day 1 while
conditional on login the range of duration across guilds is atleast 80 minutes
on any day. The purchase activities also vary considerably across the guilds
with a notable exception on day 17 (figure 2a right) when all guilds seem
to exhibit a spike in their purchase activities. This is related to an ongoing
promotion at that time that coincided with Valentine’s Day. In figure 2b we
further demonstrate that guilds are dynamic groups that evolve over time.
We consider the following three characteristics that represent player engage-
ment within a guild: the number of guild members who played in a team,
the average game sessions played in the guild and the number of purchases
made in the guild. For each of these three guild characteristics, figure 2b
presents a heatmap of their temporal evolution in each guild. It is interest-
ing to note that with respect to the first two characteristics (figure 2b left
and center), the temporal profiles of the guilds are relatively more dynamic
than their temporal profiles for the number of purchases made (2b right).
This is expected since purchases are rare in our data and on an average less
than 5% of the players who login make a purchase.

Our CREJM framework captures the heterogeneity in playing behavior
across guilds by incorporating guild specific random effects. These guild spe-
cific random effects are time varying to account for the dynamic nature of
the guilds as seen in figure 2b. Together, they incorporate two key struc-
tural features of MMORPGs into our joint modeling framework wherein (1)
members of a guild have correlated playing behavior and (2) guilds have a
dynamic effect on their member’s playing behavior. In the following section
we formally introduce the CREJM framework and discuss its key features.
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3. Cross Classified Random Effects Joint Modeling framework.
In this section we first introduce a generic cross classified random effect
model and then present our proposed joint modeling framework CREJM.

3.1. Cross Classified Random Effect Models. Suppose we are interested
in predicting a single longitudinal outcome yijk which may denote the log
duration of play for player i on day j in guild k. Here i = 1, . . . , n, j =
1, . . . ,m and k = 1, . . . ,K. A cross classified random effects model [39, 40]
for K guilds may be specified as follows

(3.1) yijk = xijβ + bi + ck + gjkγ + εijk,

where xij , gjk are some player and guild specific predictors at time j.
Here (β, γ) represent the vector of unknown fixed effect coefficients, bi ∼
N(0, σ21), ck ∼ N(0, σ22) are, respectively, the player and guild specific ran-
dom intercepts that are independent of each other. We will assume that
εijk ∼ N(0, σ20) are independent of each other and the random intercepts.
Note that under model (3.1) the correlation between the log duration of play
(Yijk, Yi′jk) of two players (i, i′) belonging to the same guild k at time j is non
zero. Furthermore, in model (3.1) the guild random effects (ck : 1 ≤ k ≤ K)
do not vary over time which indicates that the guilds are static and exert
the same effect on a player’s duration of play Yijk over time. However, as
discussed in Section 2, guilds are dynamic entities and their effect on the
playing behavior, duration of play in this example, changes over time. To ad-
dress this possibility, equation (3.1) may be modified to include time varying
guild random effects as follows:

(3.2) yijk = xijβ + bi + cjk + gjkγ + εijk

where cjk now depends on time and one may assume ck = (c1k, . . . , cmk) ∼
Nm(0,Λ) to emphasize the dependence between cjk, cj′k through the covari-
ance matrix Λ which can be unstructured, banded or first-order autoregres-
sive (see for example [7, 6]). Figure 3 presents a schematic representation of
model (3.2) for two players (1, 2) who are part of guild k across the three time
points {j−1, j, j+1}. These players share the same guild specific predictors
{gj−1,k, gj,k, gj+1,k} that are represented in blue boxes. The corresponding
guild random intercepts {cj−1,k, cj,k, cj+1,k} are correlated which is shown
via orange dotted lines in figure 3. The black dotted arrows indicate that
these guild random effects are common for both the players and play the
dual role of introducing dependence between the log duration of play for
players 1 and 2 in guild k as well as exerting a dynamic effect on their log
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Fig 3: Schematic representation of model (3.2) for two players (1, 2) who are
part of guild k across the three time points {j− 1, j, j+ 1}. The orange dot-
ted lines indicate that the guild random effects {cj−1,k, cj,k, cj+1,k} are cor-
related. The blue boxes are the guild specific predictors {gj−1,k, gj,k, gj+1,k}
that the players share. The black dotted arrows indicate that these guild
random effects are common for both the players.

duration of play. In Section 3.2 below we present our proposed joint model-
ing framework CREJM which extends model (3.2) to the case of a vector of
longitudinal responses that are modeled jointly.

3.2. CREJM framework. We consider data from n players where every
player i = 1, . . . , n is observed over m time points. At time j, let dijk = 1
if player i belongs to guild k ∈ {1, . . . ,K} and 0 otherwise, and denote
Yij as the duration of play for player i on day j with Yi = (Yi1, . . . , Yim).
Suppose αij is the indicator of the event that player i logs into the game
on day j (Yij > 0) and ξij is the indicator of her purchase activity with
πij = P(αij = 1), qij = P(ξij = 1|αij = 1), αi = (αi1, . . . , αim) and
ξi = (ξi1, . . . , ξim). Thus, πij here represents a players daily login proba-
bility whereas qij corresponds to her purchase propensity conditional on the
event that the player has logged into the game on day j. We jointly model
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the three components [αi,Yi, ξi] given the observations. Denote I to be the
full set of p0 predictors in the data with If ⊂ I as the set of player specific
fixed effects (time varying or not) predictors and Ic ⊂ I, with Ic ∩ If = ∅,
as the set of time varying player specific predictors which are modeled by
combination of fixed and random effects. Finally, let Ig = I\{Ic ∪ If} be
the set of guild specific time varying fixed effect predictors. Let pf = |If |,
pc = |Ic|, pg = |Ig| and so, pg + pc + pf = p0. For each of the three models,

s = 1, 2, 3, let x
(s)
ij = (x

(s)
ijr : r ∈ If ∪ Ic), z

(s)
ij = (z

(s)
ijr : r ∈ Ic) denote,

respectively, the set of player specific fixed and random effect predictors in

the sth model and let g
(s)
jk = (g

(s)
jkr : r ∈ Ig) be the corresponding set of guild

specific fixed effect predictors. We denote player i specific random effects by

bi = (b
(1)
i , b

(2)
i , b

(3)
i ) and the time varying guild specific random intercepts

for guild k are denoted ck = (c
(1)
k , c

(2)
k , c

(3)
k ) with c

(s)
k = (c

(s)
jk : 1 ≤ j ≤ m)

and c(s) = (c
(s)
k : 1 ≤ k ≤ K).

We now discuss the models for duration of play and purchase propensity.
First note that player i logs into the game only at some time points, and
so the observed duration of play Yi has a mix of zeros and positive obser-
vations. To capture both the prevalence of these zeros and potential large
values observed in the support of Yij , we consider a zero inflated Log Normal
model for Yij in equation (3.3). Thus, Yij has a mixture distribution with
pdf,

(3.3) g1(αij , yij |b(1)i , b
(2)
i , c(1), c(2)) = (1− πij)I{αij = 0}+

πij(σyij)
−1φ

( log yij − µij
σ

)
I{αij = 1},

where

logit(πij) = x
(1)′

ij β
(1) + z

(1)′

ij b
(1)
i +

K∑
k=1

dijk

(
c
(1)
jk + g

(1)′

jk γ
(1)
)
,(3.4)

µij = x
(2)′

ij β
(2) + z

(2)′

ij b
(2)
i +

K∑
k=1

dijk

(
c
(2)
jk + g

(2)′

jk γ
(2)
)
.(3.5)

In equation (3.4) we use a logistic regression model with player specific
and guild specific random effects to model the login indicator αij , while an
identity link is used to model expected log duration of play in equation (3.5).
Now, a player can potentially purchase (ξij = 1) only if she logs into the
game on day j (αij = 1) and, even if the player logs in, she may not exhibit a
positive purchase. Thus, conditional on the player logging into the game, we
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model the binary response ξij |αij = 1 with the covariates and the random
effects through a logit link in equations (3.6), (3.7).

(3.6) g2(αij , ξij |b(1)i , b
(3)
i , c(1), c(3)) = (1− πij)I{αij = 0}+

πij

[
(1− qij)I{ξij = 0}+ qijI{ξij = 1}

]
I{αij = 1}

where

logit(qij) = x
(3)′

ij β
(3) + z

(3)′

ij b
(3)
i +

K∑
k=1

dijk

(
c
(3)
jk + g

(3)′

jk γ
(3)
)

(3.7)

In equations (3.3) and (3.6) the dependence on the fixed effects and the
covariates are kept implicit in the notations and only the involved random
effects are explicitly demonstrated. The three responses modeled in equa-
tions (3.4), (3.5) and (3.7) are interrelated as they carry information about
the playing behavior of individuals as well as the guilds. To model the asso-
ciation between these responses we correlate the random heterogeneous ef-

fects from each of the responses. Specifically, we let bi = (b
(1)
i , b

(2)
i , b

(3)
i )

i.i.d∼
N3pc(0,Σ) and ck = (c

(1)
k , c

(2)
k , c

(3)
k )

i.i.d∼ N3m(0,Λ). Moreover, we assume

that (a) for any {i, j, k}, biu is uncorrelated with c
(s)
jk for all u = 1, . . . , 3pc,

and (b) Λ is such that for (s, s′) ∈ {1, 2, 3}, Cov(c
(s)
kj , c

(s′)
kj′ ) = 0 if |j− j′| > t′

which indicates that although the guild specific effects are dynamic, the per-
sistence of past effects vanish after a gap of t′ time points. In the context of
our MMORPG data that we analyze in Section 6, such a banded structure
on Λ is natural since players do not login to the game daily and so the
persistence of past guild effects is limited.

4. Variable Selection in CREJM. The daily data generated by a
MMORPG usually hold several player and guild level characteristics. To
identify important characteristics that may help predict player duration of
play and purchase propensity in these games, we conduct automated variable
selection in the mixed model framework of equations (3.4), (3.5) and (3.7).
Under such a framework selection of fixed and random effect components has
received considerable attention. For instance, [3] and [24] proposed penal-
ized likelihood procedures to simultaneously select fixed and random effect
components under the special case of a linear mixed effect model, while [13],
[37] and [28] conduct selection of fixed and random effects using a two stage
approach. Several procedures to select only the fixed effects or the random
effects have also been proposed under a GLMM framework; see [34, 23] and
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the references therein. Recently, proposals for hierarchical variable selection
in GLMMs have been introduced [21, 1] wherein the selection mechanism
conducts joint selection of fixed and random effects in a hierarchical man-
ner such that a candidate random effect is included into the model only if
the corresponding fixed effect is in the model. In this section, we discuss the
variable selection mechanism in CREJM that conducts hierarchical selection
of fixed and random effects components in multivariate mixed models.

Let

Θ = (β(1),β(2),β(3),γ(1),γ(2),γ(3), σ, vec(Σ), vec(Λ))

:= (Γ, σ, vec(Σ), vec(Λ))

denote the vector of all parameters to be estimated. Here Γ = (Γ(s) : s =
1, 2, 3) and Γ(s) = (β(s),γ(s)) := {Γsr : r ∈ I}. The marginal log-likelihood
of the observed data under the joint model is:

`n(Θ) = log

∫ { n∏
i=1

m∏
j=1

p
(
αij , yij , ξij |bi, c,Γ, σ

)}
p(b|Σ)p(c|Λ)dbdc,

where b = {bi : 1 ≤ i ≤ n} and c = (c1, . . . , cK). Let Σ
(s)
rr to be the

variance of b
(s)
ir for r ∈ Ic, s ∈ {1, 2, 3} and for any matrix A, denote

‖A‖1 :=
∑

i,j |Aij |. We solve the following maximization problem involving a
penalized log-likelihood function `n(Θ) for variable selection in the CREJM
framework:

(4.1) max
Θ,Σ�0,Λ�0

`n(Θ)− nλ1
3∑
s=1

∑
r∈I

wsr

(
|Γsr|+ dsrΣ

(s)
rr I{r ∈ Ic}

)
− nλ2‖P ∗Λ‖1.

Here (λ1, λ2) ∈ R2
+ are the regularization parameters and ∗ denotes element-

wise multiplication. In equation (4.1), the penalty associated with λ1 is
designed to maintain the hierarchy in selecting the fixed and random effects.
For instance, when r ∈ Ic the penalty ensures that either the corresponding
fixed and random effect is shrunk to zero or only the random effect is shrunk
to zero. The adaptive weights (wsr, dsr) ∈ R2

+ play a crucial role in this
hierarchical selection mechanism. In Section 5 we discuss the construction
of these weights and present an iterative algorithm that alternates between
estimating Θ and redefining the data-driven weights (wsr, dsr) such that
the weights used in any iteration are computed from the solutions of the
previous iteration (see [8, 51, 30, 1] for details on these kind of approaches).
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The penalty ‖P ∗Λ‖1, originally proposed in Bien and Tibshirani (2011)
[2], enforces a banded structure on the covariance matrix Λ of the guild

specific random effects ck = (c
(1)
k , c

(2)
k , c

(3)
k ) such that for (s, s′) ∈ {1, 2, 3},

Cov(c
(s)
kj , c

(s′)
kj′ ) = 0 if |j − j′| > t′. This is achieved through the 3m × 3m

symmetric matrix P where, for (u, v) ∈ {1, . . . , 3m},

(4.2)

P (u, v) =


I(|u− v| > t′), if (l − 1)m+ 1 ≤ u ≤ v ≤ lm, l = 1, 2, 3

I(|u− v(mod m)| > t′), if 1 ≤ u ≤ m, m+ 1 ≤ v ≤ 2m

I(|m− u− v(mod m)| > t′), if m+ 1 ≤ u ≤ 2m, 2m+ 1 ≤ v ≤ 3m.

In figure 4 we provide a representation of P using equation (4.2) for three
different choices of t′ and with m = 5. Here the entries with P (u, v) = 1 are
shaded in black while those with P (u, v) = 0 are in gray. For a sufficiently
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Fig 4: Representation of P using equation (4.2) for three different choices
of t′ and with m = 5. Here the entries with P (u, v) = 1 are shaded in black
while those with P (u, v) = 0 are in gray.

large λ2, the entries of Λ that correspond to the non-zero entries of P are
shrunk towards 0. Moreover, the resulting covariance matrix Λ is denser
for larger t′ indicating that the guild effects persist longer. In Section 6 we
discuss the choice of t′ for our application involving the MMORPG data
of Section 2. We end this section with the remark that the maximization
problem based on criterion (4.1) can be augmented with linear inequality
constraints A(s)Γ(s) ≤ a(s) that may incorporate domain expertise and im-
pose monotonicity, sign or other structural constraints on the components
of Γ(s).
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4.1. Asymptotic Properties. In this section we study the asymptotic prop-
erties of the variable selection procedure in CREJM. Our analysis will keep
pc fixed and allow p = 3(pf + pg) to grow at a slower rate than n. We first
introduce some notations where the dependence on p will be implicit and
then state our main result.

Let the penalized likelihood criteria in equation (4.1) be denoted by
`penn (Θ) where
(4.3)

`penn (Θ) = `n(Θ)−nλ1
3∑
s=1

∑
r∈I

wsr

(
|Γsr|+dsrΣ

(s)
rr I{r ∈ Ic}

)
−nλ2‖P ∗Λ‖1.

Denote Θ0 = (Γ0, vec(Σ0), vec(Λ0)) to be the true parameter values and
p̃ = |{Γ0r : r ∈ If ∪ Ig}| be the number of true non-zero fixed effects
in Γ0. Let Θ1 denote the non-zero elements of Θ0 and, without loss of
generality, let Θ0 = (Θ1,Θ2) where Θ2 = 0. Similarly, for a local maxi-
mizer Θ̂n of equation (4.1), we write Θ̂n = (Θ̂n1, Θ̂n2). Denote Hn(Θ0) =
−n−1∂2`n(Θ)/∂Θ∂ΘT |Θ0 to be the observed Fisher Information matrix at
Θ0 with λmin(Hn(Θ0)) and λmax(Hn(Θ0)) being its minimum and maxi-
mum eigenvalues. We denote Fn = {Θ : Σ � 0,Λ � 0} to be the parameter
space over which the maximization problem in equation (4.1) is defined and
impose the following regularity conditions that are needed in our technical
analysis.

(A1) For all n,Hn(Θ0) satisfies 0 < c1 < λmin(Hn(Θ0)) < λmax(Hn(Θ0)) <
1/c1 <∞ for some constant c1.

(A2) For every ε > 0, there exists a δ > 0 such that for n large, (1 −
ε)c1 < λmin(Hn(Θ)) < λmax(Hn(Θ)) < (1 + ε)/c1 for all Θ satisfying
‖Θ−Θ0‖2 < δ.

(A3) The weights satisfy wsr = Op(1), dsr = Op(1) whenever r ∈ Θ1, and
for ν > 0, wsr = Op{(n/p)ν/2}, dsr = Op{(n/p)ν/2} whenever r ∈ Θ2.

(A4) As n→∞, (a) λ1(np̃)
1/2 → 0 (b) λ1(n/p)

(ν+3)/4 →∞.

Condition (A1) ensures that at the true parameter value Θ0 the observed
Fisher information matrix is positive definite and its eigenvalues are uni-
formly bounded while condition (A2) extends this to a small neighborhood
of Θ0. These conditions are similar to assumptions A4 and A5 in [9]. Con-
ditions (A3) and (A4) are similar to assumptions (C5) and (C6) in [21]. In
particular (A3) requires that the data-driven adaptive weights exhibit dif-
ferent asymptotic behavior for the true zero and true non-zero parameters
while condition (A4) restricts the rate of growth of the regularization pa-
rameter λ1 and allows p to grow with n such that (p/n)(ν+3)/4(np̃)1/2 → 0
as n→∞.
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Theorem 1. Under assumptions A1 − A4, there exists a local maxi-
mizer Θ̂n = (Θ̂n1, Θ̂n2) of `penn (Θ) such that ‖Θ̂n−Θ0‖2 = Op(

√
p/n) and

P(Θ̂n2 = 0)→ 1 as n→∞.

Theorem 1, proved in Appendix A of the supplementary material, estab-
lishes the selection consistency of the variable selection procedure under the
CREJM framework in the sense that there exists a

√
n/p consistent maxi-

mizer Θ̂n of `penn (Θ) that identifies the true non-zero elements of Θ0 with
high probability as n→∞.

5. Estimation Procedure. In this section we discuss our estimation
procedure that involves solving the maximization problem of equation (4.1).
Here the suffix n will be implicit in our notations.

5.1. Solving the maximization problem. The marginal likelihood `(Θ)
in equation (4.1) involves a high dimensional integral with respect to the
random effects. In GLMMs these integrals often have no analytical form
and several approaches, such as Laplacian approximations [46], adaptive
quadrature approximations [38], penalized quasi likelihood (PQL)[5] and EM
algorithm [31], have been proposed to tackle this computational hurdle. We
use an iterative algorithm which is similar to the Monte Carlo EM (MCEM)
algorithm of Wei and Tanner (1990) [48]. The MCEM algorithm treats the
random effects (bi, c) as ‘missing data’ and obtains Θ̂, an estimate of Θ, by
maximizing the expected value of the complete data likelihood `cl(Θ, b, c)
where,

`cl(Θ, b, c) =

n∑
i=1

m∑
j=1

log p(αij , yij , ξij |bi, c,Γ, σ) +

n∑
i=1

log p(bi|Σ) +

K∑
k=1

log p(ck|Λ)

=
n∑
i=1

`cli (Θ, bi, c).

Denote the Q-function `Q(Θ) =
∑n

i=1 E`cli (Θ, bi, c) where the expectation
is over the conditional distribution of (bi, c) given the observations at the
current parameter estimates. Let Θ(t) denote the parameter estimates at
iteration t. In iteration t + 1, the MCEM algorithm performs the following
two steps until convergence:

E-step Evaluate `Q(t)(Θ) =
∑n

i=1 Ebi,c|Θ(t),Yi
`cli (Θ, bi, c) where the expecta-

tion is over the conditional distribution of (bi, c) given the observations
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Yi := (αi,Yi, ξi) at the current estimates Θ(t). Now,

Ebi,c|Θ(t),Yi
`cli (Θ, bi, c) =

∫
`cli (Θ, bi, c) p(bi, c | Yi,Θ(t)) dbidc

and

p(bi, c | Yi,Θ(t)) =

exp {−`i(Θ(t))} p(Yi| Θ(t), bi, c)φ3pc(bi|0,Σ(t))φ3mK(c|0, I3mK⊗Λ(t)),

where, φq( · |0,Σ(t)) is q dimensional normal density with mean 0 and
variance Σ(t). In the display above, the expectation involves a mul-
tivariate integration with respect to the random effects bi, c which is
evaluated by Monte Carlo integration. We approximate it as:( D∑

d=1

`cli (Θ, bdi , c
d) p(Yi| Θ(t), bdi , c

d)

)/( D∑
d=1

p(Yi| Θ(t), bdi , c
d)

)
where bdi , c

d are random samples from φ3pc( · |0,Σ(t)), φ3mK( · |0, I3mK⊗
Λ(t)) respectively and D = 2000 is the number of monte carlo samples.

M-step Solve the maximization problem in equation (4.1) using data driven

adaptive weights (w
(t)
sr , d

(t)
sr ):

(5.1) Θ(t+1) = arg max
Θ,Σ�0,Λ�0

`Q(t)(Θ)−

nλ1

3∑
s=1

∑
r∈I

w(t)
sr

(
|Γsr|+ d(t)sr Σ(s)

rr I{r ∈ Ic}
)
− nλ2‖P ∗Λ‖1.

5.2. Data Driven Adaptive Weights. The data driven adaptive weights

(w
(t)
sr , d

(t)
sr ) are updated at the end of every iteration of the MCEM and their

construction is designed to maintain the hierarchy in selecting the fixed and
random effects (see [8, 51, 30] for details on these kind of approaches). In
what follows, we use the approach described in Banerjee et. al (2020) [1]
to construct these weights. Let Θ(t) denote the solution to the maximiza-
tion problem in equation (4.1) at iteration t. Then in equation (5.1) we set

w
(t)
sr = min

(
|Γ(t)
sr |−ν , ε−11

)
and d

(t)
sr = min

(
|Σ(s,t)

rr |−ν |Γ(t)
sr |−ν , ε−12

)
with ν = 2.

For numerical stability and to allow a non-zero estimate in the next itera-
tion given a zero valued estimate in the current iteration, we fix ε1 = 10−2

[8]. Moreover, whenever |Γ(t)
sr | = 0 we enforce a large penalty on the corre-

sponding diagonal element of Σ in iteration (t + 1) by setting ε2 = 10−4.
So if r ∈ Ic, the penalty wsrdsr on the diagonal elements of Σ encourages
hierarchical selection of random effects.
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5.3. Further details on the M-Step of the EM. We now provide details
around solving the maximization problem in equation (5.1). First note that
the objective function in equation (5.1) is separable in {Γ(s) : s = 1, 2, 3}, Σ
and Λ. To solve the three convex problems involving Γ(s) we use a proximal
gradient descent algorithm while to estimate Σ and Λ, which are non-convex
problems, we adopt the majorization scheme of Bien and Tibshirani (2011)
[2]. In particular, for estimating Γ(s) at iteration t of the MCEM, the max-
imization problem in equation (5.1) can be represented as

min
Γ(s)

f(t)(Γ
(s)) + h(t)(Γ

(s))(5.2)

where f(t)(Γ
(s)) is convex and differentiable in Γ(s), and

h(t)(Γ
(s)) = nλ1

3∑
s=1

∑
r∈I

w(t)
sr |Γsr|,

is convex but non-differentiable. Here f(t)(Γ
(s)) is the contribution of Γ(s)

to the negative of the Q function `Q(t)(Θ) in iteration (t + 1). For instance
when s = 1,

f(t)(Γ
(1)) = −

n∑
i=1

m∑
j=1

D∑
d=1

log p(αij |bdi , cd,Γ(1))ω
(t)
id .

where ω
(t)
id are the weights p(Yi| Θ(t), bdi , c

d)/
∑D

d=1 p(Yi| Θ(t), bdi , c
d). To

solve equation (5.2), we use the proximal gradient method that updates
(5.2) in iteration v = 1, 2, . . . , as

Γ(s)
v = proxtv ,h

(
Γ
(s)
v−1 − tv∇f(t)(Γ

(s)
v−1)

)
where

(5.3) proxtv ,h(u) = arg min
Γ(s)

( 1

2tv
||Γ(s) − u||22 + h(Γ(s))

)
,

u = Γ
(s)
v−1 − tv∇f(t)(Γ

(s)
v−1) and ∇f(t)(Γ

(s)
v−1) is the derivative of f(t)(Γ

(s))

evaluated at Γ
(s)
v−1. We solve equation (5.3) in CVXR [14] where the step

size tv > 0 is determined by backtracking line search.
In iteration (t) of the MCEM the optimization problem for estimating Σ

is of the form

(5.4) min
Σ�0

log |Σ|+ trace(Q(t)Σ−1) + 2λ1‖V (t) ∗Σ‖1,
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whereQ(t) = n−1
∑n

i=1

∑D
d=1 b

d
i b
dT
i ω

(t)
id and V (t) = diag(d

(t)
sr : 1 ≤ s ≤ 3, 1 ≤

r ≤ pc). The objective function in equation (5.4) is the sum of a convex func-
tion and a concave function h(Σ) = log |Σ|. We use a majorization scheme
that replaces h(Σ) with its tangent g(Σ|Σ0) = log |Σ0| + trace{Σ−10 (Σ −
Σ0)}. Equation (5.4) is then approximately solved using an iterative scheme
that solves the following convex problem in iteration v = 1, 2, . . . .,
(5.5)

Σ̂(v) = arg min
Σ�0

trace{(Σ̂(v−1))−1Σ}+ trace(Q(t)Σ−1) + 2λ1‖V (t) ∗Σ‖1.

We use the R-package spcov [2] that implements this iterative scheme in-
volving (5.5) using a generalized gradient descent algorithm and initialize
this algorithm with Σ̂(0) = Q(0). The aforementioned approach is also used

to estimate Λ with Q(t) = (nK)−1
∑n

i=1

∑K
k=1

∑D
d=1 c

d
kc
dT
k w

(t)
id , V (t) = P

and λ2 in place of λ1 in equation (5.4).

6. Analysis of MMORPG Data. In this section we analyze the
MMORPG data discussed in Section 2 and use the CREJM framework
for modeling the three responses: Login Indicator, Duration of Play and
Purchase Propensity. This data hold 20 player level gaming characteristics
across n = 5, 188 players observed over a period of 30 days and include
the focal player’s in-game characteristics, covariates that capture the focal
player’s interaction with her friends, the in-game activities of those friends,
and covariates that are related to the focal player’s interaction with her
guild. Out of these 20 player specific predictors, 17 predictors are treated
as candidate composite effect predictors. The description of these predictors
are provided in Table 1 of Appendix C in the supplementary material. Along
with the player information, the data also hold 5 time varying guild charac-
teristics for K = 50 guilds. We treat these guild characteristics as potential
fixed effects with no corresponding random effect counterparts. Overall, the
CREJM selection mechanism must select random effects from a set of 54
potential random effects (17 for each of the 3 sub-models and their 3 inter-
cepts) and select fixed effects from a set of 78 potential fixed effects (25 for
each of the three sub-models and their 3 intercepts).

For variable selection and estimation (Section 6.1), the CREJM frame-
work relies on the first 15 days worth of data while the remaining 15 days
are used for assessing its prediction performance (Section 6.2). Furthermore,
CREJM considers time j− 1 values of the predictors for modeling the three
responses at time point j because at time j these player and guild char-
acteristics are known only upto the previous time point. We initialize the
CREJM algorithm and the adaptive weights (wsr, dsr) in equation (5.1) by
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fitting a saturated model on a subset of 500 players. As discussed in Section
3.2, the guild specific random effect covariance matrix Λ is such that for

any (s, s′) ∈ {1, 2, 3}, Cov(c
(s)
kj , c

(s′)
kj′ ) = 0 if |j − j′| > t′, which indicates

that the persistence of past guild effects vanish after a gap of t′ time points.
In this application we take t′ = 3 which allows the CREJM framework to
capture guild effects from the previous 3 days. This is reasonable since the
daily average time since last login has a mean of about 2 days across the
first 15 days in our data. Finally, the regularization parameter λ2 is fixed
at 0.5 while λ1 is chosen as that value of λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}
which minimizes BICλ where BICλ = −2`Q(Θ̂) + log(n)dim(Θ̂) [3, 28, 21]
and dim(Θ̂) is the number of non-zero components in Θ̂.

The following GitHub repository holds the R code for reproducing all the
analysis in this paper: https://github.com/trambakbanerjee/crejm-code.

6.1. The fitted joint model and its interpretations. The analysis pre-
sented in this section relies on the first 15 days worth of data for variable
selection and estimation using CREJM. The list of selected predictors and
their estimated fixed effect coefficients for the submodels of Login Indicator,
Duration and Purchase Propensity are presented in Table 1 where ‘PVP’
stands for player versus player and ‘PVE’ stands for player versus environ-
ment. The column ‘FE/CE’ indicates whether the covariate is a candidate
fixed effect (FE) or a composite effect (CE). The selected composite effects
are those predictors that exhibit a (*) over their coefficient estimates in Table
1. All the selected fixed and random effects obey the hierarchical structure
discussed in Section 4. In what follows, we discuss the fitted coefficients and
their interpretation for each of the three sub-models.
Login Indicator - The CREJM selection mechanism selects 9 player spe-
cific composite effect predictors and 1 guild specific predictor. The coeffi-
cient sign on the variables pvp play time, pvp kill point, no of games

and time since indicate that, all other things remaining constant, a more
active player has a higher odds of logging into the game the next day. In
particular, pvp play time and no of games increase the odds of login by
almost 49% and 39% respectively. Moreover, higher a player’s achievement
level (pvp kill point, quest count), the higher is the likelihood that she
will login the next day. We find that the social contagion factors like experi-
ence with friends and guild membership also influence a player’s likelihood
of login. For example, a higher degree centrality as measured by the num-
ber of friends (friend count), increases the odds of login by a factor of 2.
Interestingly, a larger guild size (guildmem count) reduces the odds of login
by more than 30%. This negative relationship is consistent with previous

https://github.com/trambakbanerjee/crejm-code
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literature [19], which has suggested that a larger guild size usually reduces a
guild members’ satisfaction and dilutes their social identity, thus, reducing
her likelihood of logging into the game.

Table 1
Selected fixed effect coefficients and their estimates under the submodels Login Indicator,

Duration of Play and Purchase Propensity. The selected composite effects are those
predictors that exhibit a (*) over their coefficient estimates in Table 1. See Table 1 in
Appendix C of the supplementary material for a detailed description of the predictors.

Type FE/CE Predictors Login Ind. Duration Purch Prop.

CE intercept -1.043* 0.548* -1.103*

Focal player’s
in-game char-
acteristics

CE level - - -
CE pvp play time 0.397* - 0.873*
CE pvp kill point 0.403* - -1.016*
CE quest count 0.098* - -
CE mission count - - -
CE pve time -0.021* 0.082 -
CE no of game 0.330* 0.055 -

Focal player’s
interaction with
her friends and
the in-game
activities of
these friends

CE friend count 0.967* 0.405* 0.437*
CE friend mean level - - -0.258*
CE no of friend purch - - -
CE total friend buy - - -
CE no of friend interact 0.360* - -
CE game round play with friends - - -

Focal player’s
interaction with
her guild

CE guild tenure - - -
CE no of guildmem interact - - -
CE no of game with guildmem - - -

Guild charac-
teristics

FE guildmem interact - 0.106 -
FE avg game with guildmem - - -
FE guild total purch - - -
FE no of guildmem purch - - -
FE guildmem count -0.389 - -0.655

Other charac-
teristics

FE gender - - -
FE weekend - 0.184 -
FE holiday - - -
CE time since -0.558* - -0.503*

Duration of play - CREJM selects a relatively sparser model for Dura-
tion of play which is conditioned on the event of login. The selected model
has 6 predictors of which two are player specific composite effect predictors
and one is a guild specific predictor. For this model, we find that the coef-
ficient signs on the two selected social contagion predictors (friend count,
guildmem interact) are positive. This indicates that conditional on lo-
gin and all other things remaining constant, a higher degree centrality as
measured by the number of friends (friend count), leads to an overall in-
crease in the future game time. Moreover, being part of a guild that has a
higher guildmem interact, which measures total number of guild members
that played as part of a team within the guild, predicts a longer gaming
time on the next day. This positive effect of guild interaction highlights



CREJM: CROSSED RANDOM EFFECTS JOINT MODELING FRAMEWORK 23

the importance of social connections in enhancing a player’s engagement in
MMORPGs and is of managerial importance to the platforms. Note that a
guild in which members form teams to play the game has a positive effect
on a player’s social identity and her loyalty to the game [26], while from
the login indicator model an increase in the guild size reduces the player’s
satisfaction and her social identity. Thus different aspects of a player’s guild
experience can have different impact on the playing behavior. From table
1, we also find evidence of a weekend effect (weekend) which predicts a
relatively longer duration of play on weekends.
Purchase Propensity - CREJM selects 7 predictors of which six are player
specific composite effect predictors and one is a guild specific predictor. We
note that conditional on login, both individual experience and social conta-
gion factors impact a player’s future purchase propensity. For instance, the
longer a player is engaged in the PVP mode (pvp play time), the higher is
her odds of future purchases. We also observe that when a player has higher
PVP killing points (pvp kill point) from the last login, it reduces their
odds of future purchases. This indicates that more active but less skilled
players are more likely to make future purchases, perhaps to increase their
skill. The social contagion experience from friends (friend mean level,
friend count, guildmem count) have different effects on the propensity to
purchase. Consistent with prior literature on social contagion [36], we ob-
serve that when degree centrality (friend count) increases, it also increases
the odds of future purchase, all other things remaining constant. However,
the odds of future purchases are also impacted by the nature of friends a
player plays with. When a player plays with friends who have a higher av-
erage skill level (friend mean level), it reduces the focal player’s odds of
future purchase. As in the case of login indicator model, we find that the
coefficient sign on time since (days since last login) is negative and when
a player belongs to a guild with a larger guild size (guildmem count) her
likelihood for future purchase is lower.

We now discuss the estimated covariance matrix Σ̂ of the player specific
random effects. In figure 5 left, we present a heatmap of the 17× 17 correla-
tion matrix obtained from Σ̂. Within the three sub-models that were mod-
eled jointly, we note that the random effects of the selected composite effect
predictors are correlated. This indicates that players exhibit idiosyncratic
playing profiles over time. Furthermore, we notice several instances of cross
correlations across the three sub-models. For example from figure 5 right,
the random effect for the predictor no of friend interact(no. of friends
a player played with in teams during game sessions) in the Login Indicator
model has a negative correlation with the random effect for time since
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Fig 5: Left: Heatmap of the 17 × 17 correlation matrix obtained from Σ̂.
On the horizontal axis are the selected composite effects for the three sub-
models: Login Indicator, Duration and Purchase Propensity. The horizontal
axis begins with the intercept from the Login Indicator model and ends
with time since from the Purchase Propensity model. Right: A network
that demonstrate several cross correlations across the models. Blue lines
represent positive correlations and red lines represent negative correlations.
The model numbers are inside the parenthesis next to the predictor names.

(days since last login) in the Purchase Propensity model. Similarly the
random effects associated with pvp kill point(3) and pvp play time(2)

demonstrate a positive correlation. These cross correlations suggest that the
modeled responses are correlated for a player and the CREJM joint model-
ing framework allows such information pooling across the related responses
which ultimately aids game managers in better predicting future player re-
sponses over time as discussed in Section 6.2.

6.2. Prediction performance. Here we discuss the prediction performance
of the fitted joint model of Section 6.1 in dynamically predicting the three
responses over the next 14 days (j = 17, . . . , 30). For predicting the three
responses, we consider two competing models- Benchmark I and Benchmark
II, which we discuss below.

For Benchmark I we adopt a generalized linear model (GLM) setup and
use the R-package glmmLasso [43] for variable selection. In particular, Bench-
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mark I does not model the three outcomes jointly, has no player or guild
specific random effects and relies on logit links for Login Indicator and Pur-
chase Propensity, and an identity link for log of positive Duration of play. In
case of Benchmark II we consider the GLMM setup and use the R-package
rpql [22] to perform joint selection of fixed and random effects with similar
link functions as used in Benchmark I. The rpql package uses a regular-
ized PQL [5] to perform simultaneous selection of fixed and player specific
random effects but unlike CREJM it does not model the responses jointly
and ignores the guild specific random effects. Predictions from Benchmark
I are obtained by evaluating the fitted model on the validation data. How-
ever, since Benchmark II and CREJM are both mixed models, the prediction

process must, respectively, estimate the latent random effects (b
(s)
i , c

(s)
jk ) and

appropriately account for the endogenous nature of the three responses. To
do that we use the simulation scheme in section 7.2 of Rizopoulos (2012)
[42] and section 3 of Rizopoulos (2011) [41], and estimate the expected time
j responses given the observed responses until time j − 1 (details provided
in Appendix B of the supplementary material).

Table 2
Results of predictive performance of CREJM and Benchmarks I, II. For Login Indicator

and Purchase Propensity, the false positive (FP) rate / the false negative (FN) rate
averaged over 14 time points are reported. For Duration of Play, the ratio of prediction

errors (6.1) of Benchmarks I, II to CREJM averaged over the 14 time points are
reported.

Submodels Benchmark I Benchmark II CREJM

Login Indicator (FP / FN) 13.19 / 12.43 13.45 / 13.32 8.68 / 15.76
Duration of Play 3.07 1.83 1
Purchase Propensity (FP / FN) 0.00 / 2.55 0.3 / 2.13 0.07 / 2.17

Table 2 summarizes the results of predictive performance of CREJM
and the two benchmark models. For the binary responses of Login Indi-
cator and Purchase Propensity, table 2 presents the false positive (FP) rate
and the false negative (FN) rate respectively averaged over the 14 time
points. The FP rate measures the percentage of cases where the model in-
correctly predicted login (or positive purchase) whereas the FN rate mea-
sures the percentage of cases where the model incorrectly predicted no
login (or no purchase). For the login indicator model, Benchmark II ex-
hibits the highest FP rate (table 2) while Benchmark I has the lowest
FN rate. CREJM, on the other hand, has the lowest FP rate and its FN
rate is relatively larger than the two benchmarks. However, for predicting
the zero inflated response of Purchase Propensity, CREJM demonstrates
a relatively superior performance over the Benchmark models. To assess
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the relative prediction performance for positive Duration of Play, we adopt
a different approach and first calculate the time j prediction errors PEj
for the Benchmark models and CREJM as follows. For any model M ∈
{Benchmark I, Benchmark II, CREJM}, we define PEMj at time j = 17, . . . , 30
as

(6.1) PEMj (Y∗, Ŷ∗) =

n∑
i=1

∣∣∣ log Y ∗ij − log Ŷ ∗ij

∣∣∣
where Y ∗ij = Yij if αij = 1 and 1 otherwise, and Ŷ ∗ij = Ŷij if α̂ij = 1

and 1 otherwise, where Ŷij , α̂ij are model M predictions of Duration and
Login, respectively, for player i at time j. Note that PEMj measures the total
absolute deviation of the prediction from the truth at any time j and for
notational convenience its dependence on αij , α̂ij has been suppressed. For
the Duration model, table 2 presents the ratio of the prediction errors of the
Benchmarks to the CREJM model averaged over the 14 time points. So, a
ratio in excess of 1 indicates a larger absolute deviation of the prediction
from the truth when compared to CREJM. We note that the two Benchmark
models exhibit prediction error ratios bigger than 1 with Benchmark I being
the worse. Benchmark II exhibits a relatively better prediction error ratio
than Benchmark I as it benefits from using the GLMM framework. However,
unlike CREJM, it is unable to account for the dependencies between the
responses which is reflected in its prediction error ratios being still bigger
than 1.

6.3. Time varying guild random effects. In this section we discuss the

estimates ĉ
(s)
jk of the time varying guild random effects c

(s)
jk that constitute a

critical component of the CREJM framework. Recall that these guild ran-
dom effects allow the players to be nested in guilds (see equations (3.4), (3.5)
and (3.7)) and incorporate (1) the dynamic effect of a guild on its member’s
playing behavior, such as her duration of play, and (2) correlated playing
behavior for players that are part of the same guild. Figure 6 presents the

estimated guild random effects ĉ
(s)
jk for each of the K = 50 guilds that were

used for dynamically predicting the three responses over the next 14 days
(j = 17, . . . , 30) in Section 6.2 (see Appendix B of the supplementary mate-

rial for details on estimating c
(s)
jk ). These figures plot the temporal evolution

of ĉ
(s)
jk and highlight, in particular, the trajectory for three randomly chosen

guilds: 4, 13 and 42. It is interesting to note that in figure 6, ĉ
(s)
jk for the

Duration of Play model (center panel) exhibits an overall increasing trend
over time while guilds 4 and 13 exhibit substantially different trajectories for
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Fig 6: Temporal evolution of the estimated guild random effects ĉ
(s)
jk where

s = 1 for the Login Ind. model (left), s = 2 for the Duration of Play model
(center) and s = 3 for the Purchase propensity model (right). For each of the
50 guilds, these estimated guild random effects were used for dynamically
predicting the three responses over the next 14 days (j = 17, . . . , 30) in
Section 6.2. The highlighted trajectories represent ĉjk for k ∈ {4, 13, 42}.

the login indicator (left panel) and purchase propensity (right panel) mod-
els. This dynamic nature of the estimated guild random effects translates
into superior player specific predictions of future purchase propensities and
duration of play under the CREJM framework as seen in table 2 of Section

6.2. Moreover, ĉ
(s)
jk form a key component for predicting the temporal tra-

jectories of player correlations within each guild and with respect to each
of the three responses. These correlations are predicted in a similar fashion
as discussed in Section 6.2 and Appendix B of the supplementary material,
where for two players (i, i

′
) that belong to guild k at time j− 1, their corre-

lation in duration of play at time j is predicted conditional on the estimated
parameters and the observed responses until time j − 1.

Figure 7 presents three heat-maps, one for each of the three responses,
that plot the mean predicted correlation over time of all players that are
members of guild k where k = 1, . . . , 50. From the three panels in figure 7
we make several remarks.

• First, players who are part of a guild at any time j are correlated
in terms of their probability of future login (left panel), the amount
of time that they will spend in the game (center panel) and their
probability of making future purchases (right panel). This is a direct
consequence of the CREJM framework that incorporates time varying
guild random effects into the joint modeling framework and allows for
the possibility that players in guild k at time j may potentially exhibit
correlated playing behavior.
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Fig 7: Mean player correlation for the three responses in 50 guilds across 14
days (j = 17, . . . , 30). Left: Probability of Login, Center: Duration of Play
and Right: Probability of Purchase. Details of the estimation provided in
Appendix B of the supplementary material.

• Second, from the center panel of figure 7, the magnitude of correla-
tions between the player duration of play are relatively larger than
those estimated for the probabilities of login and purchase. This in-
dicates that for a player her future purchase and login decisions are
not as influenced by other members of the guild as her in-game time
is. This is not surprising for purchases are rare in our data and login
decisions may potentially be influenced by factors such as time zone
differences. However, conditional on login, members of a guild play the
game together as part of a team and thus spend similar amounts of
in-game time.
• Third, guilds with similar predicted correlation profiles over time pro-

vide valuable insights into the future playing behavior of their members
and can be used to design promotion or reward policies specifically tar-
geting those guild members. For instance, the 50× 14 matrix of mean
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Fig 8: Functional cluster analysis of the mean guild correlations in Login
Indicator (left), Duration of Play (center) and Purchase Propensity (right)
models over 14 days (j = 17, . . . , 30). The plot presents three cluster cen-
troids. The sizes of these clusters are as follows: Login Indicator: (7, 43);
Activity Time: (15, 19, 16); Purchase Propensity: (21, 13, 16).

guild correlations of Duration of Play (figure 7 center panel) has been
grouped into three clusters in figure 8 center panel. Similarly, the left
and right panels of figure 8 show the cluster centroids when the cor-
responding matrices of mean guild correlations of Login Indicator and
Purchase Propensity are grouped into two and three clusters, respec-
tively. To determine these clusters, we use the R package fda.usc to
cluster the rows of the 50×14 matrix of mean guild correlations using
functional K-means clustering. The cluster centroids in figure 8 seg-
ment the 50 guilds into groups which demonstrate distinct correlation
profiles in terms of their magnitudes and temporal trajectories. For
Duration of Play, Cluster 3 holds 16 of the 50 guilds and exhibits an
overall increasing trend over time except for days 23, 24 and 25. Clus-
ter 1, on the other hand, exhibits some of the smallest magnitude of
correlations except for the first 5 days when it demonstrates relatively
higher correlations than Cluster 2. For game managers and marketers,
the guilds in Cluster 1 are of significance as players in these guilds
are relatively less engaged with other guild members as far as their
predicted duration of play is concerned. Future promotional and re-
tention strategies may be developed to increase player engagement in
the guilds represented in Cluster 1, while for the guilds in Cluster 3
promotional strategies may include loyalty rewards that further en-
courage player engagement in these guilds. For Login Indicator, there
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are two clusters with Cluster 2 holding 43 of the 50 guilds and exhibits
a relatively stable profile over time when compared to Cluster 1. For
Purchase Propensity, Cluster 1 exhibits an overall increasing trend and
has a similar trajectory to that of Cluster 3 from the Duration model.
Clusters 2 and 3, on the other hand, show a decreasing trend between
days 22 to 26. For platform managers, the temporal profiles of Clusters
1, 2 and 3 offer marketing insights on how to optimize price promo-
tion across these clusters and such differential emphasis across these
segments can increase the efficiency of future marketing campaigns.

7. Discussion. We propose a GLMM based joint modeling framework
CREJM that provides a unified approach for jointly modeling and predicting
a player’s daily duration of play and her purchase propensity in MMORPGs.
The key features of our framework that distinguish it from existing ap-
proaches is that (1) CREJM relies on a system of Cross Classified Random
Effect Models that allow the players to be nested in guilds, thus account-
ing for the fact that players belonging to the same guild have correlated
responses, and (2) CREJM incorporates time varying idiosyncratic guild
random effects that capture the dynamic influence of the guild on its mem-
ber’s playing behavior. On a large scale data from a popular MMORPG,
CREJM conducts hierarchical variable selection of the fixed and random ef-
fects and produces models with interpretable composite effects. We exhibit
the superior performance of CREJM in dynamically predicting player re-
sponses. These predictions provide valuable insights to the game managers
for developing personalized promotional strategies. Moreover, we use the
estimates of the time varying guild random effects to generate predictions
of the temporal trajectories of player correlations for the three responses
within each guild. These correlation profiles have substantial business impli-
cations for platform monetization and enhancing the effectiveness of existing
promotional and reward policies.

Our joint modeling framework can be used in a variety of applications
that need analyzing multiple longitudinal outcomes wherein the individual
subjects, such as patients or firms, are crossed with a dynamically evolving
group such as hospitals or firm size, respectively. In this article, we have
developed the CREJM framework for analyzing the dynamic effect of guilds
on player responses in MMORPGs. Our current framework can, in principle,
include additional time varying random intercepts to model the dynamic
effect of multiple groups with which the players may be crossed, such as
friendship networks or teams. However, variable selection and estimation
in such multiple membership mixed models is challenging and we envision
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pursuing this extension as part of future research.
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SUPPLEMENTARY MATERIALS: JOINT MODELING OF PLAYING TIME
AND PURCHASE PROPENSITY IN MASSIVELY MULTIPLAYER ONLINE

ROLE PLAYING GAMES USING CROSSED RANDOM EFFECTS

By Trambak Banerjee‡, Peng Liu§, Gourab Mukherjee†,¶ Shantanu Dutta¶ and Hai
Che‖

University of Kansas‡, Santa Clara University§, University of Southern California¶ and
University of California, Riverside‖

APPENDIX A: PROOF OF THEOREM 1

We can rewrite `penn (Θ) in equation (4.3) as

`penn (Θ) = `n(Θ)−nλ1

3∑
s=1

∑
r∈If∪Ig

wsr|Γsr|−nλ1

3∑
s=1

∑
r∈Ic

wsr(|Γsr|+dsrΣ(s)
rr )−nλ2

3m∑
i=1

3m∑
j=1

P (i, j)Λij .

Let an =
√
p/n and Dn(u) = `penn (Θ0 + anu)− `penn (Θ0) where u is such that Θ0 + anu ∈ Fn. We

will first show that given any ε > 0, there exists a constant M such that for n large

(A.1) P
(

sup
u:‖u‖2=M,Θ0+anu∈Fn

Dn(u) < 0
)
≥ 1− ε.

When the above holds, it implies that there exists a local maximizer Θ̂n in {Θ0 + anu : ‖u‖2 ≤
M, Θ0 + anu ∈ Fn} such that ‖Θ̂n −Θ0‖2 = Op(an) (see [1]). To prove equation (A.1) we begin
by noting that for any r ∈ If ∪ Ig, Γ0,sr = 0 implies |Γ0,sr + anusr| − |Γ0,sr| ≥ 0. Similarly, for any

r ∈ Ic, Γ0,sr = Σ
(s)
0,rr = 0 implies {(|Γ0,sr +anusr|+dsr|Σ(s)

0,rr +anv
(s)
1,rr|)− (|Γ0,sr|+dsr|Σ(s)

0,rr|)} ≥ 0.
Finally, for any (i, j) ∈ {1, . . . , 3m}, Λ0,ij = 0 implies |Λ0,ij + anv2,ij | − |Λ0,ij | ≥ 0. So we have,

Dn(u) =`penn (Θ0 + anu)− `penn (Θ0)

≤ `n(Θ0 + anu)− `n(Θ0)− nλ1

3∑
s=1

∑
r∈I0f∪I0g

wsr

(
|Γ0,sr + anusr| − |Γ0,sr|

)

− nλ1

3∑
s=1

∑
r∈I0c

wsr

{(
|Γ0,sr + anusr|+ dsr|Σ(s)

0,rr + anv
(s)
1,rr|

)
−
(
|Γ0,sr|+ dsr|Σ(s)

0,rr|
)}

:= (I)− (II)− (III),

where I0f , I0g and I0c are, respectively, the true non-zero player specific fixed effects, guild specific
fixed effects and composite effects. Note that in the above display the term involving nλ2 is 0 since
for any (i, j) ∈ {1, . . . , 3m}, Λ0,ij 6= 0 implies P (i, j) = 0.

†The research here was partially supported by NSF DMS-1811866.
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2 BANERJEE ET AL.

For the term (I) := `n(Θ0 + anu)− `n(Θ0), a Taylor’s expansion gives

(I) := anu
T∇`n(Θ0) +

1

2
a2
nu

T∇2`n(Θ̄n)u := I1 + I2

where Θ̄n lies on the line segment joining Θ0 + anu and Θ0. Now by Chebychev’s inequality and
assumption (A1), |I1| = |anuT∇`n(Θ0)| ≤ an‖∇`n(Θ0)‖‖u‖ = Op(an

√
np)‖u‖ = Op(na

2
n)‖u‖.

Next we consider I2 where

I2 = −1

2
na2

nu
T
(
− 1

n
∇2`n(Θ̄n)

)
u = −1

2
na2

nu
THn(Θ̄n)u.

By Cauchy Schwartz inequality and assumptions (A1), (A2), I2 ≤ −(1/2)na2
n‖u‖2(1− ε)c1 < 0.

For the term (II) := nλ1
∑3

s=1

∑
r∈I0f∪I0g wsr

(
|Γ0,sr + anusr| − |Γ0,sr|

)
, we have

(II) := nλ1an

3∑
s=1

∑
r∈I0f∪I0g

wsrusrsign(Γ0,sr)

≤ nλ1an

3∑
s=1

∑
r∈I0f∪I0g

wsr|usr|.

From the display above and by Cauchy-Schwartz inequality, assumptions (A3), (A4) part (a),
we have term (II) is Op(nλ1an

√
p̃) = op(na

2
n). Similarly for the term (III), Cauchy-Schwartz

inequality, assumptions (A3) and (A4) part (a) imply (III) = op(na
2
n). Thus for sufficiently large

‖u‖ = M such that Θ0 + anu ∈ Fn, Dn(u) is dominated by the term I2 which is negative. This
proves the statement in equation (A.1) and the first part of Theorem 1 on the estimation consistency
of Θ̂n.

We will now prove the selection consistency of Θ̂n following an approach similar to that of [2].
To do so we will consider four cases and in each case we will show that if the true parameter is 0
then the corresponding estimate must also be zero with probability tending to 1.
Case 1 - Suppose that for some r ∈ If ∪ Ig and s ∈ {1, 2, 3}, Γ0,sr = 0 but Γ̂sr 6= 0. Now by the
KKT optimality conditions

(A.2) 0 =
∂`penn (Θ)

∂Γsr

∣∣∣
Θ̂n

=
∂`n(Θ)

∂Γsr

∣∣∣
Θ̂n

− nλ1wsrsign(Γ̂sr).

Consider the first term on the right hand side of equation (A.2). A Taylor’s expansion gives,

∂`n(Θ)

∂Γsr

∣∣∣
Θ̂n

=
∂`n(Θ)

∂Γsr

∣∣∣
Θ0

+
∑
k∈Θ

∂2`n(Θ)

∂Γsr∂Θk

∣∣∣
Θ̄n

(Θ̂nk −Θ0k)

≤ ∂`n(Θ)

∂Γsr

∣∣∣
Θ0

+ n‖Θ̂n −Θ0‖2
{∑
k∈Θ

( 1

n

∂2`n(Θ)

∂Γsr∂Θk

∣∣∣
Θ̄n

)2}1/2

:= I1 + I2,

where the inequality in the second line of the display above follows from the Cauchy-Schwartz
inequality. We know that I1 = Op(

√
np) and for n large, assumptions (A1), (A2) and the consistency
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of Θ̂n imply I2 = Op(nan) = Op(
√
np). Thus, the first term on the right hand side of equation (A.2)

is Op(
√
np). For the second term, we use assumption (A3) with ν ≥ 1 to note that nλ1wsr/

√
np =

Op{λ1(n/p)(ν+1)/2} ≥ Op{λ1(n/p)(ν+3)/4} where λ1(n/p)(ν+3)/4 → ∞ as n → ∞ by assumption
(A4) part (b). Combining these results, we have a contradiction since the right hand side of equation
(A.2) is asymptotically dominated by the second term which, with probability tending to 1, cannot
equal 0. Thus for all r ∈ If ∪ Ig with Γ0,sr = 0, we have P(Γ̂sr = 0)→ 1 as n→∞.

Case 2 - Suppose that for some r ∈ Ic and s ∈ {1, 2, 3}, Γ0,sr = 0 but Γ̂sr 6= 0. Note that in this

case since r ∈ Ic, Γ0,sr = 0 implies Σ
(s)
0,rr = 0. The KKT optimality conditions in this scenario are

again given by equation (A.2) and it follows from the preceding discussion on Case 1 that for all
r ∈ Ic with Γ0,sr = 0, we have P(Γ̂sr = 0)→ 1 as n→∞.

Case 3 - Suppose that for some r ∈ Ic and s ∈ {1, 2, 3}, Σ
(s)
0,rr = 0 but Σ̂

(s)
rr 6= 0. From the KKT

optimality conditions

(A.3) 0 =
∂`penn (Θ)

∂Σ
(s)
rr

∣∣∣
Θ̂n

=
∂`n(Θ)

∂Σ
(s)
rr

∣∣∣
Θ̂n

− nλ1wsrdsr.

Assumptions (A1), (A2) and the consistency of Θ̂n imply that the first term on the right hand side
of equation (A.3) is Op(

√
np). For the second term, we again use assumption (A3) with ν ≥ 1 to

note that nλ1wsrdsr/
√
np = Op{λ1(n/p)ν+1/2} ≥ Op{λ1(n/p)(ν+3)/4} where λ1(n/p)(ν+3)/4 → ∞

as n → ∞ by assumption (A4) part (b). Combining these results, we have a contradiction since
the right hand side of equation (A.3) is asymptotically dominated by the second term which, with

probability tending to 1, cannot equal 0. Thus for all r ∈ Ic and s ∈ {1, 2, 3}, Σ
(s)
0,rr = 0 implies

P(Σ̂
(s)
rr = 0)→ 1 as n→∞.

Case 4 - Suppose that for some (i, j) ∈ {1, . . . , 3m} with i 6= j, Λ0,ij = 0 but Λ̂ij 6= 0. Since
Λ0,ij = 0 we have P (i, j) = 1. From the KKT optimality conditions

(A.4) 0 =
∂`penn (Θ)

∂Λij

∣∣∣
Θ̂n

=
∂`n(Θ)

∂Λij

∣∣∣
Θ̂n

− nλ2P (i, j).

Assumptions (A1), (A2) and the consistency of Θ̂n imply that the first term on the right hand
side of equation (A.4) is Op(

√
np). Also since λ2 > 0 is fixed, the second term in equation (A.4)

is Op(
√
n/p) which cannot equal 0 with probability 1. This leads to a contradiction since the

right hand side of equation (A.4) is asymptotically dominated by the second term. Thus for all
(i, j) ∈ {1, . . . , 3m} with i 6= j, Λ0,ij = 0 implies P(Λ̂ij = 0)→ 1 as n→∞.

The aforementioned four cases suffice to prove the desired result P(Θ̂n2 = 0)→ 1 as n→∞.

APPENDIX B: PREDICTION EQUATIONS

We will first discuss the prediction problem of Section 6.2 where we are interested in predicting the
time u > t expected longitudinal outcomes of Login Indicator, Duration, and Purchase Propensity
given the observed responses Yi(t) = {αij , Yij , ξij : 0 ≤ j ≤ t} for player i. We consider the case of
predicting wi(u | t) := E{Yiu |Yi(t); Θ} as an example as the rest follow along similar lines. Let α̂iu
be the predicted Login Indicator for player i at time u conditional on Yi(t). Then note that

E{Yiu |Yi(t); Θ} =

∫
E{Yiu | bi, c; Θ}p(bi, c | Yi(t); Θ)dbidc.
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From Section 7.2 of [3] an estimate of wi(u | t) is given by

ŵi(u | t) =

0, if α̂iu = 0

exp
{
x

(2)′

it β̂
(2) + z

(2)′

it b̂
(2)
i +

∑K
k=1 ditk

(
ĉ

(2)
tk + g

(2)′

tk γ̂
(2)
)

+
σ̂2

2

}
, otherwise

where b̂i = (b̂
(s)
i : 1 ≤ s ≤ 3) = arg maxb log p(b | Yi(t); Θ̂) and, recalling from Sections 3.2 and 4

that c = (c1, . . . , cK) and ck = (c
(1)
k , c

(2)
k , c

(3)
k )

i.i.d∼ N(0,Λ), ĉ = arg maxc log p(c | Yi(t); Θ̂).
We will now turn to the discussion in Section 6.3 and present our approach for predicting the

temporal trajectories of player correlations within each guild and with respect to each of the three
responses. Let u = t+ 1. For two players (i, i′) that belong to the same guild at time t, we consider
the case of predicting ρ(Yiu, Yi′u|Yit,Yi′t; Θ) which is the Pearson’s correlation coefficient between
the Durations (Yiu, Yi′u) at time u given the observed responses {Yi(t),Yi′(t)} until time t. Note
that the preceding discussion can be used to estimate wii(u|t) := E{Y 2

iu |Yi(t); Θ} and wi′i′(u|t) :=
E{Y 2

i′u |Yi′(t); Θ}, and so we focus only on estimating wii′(u|t) := E{YiuYi′u |Yi(t),Yi′(t); Θ}. Now,
we have

wii′(u|t) =

∫
E{YiuYi′u | bi, bi′ , c; Θ}p(bi | Yi(t); Θ)p(bi′ | Yi′(t); Θ)p(c | Yi(t),Yi′(t); Θ)dbidbi′dc,

where
E{YiuYi′u | bi, bi′ , c; Θ} = E{Yiu | bi, c; Θ}E{Yi′u | bi′ , c; Θ}.

An estimate of wii′(u | t) is given by ŵii′(u | t) so that ŵii′(u | t) = 0 if min(α̂iu, α̂i′u) = 0 and

ŵii′(u | t) = exp
{(
x

(2)′

it + x
(2)′

i′t

)
β̂(2) + z

(2)′

it b̂
(2)
i + z

(2)′

i′t b̂
(2)
i′

+2
(
ĉ

(2)
tk + g

(2)′

tk γ̂
(2)
)

+ σ̂2
}
, otherwise,

where b̂i = (b̂
(s)
i : 1 ≤ s ≤ 3) = arg maxb log p(b | Yi(t); Θ̂) and ĉ = arg maxc log p(c | Yi(t),Yi′(t); Θ̂).

APPENDIX C: DATA DESCRIPTION

We list the raw covariates along with their description that were available in the data in Table
1 below. The column ‘FE/CE’ indicates whether the covariate is a candidate fixed effect (FE) or a
composite effect (CE). Table 2 presents a descriptive summary of the raw covariates.
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Table 1
List of covariates and the three responses.

Type FE/CE Covariates Description

Focal player’s in-
game characteristics

CE level players character level in the game
CE pvp play time players daily gaming time of playing PVP mode in seconds
CE pvp kill point kill points a player achieves by playing PVP mode
CE quest count no. of quest a player accomplished when PVE mode
CE mission count no. of missions a player accomplished when playing PVE mode
CE pve time players daily gaming time of playing PVE mode in seconds
CE no of game daily total number of PVE game rounds a player played

Focal player’s in-
teraction with her
friends and the in-
game activities of
these friends

CE friend count no. of friends a player has
CE friend mean level mean character level of a focal players all friends
CE no of friend purch no. of times of a focal players friends made purchases
CE total friend buy monetary value of all purchases made by a focal players friends
CE no of friend interact no. of friends a player played with in teams during game sessions
CE game round play with friends no. of game sessions a player played in team with her friends

Focal player’s inter-
action with her guild

CE guild tenure no. of days a player has been associated with a guild
CE no of guildmem interact no. of guild member a player played with in teams during game sessions
CE no of game with guildmem no. of game sessions a player played with guild members

Guild characteristics

FE guildmem interact no. of guild members played in teams
FE avg game with guildmem average no. of game sessions a guild member played as part of a team
FE guild total purch monetary value of all purchases made by guild members
FE no of guildmem purch no. of times guild members made purchases
FE guildmem count no. of players associated with a guild

Other characteristics

FE gender dummy indicator for players virtual gender in the game
FE weekend dummy indicator for a weekend
FE holiday dummy indicator for Chinese New Year and Valentine’s day
CE time since days since last login

Sl No Response Description

1 login ind whether active in a day (0 - No, 1 - Yes)
2 duration total time played in a day in minutes
3 purch ind whether positive purchase from the player in a day (0 - No, 1 - Yes)

Table 2
Summary statistics of the covariates reporting % of 0, mean, the 25th, 50th, 75th, 95th percentiles and the standard
deviation of all players who logged-in (αij = 1) across the m = 30 days. For the guild specific characteristics and

time since, however, the statistics are reported for all players and not just the ones who logged-in.

Type Covariates % of 0 Mean 25th 50th 75th 95th Std.

Focal player’s in-
game characteristics

level 0.00 31.28 28.00 33.00 37.00 39.00 7.94
pvp play time 99.78 8.85 0.00 0.00 0.00 0.00 252.02
pvp kill point 99.78 7.66 0.00 0.00 0.00 0.00 248.17
quest count 71.29 0.97 0.00 0.00 1.00 5.00 2.79
mission count 69.49 1.15 0.00 0.00 1.00 6.00 2.95
pve time 19.49 4410.57 707.00 3254.00 6693.00 13313.00 4488.43
number of game 19.46 5.46 1.00 4.00 8.00 17.00 5.92

Focal player’s in-
teraction with her
friends and the in-
game activities of
these friends

friend count 0.13 37.00 17.00 30.00 49.00 90.00 34.82
friend mean level 0.00 30.25 27.57 31.56 34.50 37.41 6.16
no of friend purch 28.22 2.36 0.00 1.00 3.00 8.00 3.02
total friend buy 28.56 219.17 0.00 74.95 249.30 910.00 436.06
no of friend interact 53.86 1.09 0.00 0.00 2.00 4.00 1.63
game round play with friends 53.86 2.08 0.00 0.00 3.00 9.00 3.57

Focal player’s inter-
action with her guild

guild tenure 0.00 15.43 8.00 15.00 23.00 29.00 8.72
no of guildmem interact 57.84 1.23 0.00 0.00 2.00 6.00 2.06
no of game with guildmem 57.84 1.62 0.00 0.00 2.00 8.00 3.03

Guild characteristics

guildmem interact 0.13 25.78 18.00 25.00 33.00 46.00 11.59
avg game with guildmem 0.13 3.64 2.74 3.46 4.44 5.85 1.22
guild total purch 14.77 213.07 27.43 109.00 253.88 805.58 333.85
no of guildmem purch 14.77 2.79 1.00 2.00 4.00 8.00 2.53
guildmem count 0.06 104.16 92.00 107.00 116.00 121.00 18.47

Other characteristics

gender 54.48 0.46 0.00 0.00 1.00 1.00 0.50
weekend 66.72 0.33 0.00 0.00 1.00 1.00 0.47
holiday 93.56 0.06 0.00 0.00 0.00 1.00 0.25
time since 59.68 2.93 0.00 0.00 3.00 17.00 5.85
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