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We consider a large-scale, cross-classified nested (CRON) joint model
for modeling customer responses to opening, clicking, and purchasing from
promotional emails. Our logistic regression-based joint model contains cross-
ing of promotions and customer effects, and allows estimation of the hetero-
geneous effects of different promotion emails after adjusting for customer
preferences, attributes, and historical behaviors. Using data from an email
marketing campaign of an apparel company, we exhibit the varying effects
of promotions not only based on the contents of the email but also across
the three different stages, viz. open, click, and purchase, of the conversion
funnel. We conduct Bayesian estimation of the parameters in the joint model
by using a block Metropolis-Hastings algorithm that not only incorporates
nested subsampling to tackle the severe imbalance between conversions and
no conversions, but also uses additive transformation-based modifications of
random walk Metropolis to scale estimation for large numbers of customers.
We extend our approach to a segmented cross-classified nested (SCRON)
joint model that encompasses the possibility of varying promotion effects
across different customer segments. The resultant high-dimensional model is
estimated using spike-and-slab priors on the promotion and customer type
interactions. Our nested joint model captures the correlations in customer
preferences across the conversion funnel. Based on the promotion estimates
from the model, we demonstrate how marketers can use different priced,
non-priced, and combination of price and non-price promotions to increase
brand awareness or increase purchases. Comparing estimates from CRON
and SCRON models, we display the benefits of targeted marketing by using
email promotion lists which are separately optimized for the different cus-
tomer segments.

1. Introduction. Over the past decade, the digital revolution has changed the paradigm
of marketing promotions. According to studies by Forrester Research and eMarketer, in 2020,
an average firm was expected to allocate 45% of their total marketing budget to online media
(Leone, 2020). Among the different types of digital promotions, email marketing is the most
popular, as it yeilds the highest return on investment (ROI) (Lee, 2019). The massive popu-
larity of email marketing is primarily due to two factors: its reach, as at least 91% of current
internet users participate in digital activities using emails; and secondly, the minimal cost
of sending out an email compared to other digital media (Perrin, 2019). Despite such wide
usage, promotion campaigns through emails are currently facing the colossal challenge of rel-
evance. In a recent study by Aldighieri (2019), it was reported that, while 55% of marketers

Keywords and phrases: logistic regression, joint modeling, imbalanced data, spike-and-slab priors, bayesian
hierarchical model, promotional email, high-dimensional regression.

1

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
mailto:sabyasachi.mukhopadhyay@iimu.ac.in%20
mailto:wkar@purdue.edu%20
mailto:gourab@usc.edu


2

think that more than half of all the emails sent to customers were relevant, only 14% of cus-
tomers believe that more than half of the emails from an organization were relevant to them.
Promotions lacking relevance cause customer alienation and fatigue that may eventually lead
to unsubscription of emails or even substitution by competitors (Forte, 2019). Hence, it is
extremely important to understand the role of different promotions, so that relevant, refined,
and targeted email campaigns can be launched.

Marketers are increasingly using data-driven techniques to study promotion effects in
email campaigns (see Zhang, Kumar and Cosguner, 2017; Sahni, Wheeler and Chintagunta,
2018; Sahni, Zou and Chintagunta, 2017 and the references therein). Here, based on customer
responses to a retailer’s email marketing campaign (which is the application case described in
detail in Section 2), we develop a disciplined statistical framework to accurately estimate var-
ied promotion effects. Promotions can be classified into two fundamentally different groups:
(a) priced, which includes discount percentages or discount dollars of varied magnitudes,
and (b) non-priced, such as buy-one-get-one free or free shipping or free samples or free
returns. Along with the above types, modern-day retailers also use different combinations
of priced and non-priced promotions. Statistically, this gives rise to a high-dimensional esti-
mation problem, where the efficacy of multiple promotions simultaneously used in an email
campaign needs to be estimated. These new-age problems are further compounded with non-
linearity, imbalance, heterogeneity, and big-data computational challenges. For this purpose,
we develop a flexible, novel Bayesian methodology that conducts efficient estimation in the
presence of the aforementioned challenges in a high-dimensional regression model. These
features of our method are described in Section 1.3. Next, we briefly describe the chief ob-
jectives and the associated responses in digital marketing campaigns.

1.1. Email Marketing: Promotions and Conversion Funnel. Most contemporary email
marketing campaigns track their effectiveness by evaluating the three metrics: open, click,
and purchase rates of promotional emails. The open-click-purchase metrics are not mutually
independent but are inter-dependent nested stages constituting the conversion funnel (Zhang,
Kumar and Cosguner, 2017), which a customer starts by opening the promotional email.
These metrics are highly heterogeneous across different campaigns. For the US market, the
open rates of email promotions in 2018 varied between 19% and 54%, while the click rate
varied between 3% and 10% (Perrin, 2019). Purchase, being the terminal point at the bottom
of the funnel, is directly related to revenue. However, it is also equally important to estimate
a promotion’s effectiveness at the open and click stages, for they reflect brand awareness,
customer acquisition, and customer engagement, which are important attributes for tracking
daily operations and business growth. Different promotional strategies have disparate im-
pacts on the aforementioned three stages of the conversion funnel. For estimating promotion
effectiveness, we develop a joint modeling framework (Rizopoulos, 2012) that incorporates
the interdependencies among the customer responses across the conversion funnel.

1.2. Joint Modeling of Customers’ Responses to Promotion Emails. We model customer
responses to an email marketing campaign of an apparel company. Finding relevance of dif-
ferent kinds of promotions in this sector is particularly important, as on average 60% of shop-
pers currently feel that promotional emails do not cater to their tastes and interests (Kapner,
2017). We use a nested logistic regression setup for the three stages in the conversion fun-
nel. Recently, Zhang, Kumar and Cosguner (2017), using a hidden Markov model, showed
that it is critical to control for the correlated nature of the conversion funnel. However, they
considered an aggregated setup where conversion denoted one or more purchases made by a
customer from any number of emails she might have received in a month. Thus, their model
is agnostic about the promotion content. Our joint modeling framework, based upon a gen-
eralized linear model (GLM), not only allows for modeling codependencies across the three
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stages in the conversion funnel, but also allows for measuring customer responses at the dis-
aggregative level for all promotion types and contents. It can generate rich insights into which
promotions are more effective at what stage of the conversion funnel, thereby developing ac-
tionable insights for managers, depending on what the objective of the promotion is. To the
best of our knowledge, this ranks among the first works on joint modeling of the conversion
funnel based on promotion content types.

Our proposed GLM-based joint modeling framework predicts customer choices based on
promotion effects as well as customer’s recency, frequency, and monetary (RFM) values. We
entertain nonlinear effects of a customer’s recency values, measured in days since she made
her last purchase, or days since her latest click or opening of a promotion email. These RFM
covariates are described in Section 2. A critical challenge in jointly modeling the three stages
is high imbalance between the positive and negative responses, because of low click rates
and even lower purchase rates in promotional emails. We develop an imbalance-corrected
Bayesian logistic regression framework that also encompasses interactions betweeen RFM
values and promotion effects. The resultant model can be used in designing targeted market-
ing campaigns (as done in Section 5.4 of the application case) that use different promotion
contents for different strata of the customer base.

1.3. Background and Statistical Challenges. Traditionally, the effectiveness of promo-
tions is studied at the end stage of the conversion funnel based on buy or not buy deci-
sions. While Kamakura and Kang (2007) and Osinga, Leeflang and Wieringa (2010) used
sale response model to study purchases at the aggregate level, recent works of Wu, Li and
Liu (2018); Zhang, Kumar and Cosguner (2017) demonstrated the benefits of conducting
efficiency analysis at the individual customer-identifier level. Using randomized field ex-
periments, Gopalakrishnan and Park (2019) and Sahni, Wheeler and Chintagunta (2018)
demonstrated empirical evidence of the heterogeneous behavior of customers across the dif-
ferent stages of the conversion funnel. Here, we use Bayesian joint modeling (Rizopoulos
and Ghosh, 2011; Rizopoulos, 2012; McCulloch, 2008; Rizopoulos and Lesaffre, 2014),
which provides a disciplined framework for simultaneously studying customer-level re-
sponses across the three stages of the conversion funnel. However, email-marketing data
containing responses to multiple email promotions from a large number of customers, and
the business model associated with marketing funnels pose several statistical challenges and
necessitates novel extensions of the conventional Bayesian joint modeling regression frame-
work. We describe the salient features of our approach below.

Evaluating promotion content and a two-way cross classified joint model. While extant aca-
demic research has extensively worked on determining the optimal promotion frequency
and volume (see Wu, Li and Liu, 2018; Seetharaman and Chintagunta, 2003, and the ref-
erences therein), very limited research has delved into the content of the promotion. The
extent of research on promotion content has been mostly restricted to determining, given a
customer segment(s) or engagement propensity, whether a price promotion was better than
a non-price promotion. However, given the current variation in offers, the above insight is
not quite actionable for a retailer. The retailer needs to know whether a price promotion
should be about discount percentage or discount dollars; whether a non-price promotion
should be buy-one-get-one free, or free shipping or free samples or free returns, and how
much is the difference in their effects, if any; whether it is beneficial to use combinations
of priced and non-priced promotions. For that purpose, here we estimate the efficacy of
each of the different promotion emails (different subject line or text content) used in the
campaign. Statistically, this translates to considering 2-way cross-classified models with
crossed effects for customers’ personal preferences to email marketing and a promotion
email’s attractiveness.
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We use correlated random effects for modeling individual customer preferences at the
different stages of the conversion funnel, and fixed effects for studying his/her responses to
promotions. While using a cross-classified model enabled us to estimate promotion effects,
we encounter severe imbalance in the responses (between conversion and no conversion),
which is controlled in aggregated models and which does not differentiate between pro-
motion content as in Zhang, Kumar and Cosguner (2017), who aggregated responses at
the monthly resolution. Also, estimating parameters in a large cross-classified model with
random effects is challenging. We describe these issues next.

Imbalanced data. As the conversion rate in email marketing can be quite low, often severe
imbalance is observed in the purchase stage of the conversion funnel. It is well known
(see Ch. 16 of Kuhn et al., 2013, Fithian and Hastie, 2014, Johndrow et al., 2019 and
the references therein) that, in modeling discrete classes, highly disproportional relative
frequencies of the classes can have a significant impact on the effectiveness of the model.
Subsampling approaches with subsequent correction of the regression estimates (Fithian
and Hastie, 2014; Wang, Zhu and Ma, 2018) is one of the popular approaches to tackling
imbalance. Here, in Section 4.2.1, we develop a nested two-stage subsampling scheme that
can correct imbalance across the different stages of the conversion funnel.

Scalable estimation for Big-data. Unlike, recent works in email marketing (Zhang, Kumar
and Cosguner (2017) considered 200 and Wu, Li and Liu (2018) had 2000 focal cus-
tomers), here we have a very large sample of customers (around 78000). Estimating re-
gression coefficients in such a massive cross-classified generalized linear mixed model
(GLMM) presents several computational challenges. As such, scaling mixed effects mod-
els in massive customer-level data for modeling the customerâĂŹs personal preferences
to a product is a vibrant topic in contemporary statistics (Gao et al., 2017; Gao, 2017;
Zhang et al., 2016). In a two-way cross-classified balanced linear mixed effect model,
Papaspiliopoulos, Roberts and Zanella (2020) have recently established fast convergence
of a collapsed Gibbs sampler. We use a related block Metropolis-Hastings (BMH) algo-
rithm (see sec. 4.2.2) for Bayesian estimation of the parameters in our large and complex
cross-classified joint modeling setup. To scale estimation, we use additive transformation-
based modifications of random walk Metropolis (Dutta and Bhattacharya, 2014; Dey et al.,
2016), which greatly increased the acceptance rate in BMH. We establish convergence
properties of the BHM algorithm with additive transformations (BHMT). We run BHMT
in a parallel computing framework on multiple machines, each based on a subsample of
the data, suitably selected, as explained later in sec. 4.2.1, to tackle imbalanced responses.
We combine posterior inference from these multiple runs on subsampled data by using the
consensus Monte Carlo approach of Scott et al. (2016) and Huang and Gelman (2005).

Nonlinear RFM effects. Customer characteristics and purchases greatly vary as RFM values
changes. To estimate the effects of promotion emails, we need to look at residual customer
responses after adjusting for the influence of the RFM variables. However, the effect of
the RFM variables is not linear (Bult and Wansbeek, 1995; Fader, Hardie and Lee, 2005).
Figure 3 shows the marginal distribution of the recency variable. We model its nonlinear
effect using cubic splines (See ch. 6 of James et al., 2013). However, incorporating a non-
linear structure that not only well fits the empirical observation but also is tractable in the
large-scale joint modeling framework is non-trivial. The flexible generalized cross vali-
dation methodology in Ruppert (2002) would be difficult to implement in our large-scale
joint modeling setup. In Section 4.1, based on conditional distributions, we implement a
pragmatic, computationally cheap, heuristic policy for capturing nonlinear RFM effects.

Customer segmentation and high-dimensional promotion effects. In the marketing literature,
it is well documented that promotions may impact different customer segments differently
(Rossi, McCulloch and Allenby, 1996; Gopalakrishnan and Park, 2019). Assuming that the
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customer segments are known from previous market research, we introduce interactions
between promotions and customer types to encompass the possibility of varying promotion
effects across different customer segments in our cross-classified joint model. Even with
a moderate number of segments, the resultant model is high-dimensional. However, most
of these interaction effects will not be significantly different from their modal values. In
Section 4.4 , we use spike-and-slab prior (Ročková and George, 2018; Castillo, Schmidt-
Hieber and Van der Vaart, 2015) on the interaction parameters to discard insignificant
effects.

The rest of the paper is organized as follows. In Section 2, we describe our data, which is
obtained from email marketing campaigns of an apparel retailer. In Section 3, we present our
cross-classified joint modeling framework and we detail the methodology used for estimating
the proposed model in Section 4. Using the data set introduced in Section 2, we present infer-
ence and business implications of the results obtained by our proposed analysis in Section 5.
We demonstrate how marketers should use different promotions for increasing brand aware-
ness or purchases. We also show (see Section 5.5) the benefits of targeted marketing by using
email promotion lists separately optimized for the different customer segments. Figures and
tables referred in the paper with the prefix S are presented in the supplementary material.

2. Data. Our data set consists of responses from 77986 customers to a series of promo-
tion emails sent to them in a campaign season. Overall, there were 25 promotional emails
that were used during this campaign. Out of these, nine are solely priced (P) promotions,
seven are solely non-priced (N), and nine are combination (C) promotions having priced as
well as non-priced incentives. Our data contain a recipient’s responses to opening, clicking
(if opened), and purchasing (if any, after clicking) from each of the promotional emails.

Fig 1: Pairwise scatterplots of customer characteristics: avergage yearly web spendings (in
USD), past purchase frequency, age (in years) and income (in USD).

Along with customer responses to the promotional emails, we have the following addi-
tional information regarding each customer: (a) age, which is binned as a categorical variable
with five levels: less than 17 years; 18–35 years; 36–49 years; 50–64 years; 65 plus years;
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(b) income, binned as a categorical variable with nine levels: under $15K, $15–25K, $25–
35K, $35–50K, $50–75K, $75–100K, $100–120, $120–149K, $150K plus; (c) three recency
variables pertaining to the number of days since the customer last opened (Days Since Last
Opened), clicked (Days Since Last Clicked), and purchased (Days Since Last Purchased)
from a promotion email; (d) frequency of purchases ((Past Pur. Freq.), tabulated as the num-
ber of orders made in the last two years; (e) average order values separately tabulated for
in-store (Ave. Retail Spend) and internet (Ave. Web Spend) purchases.

Figure 1 shows the pairwise distributions of these customer-identifier level attributes; in-
come and age buckets were judiciously clubbed in the figure for presentational ease. For each
promotion, Table S.2 presents the aggregated values of these statistics summarized across the
recipients, wherein we observe that the average customer characteristics pertaining to the fre-
quency and monetary values (Ave. Retail Spend and Ave. Web Spend) are very similar across
all the different promotions. Figure 2 (right plot) shows the average customer responses for
the different promotion emails; the average responses vary significantly, not only across pro-
motions but also across the stages of the conversion funnel.

Fig 2: Left: Schematic diagram showing different components of the data; Customer re-
sponses at different stages of the conversion funnel are jointly modeled based on customer
characteristics and the content of a promotion email. Right: Scatterplot of average customer
responses to different promotion emails.

Figure 2 (left diagram) shows a schematic demonstrating the different components of the
data. We model the customer responses at the three different stages of the conversion funnel
based on his/her age, income, recency, frequency, and monetary characteristics as well as
the contents of the promotion email. We have an imbalanced design as not all the customers
received every email. On average, an arbitrary customer received around 21 emails. Table S.1
shows the distribution of the number of emails received while Figure S.1 shows the coverage
of each of the promotional emails. From the above data, we randomly select T = 10000
customers as test data and use the data corresponding to the remaining N = 67986 customers
as our training data set.

3. Model.

3.1. Cross-classified Nested Nonlinear Model (CRON). Let the binary variables Oik, Cik

and Pik denote the response of customer i at the open, click, and purchase stage, respectively,
to promotion k, where i = 1, . . . ,N and k = 1, . . . ,K; positive values of Oik, Cik, and Pik

indicate conversion at the respective stages. Here, K = 25. We develop a conditional hierar-
chical model with its base at the open stage of the conversion funnel. Consider the following
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2-way cross-classified model:

logit{P (Oik = 1)}=UT
ik �

(1) + f1(rik) + ⌫
(1)
k + b

(1)
i ,(1)

with b(1)i being the preferences of customer i and ⌫(1)
k being the effect of the kth promotion

email. The suffix 1 denotes that it is the model for the first stage (open) of the conversion
funnel. �(1) is invariant across both promotions and customers; the matrix U contains the
covariates values corresponding to Age, Income, Frequency, Ave. Retail Spend and Ave. Web
Spend. rik is the 3-dimensional vector of recency variable (last opened, clicked, purchased)
that is allowed to have nonlinear effects. In the click stage, note that, Cit = 0 if Oit = 0 and
so, we model:

logit{P (Cik = 1|Oik = 1)}=UT
ik �

(2) + f2(rik) + ⌫
(2)
k + b

(2)
i .(2)

Note that, P (Cik = 0) = P (Oik = 0)+(1�P (Cik = 1|Oik = 1)) · (1�P (Oik = 0)). In this
second-stage model, the parameters denote the conditioned (additional) effects, based on the
first-stage effects. Similarly, for the purchase stage we consider:

logit{P (Pik = 1|Cik = 1)}=UT
ik �

(3) + f3(rik) + ⌫
(3)
k + b

(3)
i .(3)

We impose an hierarchical structure on the customer preferences bi = (b(1)i , b
(2)
i , b

(3)
i ) and

consider {bi : 1  i  N} are independent and identically distributed (i.i.d.) random vari-
ables from N(0,⌃). Thus, the outcomes Oik,Cik, Pik are allowed to be correlated across the
different stages of the funnel.

Fig 3: Marginal density of the days since last (a) opened (b) clicked (c) purchased respectively
from left to right.

Figure 3 shows the marginal distribution of the recency variables in the data; the
marginal densities are multimodal with greatly varying intermodal distances, suggesting
that the recency variables might only have nonlinear but also local effects. Thus, we use
quadratic splines to model those. f1, f2, f3 are modeled by additive splines fj(rik) =P3

l=1 ⇡jlf(rikl;µ
(jl)

, t(jl)), for j, l= 1,2,3. The weights ⇡jl are binary; some of them were
set to zero, based on model diagnostics to eliminate cases of multicollinearity between the
the last opened (r..1) and last clicked (r..2) covariates. We use quadratic splines in f as:

f(x;µ, t) =
2X

i=1

µix
i +

mX

j=1

µ2+j(x� tj)
2
+ where m= length(t).(4)

The coefficients (µ), the number of knots (m), as well as the location of the knots (t) are
chosen separately for each stage and each recency variable r..l. Henceforth, we call the model
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in Equations (1)-(4) CRON (Cross-classified Nested Nonlinear model). Table S.6 lists its
coefficient estimates.

To understand the impact of local effects of recency variables, and contentwise promotions
in CRON, we compare CRON to the following two non-classified (NC) nonlinear submodels:
(a) Non-classified Global (NCG) which does not have contentwise promotion, but only global
effects of the recency variables based on quadratic polynomials. NCG corresponds to impos-
ing the following constraints ⌫

(j)
k = ⌫

(j) for all k and j = 1,2,3, and t = ; in Equations
(1)-(4).
(b) Non-classified Local (NCL) which has non-linear local recency variables, as in CRON,
but no contentwise promotion effects. Note, that NCG ✓ NCL ✓ CRON. Table 1 presents the
key features of these models when compared to existing methods.

TABLE 1
Comparison of SCRON model with existing methods.

Customer Joint Model Locally Heterogeneous Promo Varying Promo
Model ID of conversion estimated effects based on effects on customer

resolution funnel recency effects email content segments

Kamakura and Kang (2007)

Osinga, Leeflang and Wieringa (2010) 7 7 7 7 7

Zhang, Kumar and Cosguner (2017)

Wu, Li and Liu (2018) 3 7 3 7 7

NCG 3 7 7 7 7

NCL 3 3 7 7 7

CRON 3 3 3 3 7

SCON 3 3 3 3 3

3.2. Segmented Cross-classified Nested Nonlinear Model (SCRON). We next consider
an extension of CRON to encompass scenarios where the promotion effects are allowed to
vary with customer type. Suppose the customers are pre-classified in g = 1, . . . ,G segments
and the promotions effects can vary between different segments. Instead of ⌫(j)k we use ⌫(j)kg in
Equations (1)-(3). As it contains interaction terms between promotion content and customer
types, we call it Segmented Cross-classified Nested Non-linear Model (SCRON).

Due to these interactions, even for moderate values of G the GLMs in each stage of
SCRON are very high-dimensional. However, a lot of the promotion effects {⌫(j)kg : k =
1, . . . ,K, g = 1, . . . ,G} do not differ significantly from the baseline effect. We use spike-
and-slab priors (see Ročková and George, 2018; Ishwaran et al., 2005; Castillo, Schmidt-
Hieber and Van der Vaart, 2015, and the references therein) on ⌫

(j)
kg . This helps to discard the

insignificant promotion effects. Further details are presented in Section 5.4.

4. Estimation: Algorithmic Details and Properties. We next describe the algorithm
used for estimating the CRON and the SCRON models. There are several statistical chal-
lenges associated with the estimation procedure, as the data set is not only large, needing a
scalable algorithm, but also the design is incomplete (missing (i, k) pairs, see Table S.1) and
imbalanced. Our proposed algorithm contains several key features which we explain subse-
quently.

4.1. Calibrating the Nonlinear Effects. We use a greedy, marginal method for appro-
priately calibrating the shape of the nonlinear effects of the recency variables. Substi-
tute bi = 0 and ⌫

(j)
k for all i, k, j in Equations (1)–(3). We fit splines separately for the
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open, click, and purchase stages. We illustrate the procedure for the open stage first. Let
Ro = {Ro

ik : 1  i  n,1  k K} be all the different values of days since last opened in
the data. Correspondingly, let Rc and Rp denote the vectors of days since last clicked and
purchased respectively. Consider placing knots at the deciles of Ro, Rc and Rp . Fit logistic
regression model of (1) (with bi,⌫

(1)
k = 0) on a subsample of the training data that contains all

the conversions and an equal number of randomly chosen non-conversions. This subsampling
is done to correct the imbalance (preponderance of non-conversions) in the data (details is
presented in subsection 4.2.1 later in a different context). Construct receiver operating char-
acteristic (ROC) curve on the test data based on the above fit. Drop knots iteratively (one
at a time) from the center of the data, unless the ROC curve significantly deteriorates. The
process is repeated for click and purchase stages with Equations (2) and (3).

4.2. Block Metropolis-Hastings with Subsampling and Transformations. We first illus-
trate the log-likelihood involving of the CRON model. Let B = {bi : i = 1, . . . ,N} contain
all the latent customer preferences and ⇥ be the set containing all the other parameters used
in Equations (1)–(4). Thus, ⇥ includes the promotion effects ⌫ = {⌫(j)k , k = 1, . . . ,K; j =
1,2,3}, the � = {�(j) : j = 1,2,3} as well as the spline coefficients m = {µ(jl) : j, l =
1,2,3}. Denote the log-odds ratio `

o
ik := logit(P(⇥,B)(Oik = 1), the conditional log-odds

ratios `
c
ik = logit(P(⇥,B)(Cik = 1|Oik = 1) and `

p
ik = logit(P(⇥,B)(Pik = 1|Cik = 1) as

given in Equations (1)–(3). Let ⌦ be the set of (i, k) pairs in our training data D, .i.e.,
⌦ = {(i, k) 2 D : i = 1, . . . , n; k = 1, . . . ,K}. Then, the log-likelihood l(⇥,B|o,c,p) is
given by

X

(i,k)2⌦


oik`

o
ik + cik`

c
ik + pik`

p
ik(5)

� log(1 + exp(`oik))�oik log(1 + exp(`cik))� cik log(1 + exp(`pik))

�

On ⇥, we use a independent normal prior g1 =N(✓0,diag(�2
0)). The hyper-parameters �0,

�2
0 are set based on GLM estimates fitted separately for the three stages. On B, we use prior

g2(B|⌃) =
Qn

i=1 �3(bi|0,⌃) where �3( |0,⌃) is a trivariate normal distribution with mean
0 and variance ⌃. An Inverse-Wishart prior g3 is imposed on ⌃. We generate Markov chain
Monte Carlo (MCMC) samples from the logarithm of the posterior density:

d(⇥,B) := l(⇥,B|o,c,p) + log g1(⇥) + log g2(B|⌃) + log g3(⌃).(6)

4.2.1. Subsampling and Imbalance Data. As issue with sampling directly from d(⇥,B)
is that, in these applications, there are often much lower numbers of conversions (cases)
than non-conversions (controls). Although, this marginal imbalance in the data is perva-
sive in all three stages of the conversion funnel, it is acute in the purchase stage, andP

(i,k)2⌦ pik/
P

(i,k)2⌦(1 � pik) as well as
P

(i,k)2⌦ pik/
P

(i,k)2⌦ cik are usually quite
small. Traditional frequentist as well as Bayesian approaches for estimating logistic regres-
sion models in imbalanced data sets lead to erroneous results (see Owen, 2007; Johndrow
et al., 2019 and the references therein). A popular fix (Anderson, 1972; Prentice and Pyke,
1979; Chawla, Japkowicz and Kotcz, 2004) is to conduct Case-Control subsampling (Fithian
and Hastie, 2014) so that the ratio of conversions to non-conversions increases in the sample,
and imbalance is reduced.

Case-control subsampling is usually conducted by incorporating all the cases and exactly ⇢

times as many controls for some fixed ⇢, such as ⇢= 1,2,5. We consider a similar procedure
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based on acceptâĂŞreject sampling. Consider the following nested subsampling scheme. In-
stead of using ⌦ for model fitting, we use the following nested subsets ⌦ ◆ ⌦o ◆ ⌦c ◆ ⌦p

for estimation in the open, click, and purchase stages. The case-to-control ratio in the open
stage is 1 : ⇢1. Conditioned on an email being opened, the case-to-control ratio in the click
stage is 1 : ⇢2, and conditioned on a clicked email the case-to-control ratio in the purchase
stage is 1 : ⇢3. The nested subsampling scheme is:

• For all (i, k) 2⌦, generate independent Bernoulli random variable Z
o
ik such that

P (Zo
ik = 1) = oik + ⇢1(1� oik)

X

(i,k)2⌦0

oik

�✓
|⌦0|�

X

(i,k)2⌦0

oik

◆
,

where, |⌦0| =
P

1iN ;1kK I{(i, k) 2 ⌦0}. Define a sub-sample ⌦o of ⌦ as ⌦o =
{(i, k) 2 ⌦ : Zo

ij = 1}. It contains all the conversions. The expected proportion of con-
versions to non-conversions in the sample is ⇢1.

• For all (i, k) 2⌦o, generate independent Bernoulli random variable Zc
ik such that P (Zc

ik =
1) = cik + ⇢2(1� cik)

P
(i,k)2⌦o

cik/(|⌦o|�
P

(i,k)2⌦o
cik) where |⌦o| denotes the cardi-

nality of ⌦o. Define ⌦c = {(i, k) 2⌦o : Zc
ik = 1}.

• For all (i, k) 2⌦c, generate independent Bernoulli random variable Zp
ik such that P (Zp

ik =
1) = pik + ⇢3(1 � pik)

P
(i,k)2⌦c

pik/(|⌦c| �
P

(i,k)2⌦c
pik). Define ⌦p = {(i, k) 2 ⌦c :

Z
p
ik = 1}.

On the sub-sampled data, the dimension of the B can decrease. Set, BS = {bi : (i, k) 2
⌦o for some k}. Then, in the subsampled data, the logarithm of the posterior density from
Equation (6) reduces to:

dS(⇥,B
S) := lS(⇥,B

S) + log g1(⇥) + log g2(B
S |⌃) + log g3(⌃),(7)

where, the lS(⇥,B
S) is the log-likelihood based on the sampled data:

lS(⇥,B
S) =

X

(i,k)2⌦o

oik`
o
ik +

X

(i,k)2⌦c

cik`
c
ik +

X

(i,k)2⌦p

pik`
p
ik

� |⌦o| log(1 + exp(`oik))� |⌦c| log(1 + exp(`cik))� |⌦p| log(1 + exp(`pik)) .(8)

Note that lS(⇥,B
S) is not an unbiased estimator of l(⇥,B|o,c,p) from Equation (5), and

therefore we need to adjust the posterior estimates produced by sampling from dS(⇥,B
S) in-

stead of d(⇥,B). This is done at the end of the Metropolis-Hastings algorithm, below. Also,
note that here we have implemented a uniform down sampling of the controls. Fithian and
Hastie (2014) showed that logistic regression subsampling policies that adjusts the class bal-
ance locally in feature space can outperform uniform down-sampling. However, such policies
use proximity measures in the feature space and cannot be directly extended to our applica-
tion, due to the high-dimensionality of the feature space and joint modeling across 3 nested
stages.

4.2.2. Block Metropolis-Hastings with Additive Transformations (BMHT). We next pro-
vide updates for sampling from the posterior distribution. These updates are done in two
major blocks. We initialize ⇥ Âăby ⇥̂0 which is selected by running GLM (with bis set to
0) separately on the three stages in CRON after the Âăknots locations are chosen, based on
the prescription in the previous subsection. We set B̂0 = 0 and present updates for (⇥̂t, B̂t)
as iteration step t increases.



JOINT MODELING FOR ESTIMATING PROMOTION EFFECTS 11

Block 1: Update ⇥ keeping B fixed. This block is updated sequentially for the three stages
of the conversion funnel. Write ⇥̂ as {⇥̂(j) : j = 1,2,3} consisting of parameters from
the open, click, and purchase stages respectively. Denote ⇥̂(�j) = ⇥̂ \ ⇥̂(j). Âă Note that,
given B, ⇥̂(j) is conditionally independent of ⇥̂(�j) in Equation (6). Thus, at iteration t,
separately for each j we update from ⇥̂(j)

t to ⇥̂(j)
t+1 while B̂t is fixed. Now, noting that,

g1(⇥̂) = g11(⇥̂(j))g12(⇥̂(j))g13(⇥̂(j)) for j = 1,2,3 :

(a) Draw ⇥̂(j) by perturbing ⇥̂(j)
t with Gaussian noise, the variance of which is calibrated

by looking at mixing in the chain. Then, calculate,

r
(j)
t+1 = dS(⇥̂

(j)
, ⇥̂(�j)

t , B̂
S
t )� dS(⇥̂

(j)
t , ⇥̂(�j)

t , B̂
S
t )

(b) Generate U from Uniform[0,1]. If r(j)t+1  U then update ⇥̂(j)
t+1 = ⇥̂(j); else ⇥̂(j)

t+1 =

⇥̂(j)
t .

Block 2: Update customer-specific preferences B keeping ⇥ fixed As cardinality of B
S is

large, convergence of the naive MCMC samplers can take super-linear time (Gao et al.,
2017). Unless great care is taken to properly scale the proposal distribution, the random
walk Metropolis (RWM) algorithm can have poor convergence properties. As BS is large,
an issue in updating all bi 2B

S simultaneously using i.i.d. draws from g2 ·g3 is that there is
always a positive probability that some coordinate of the multiple random draws will be ill-
proposed; in that case, the acceptance ratio will be extremely small, and with high probabil-
ity will lead to the rejection of the entire move. To enhance the acceptance rate, we imple-
ment the Transformation-based Markov Chain Monte Carlo (TMCMC) algorithm (Dutta
and Bhattacharya, 2014; Dey et al., 2019) that simultaneously updates all components in
B

S using appropriate move types as defined by deterministic transformation of a single
draw from g2 · g3. Generate ⌃ from g3 and b̂ from �( ·|0,⌃). Consider B̂S

t+1 = B̂
S
t + ⇢Zib̂

where Zis are i.i.d. from Bernoulli(0.5) and ⇢ > 0 is a fixed small number. Generate U

from Uniform[0,1]. Now, if dS(⇥̂t+1, B̂
S
t+1)� dS(⇥̂t, B̂

S
t ) U, then B̂

S
t = B̂

S
t+1.

The scale ⇢ in the TMCMC step is chosen based on the convergence diagnostics as prescribed
in Dey et al. (2019). Papaspiliopoulos, Roberts and Zanella (2020) have shown fast conver-
gence of collapsed samplers in two-way cross-classified setups albeit in a balanced linear
model. Geometric ergodicity of TMCMC methods has been established by Dey et al. (2016).
Thus, we expect our proposed algorithm to converge. We show that the above-mentioned
block Metropolis-Hastings with additive TMCMC modifications (BMHT) converges. The
proof, presented in the appendix, follows by showing that BMHT satisfies the conditions in
Theorem 2.1 of Dey et al. (2016), which are necessary and sufficient conditions for geometric
convergence of the TMCMC induced Markov chains.

We need the following assumptions on the design matrix. Let X(j)
S denote the covariate

matrix corresponding to ⇥(j) for the subsample S = (⌦o,⌦c,⌦p). For any fixed K , any
subsample S of ⌃ generated following the scheme in sec. 4.2.1 obeys the conditions:
Assumption 1: the data matrix X

(j) has full column rank for all j = 1,2,3.
Assumption 2: ⇢1,⇢2,⇢3 are bounded above by a constant C0. Also, the imbalance at any
stage of the conversion funnel for any promotion does not lead to degeneracy, i.e., there
exists ✏> 0 such that

min
1kK

min

✓X

i

aikI{(i, k) 2A},
X

i

(1� aik)I{(i, k) 2A}
◆
> ✏|⌦|

holds when oik, cik and pik are substituted for aik.
These assumptions are very standard in regression setups and can be checked for each

subsample. We have the following result on convergence of our proposed algorithm. The
proof is provided in supplement sec S.3.
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PROPOSITION 1. Under assumptions A1 and A2, the BMHT Markov chain is geometri-
cally ergodic.

4.2.3. Adjusting Estimates from BHMT for Case-Control Subsampling. After the chain
has converged, the posterior distribution from the burnt-in chain based on the subsampled
data can be converted to a consistent posterior distribution of the model parameter based
on the original data, by simply conducting only a location shift to the intercepts ↵

(j):
update ↵̂

(j) to ↵̂
(j) � log⇢j for j = 1,2,3. Let ⇥̂S denote the posterior mean (after cor-

rection) and ⌃̂S be the estimates for the variance components obtained from BHMT, based
on subsample S and satsifying assumptions A1–A2. The plug-in estimate of predictive dis-
tribution (Geisser, 1993) using ⇥̂ and ⌃̂ converges in probability to the true distribution and
can be used for out-of-sample predictions (see supplement sec. S.4).

4.3. Aggregating Inference from Multiple Subsamples. We repeat the estimation process
in sections 4.2.1 and 4.2.2 for L different subsamples by running Monte Carlo algorithms
in separate machines. Akin to Scott et al. (2016), after the chains have burnt-in, we com-
bine the draws from the chains based on fractional priors by using weighted averages with
each weight being the reciprocal of its marginal posterior variance. A problem with this ap-
proach is that the invariant distribution is not preserved across samples. Recent works of Sen
et al. (2020); Sachs et al. (2020) develop a novel methodolgy that uses subsampling based
unbiased estimates of the gradient of the log-likelihood to arrive at the exact invariant distri-
bution. However, as we have very large sample sizes here, the distributions from the separate
machines will be reasonably close and we can expect the combined distribution of the TM-
CMC output from the subsampled chains, each of which are geoetrically ergodic, to coverge
to the target distribution (see Theorem 2.2 of Alquier et al. (2016)). Combining information
from different correlated chains can increase estimation efficiency, as eventually more data is
used compared to inference from a separate chain. However, note that, if subsampling is used
in the open stage, then there are different parameters in B for the individual chains and we
conduct a careful tabulation for aggregating results from the different subsampled TMCMC
chains.

4.4. Estimating SCRON with Spike and Slab Prior. While estimating SCRON, instead
of normal prior we impose {⌫(j)kg : k = 1, . . . ,K;g = 1, . . . ,G; j = 1,2,3} i.i.d. form mixture
normal prior ⇡⌘ = (1� ⌘)N(0, ⌧1) + ⌘N(0, ⌧2) where the mixing weight ⌘ ⇠ Beta(a1, a2).
The hyper-parameters ⌧1 and ⌧2 were chosen as random quantities with ⌧1 following Inverse
Gamma distribution with parameters a� and b� and ⌧2 = ⌧1/1000, respectively. For open
stage, these hyperparameters are taken as a� = 2.5; b� = 35; for click stage a� = 2.5; b� = 35;
and for purchase stage a� = 2.5; b� = 87.5. The mixing weight a1 and a2 are set to be (3,2)
for open stage; (2,2) for click stage and (7,3) for purchase stage. Promotions parameters
with more than 0.5 probability of belonging to the spiked class were deleted from the model,
and the resultant model was refitted again using normal priors on the remaining promotion
coefficients to produce the final model estimates. Following Bai, Rockova and George (2020),
the estimated model inherits decision theoretic guarantees for consistent variable selection.

5. Results and Business Implications.

5.1. ROC Curves: Test vs Training Errors. We fitted the training data using the models
described in the previous Section. We set ⇢3 = 4 and did not use any subsampling in the
open and click stages, for those conversion percentages were not very imbalanced in our
data. Figure 4 shows the receiver operations characteristics (ROC) curves for the open, click,
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Fig 4: ROC curves on the test data based on NCG, NCL, and CRON model estimates from
the training set. Starting from top-left, in the subplots, clockwise we have the curves for open,
click, and purchase stages respectively. The table in the bottom-right panel presents the area
under the curves for the concerned models in the training and the test data.

and purchase stages of the conversion funnel. The ROC shows the plots of the proportion
of correct predictions of conversion (hit rate) vs the proportion of incorrect predictions of
the no-conversions (false positive rate). Table S.10 in the supplement documents the hit rates
from the curves as the false positive proportion is allowed to increase. We observed that the
results in the test data are in accordance with those in the training sample. Based on the areas
under the ROC curves in the open stage (see Figure 4), we observe NCL to improve on the
NCG by 2.5%, and CRON to further improve on NCL by 3.03% in the test data; the improve-
ments are more pronounced in the click and purchase stages, with CRON improving on its
nearest competitor by 16.39% and 19.76%, respectively. Tables S.4, S.5, and S.6 present the
coefficient estimates from these models.

5.2. Impact of Promotions on Open Rates. Table S.6 shows the estimates of the promo-
tions in the CRON model (with respect to the baseline Promo ID 1). We observe that the
estimated logodds of opening an email increases around 7 times in the best promotion as
compared to the worst, provided the other factors are kept constant. The results show that
it is extremely important to accurately identify the hig-performing promotions. The promo-
tion with the highest conditional effect had “Secret Sale" in the subject of the email; it is
wellknown in the marketing literature that such keywords produces significant hedonic ap-
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peal which leads to consumption impulses (Moore and Lee, 2012). Based on estimates, we
observe that the top promotions were mostly non-priced promotions; these had promotion
codes for “Cash Refund" or “Buy-One-Get-One Free" in the subject line. The dominance of
non-priced promotions, is in accordance with findings that exist in the marketing lietrature
(Park, Park and Schweidel, 2018).

To validate the effectiveness of these promotion-effect estimates {⌫̂(1)k : k = 1, . . . ,K}
for the open stage, we look at their opening conversion rates in the test data. Based on the
estimates from the CRON model (see Table S.6), we further divide the promotions into three
baskets of equal sizes containing top-seven, mid-seven and bottom-seven promotions. Table 2
presents their respective conversion rates in the test data. We witness that the rank order of
the promotions provided by the estimates is well-maintained in the conversion efficiency in
the test data. We find while the top promos produce on average 46% conversions, the mid
promos yield 40%, and the bottom promos 36%.

5.3. Promotion Effects across the Conversion Funnel. Using the estimated conditional
promotion effects for the click and purchase stages of the CRON model from Table S.6, we
divide the promotions in the click and purchase stages into three baskets of equal sizes as
before containing top, mid, and bottom promotions. On the test data, we find that promotions
in the top basket produce on average 48% click conversions among the opened emails and
13% purchases from the clicked emails. The mid basket produces 34% click conversions
and 8% purchases, whereas the bottom basket produces 31% and 5%, respectively. Thus,
choosing top promotion basket can lead to 17% more clicks on opened emails and 8% more
purchases from the clicked emails than the bottom basket. Table 2 presents these detailed
conversion results for each promotion on the test data. We observe in this Table that the
ordering of the estimated promotion effects from CRON agree with their performance (rank)
in the test data.

Fig 5: Estimates of promotion effects in the CRON model across open (circles), click (paral-
leleograms), and purchase (uptriangles) stages plotted with promotion ID 1 being the base-
line.

Tables 2 A and B show that the comparative efficiency of any particular promotion can
greatly vary across the conversion funnel. Figure 5 plots these estimates. For example, Promo
13 (with the subject line “Secret Sale") estimates are the highest in open and click stages, but
its conditional impact in the purchase stage is very low (ranked 18 out of 25). Such promotion
will be very useful for brand awareness but may not be very effective for purchase coversion.
Thus, CRON estimates will be helpful for marketers to determine which promotions to use
for different functional purposes.
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TABLE 2
Conversion rates of the promotions ranked in the top, mid, and bottom basket categories from the CRON model.
Here, No. of Recipients in the click and purchase stages are the counts of customers who opened and clicked the

promotions respectively.

Panel A: Open stage of the conversion funnel

Promo.
Open Stage

Promo. No. of Opened Open Ave. Open
Efficiency No. Recipients Rate (%) Rate (%)

Top 7
Promotions

13 9980 5244 0.53

46

17 5070 2642 52
21 9814 3591 37
22 9885 5145 52
16 9638 4137 43
10 2019 817 40
20 4659 1866 40

Mid 7
Promotions

5 7670 3408 44

40

25 9836 4493 46
1 9665 3507 36

11 9885 4051 41
9 9770 3566 36
6 9763 3910 40
8 5036 1962 39

Bottom 7
Promotions

24 6670 2511 38

36

7 9725 3329 34
12 9762 3621 37
3 10000 3805 38

23 4842 1775 37
15 4968 1660 33
19 9758 3222 33

Panel B: Click and Purchase stages of the conversion funnel

Promo.
Click Stage Purchase Stage

Promo. No. of No. of Click Ave. Click Promo. No. of No. of Pur. Ave. Pur.
Efficiency No. Recipients Clicks Rate (%) Rate (%) No. Recipients Purchases Rate (%) Rate (%)

Top 7
Promotions

13 5244 3172 60

48

2 2056 327 16

13

2 4266 2056 48 14 1122 172 15
25 4493 2101 47 21 1238 150 12
6 3910 1726 44 8 534 46 09

11 4051 1790 44 20 712 76 11
10 817 367 45 22 1624 162 10
16 4137 1790 43 17 829 54 06

Mid 7
Promotions

5 3408 1329 39

34

6 1726 161 09

08

20 1866 712 38 1 982 73 07
21 3591 1238 34 18 1009 84 09
14 3515 1122 32 16 1790 137 08
4 4362 1430 33 9 1431 113 08

22 5145 1624 32 5 1329 79 06
24 2511 762 30 7 857 65 08

Bottom 7
Promotions

18 3439 1009 29

31

13 3172 177 06

05

7 3329 857 26 25 2101 90 04
8 1962 534 27 24 762 4 01
3 3805 1659 44 3 1659 131 08

15 1660 535 32 15 535 21 04
23 1775 583 33 23 583 39 07
19 3222 838 26 19 838 15 02

5.4. Variation in Promotion Effects across Customer Types. Based on traditional mar-
keting practice and without using the customer responses to focal promotions in the current
data (Zhang, Kumar and Cosguner, 2017; Gopalakrishnan and Park, 2019), the customers are
binned in G= 3 groups: low, mid, and highly active types based on a customer’s engagement
history with the firm. Table S.3 documents the average attributes from these three customer
segments. We fit the SCRON model (coefficient estimates are presented in supplemental ta-
bles S.7, S.8, S.9) that allows promotion effects to vary not only within but also between these
customer segments. While the performance of SCRON with respect to CRON was similar in
the open and click stages, the SCRON performed significantly better in the purchase stage
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and had 4.91% higher area under the curve in the test data as compared to CRON (as shown
in Figure 6 ).

Fig 6: Comparative performance of SCRON and CRON. On left, test-data ROC curves for
purchase stage are plotted. The table on the right presents the area under the curves for the
concerned models in the training and test datasets.

Targeted marketing aims to design high performing advertisements and promotions suit-
ably tailored for different customer groups. Figure S.2 shows how the promotion-effect es-
timates vary across the segments. It also shows that the promotion effects from the high
engagement segment are consistently higher than those from mid and low segments partic-
ularly in the open stage (in the other two stages, we have conditional effects based on the
open stage). Based on these promotion estimates from SCRON, top-performing promotions
in different customer segments can be listed. Marketers can use these lists for targeted mar-
keting. Next, we present an application demonstrating that significant gains can be achieved
by targeted marketing strategies based on the SCRON model.

5.5. Profitability Analysis using Targeted Promotions. In this marketing campaign, cus-
tomers received on average around 21 emails in a very short campaign window (see Ta-
ble S.1). Marketing research shows that such high frequency of emails can lead to customer
fatigue (Statista, 2019). Highly frequent email promotional campaigns often lose relevance
and are treated as spam emails. Reducing the number of emails sent to each customers dur-
ing a campaign is important. We next consider sending only five promotional emails to cus-
tomers. Based on the promotion-effect estimates from the SCRON model, we construct three
different lists of the top five promotions for the low, mid, and highly engaged customer seg-
ments. In Table 3A, we report their conversion percentages in the test data. We compare the
results to the non-targeted marketing policy that uses a list of top five promotions based on
the CRON model, uniformly for all customers. Compared to the unsegmented CRON model,
using SCRON we witness marginal improvements in open (1%) and click (3%) stages, and
significant gains (29%) in the purchase stage (see Table 3B for details).

6. Discussion. We developed a large-scale, cross-classified, nested joint model for mod-
eling customer responses to opening, clicking, and purchasing from promotion emails,
thereby estimating the efficacy of these marketing interventions for customers with varying
characteristics and engagement history. We estimate the parameters in the joint model by us-
ing a block Metropolis-Hastings algorithm that uses nested subsampling to tackle the severe
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TABLE 3
Conversion Rates of SCORN and CORN based promotion campaign with only 5 emails

Panel A: Conversion rates in the test data for SCRON based personalized email campaign and CRON
based unsegmented email promotions. The last row shows the lift of the former method based on the
later.

Segments Open Click Purchase
Rate (%) Rate (%) Rate (%)

SCRON in High Engagement group 48.25 44.56 12.95
SCRON in Mid Engagement group 45.39 38.94 05.32
SCRON in Low Engagement group 44.55 41.99 03.03
SCRON combined across groups 47.19 42.88 10.17
CRON with no segments 46.77 41.68 07.86

Lift in SCRON vs. CRON 00.90 02.88 29.44

Panel B: Detailed conversion rates of the different promotions chosen by the SCRON model in the
three different consumer segments and by the CRON model across all consumers. These conversion
rates on aggregation produce the table in panel A.

Segment Promo Count Open Click Purchase Open Click Purchase
ID Rate (%) Rate (%) Rate (%)

SCRON: High
Engagement

13 6104 3345 2107 152 55 63 07
17 2872 1539 489 37 54 32 08
22 6047 3215 1017 132 53 32 13
2 5907 2719 1416 314 46 52 22

21 6009 2181 763 115 36 35 15

SCRON: Mid
Engagement

21 2714 1001 335 29 37 34 09
13 2763 1350 763 20 49 57 03
22 2736 1384 425 25 51 31 06
17 1484 739 231 15 50 31 07
20 1358 544 200 15 40 37 07

SCRON: Low
Engagement

21 1091 409 140 06 38 34 04
16 1023 452 201 05 44 44 02
13 1113 549 302 05 49 55 02
20 616 247 100 07 40 40 07
22 1102 546 182 05 50 33 03

CRON: No
Segments

13 9980 5244 3172 177 53 60 06
17 5070 2642 829 54 52 31 07
21 9814 3591 1238 150 37 34 12
22 9885 5145 1624 162 52 32 10
16 9638 4137 1790 137 43 43 08

imbalance between conversions and no conversions. We implemented standard case-control
subsampling. It will be beneficial to use relatively sophisticated subsampling schemes akin
to Fithian and Hastie (2014) that preferentially select examples, the responses of which are
conditionally rare, given their features. Such schemes will be more immune to model mis-
specification; however, as the feature space is high dimensional, further exploration is needed
to implement such subsampling.

As future work it will be useful to explore whether our estimation algorithm for the
logistic-regression-based joint modeling framework in cross-classified models can be made
faster by using data-augmentation with Polya-Gamma latent variables, as in Polson, Scott
and Windle (2013). In this context, it will be particularly interesting to explore the recent
approach in Sen et al. (2020) that uses sub-sample based unbiased estimator of the gradient
of the log-likelihood and has the advantange of working with the exact invariant distribution.
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We proved geometric ergodicity of our proposed MCMC-based estimation algorithm. Fol-
lowing Bissiri, Holmes and Walker (2016); Kleijn et al. (2012), it will be interesting to intro-
spect posterior concentration of the estimates, particularly under misspecification. Our joint
modeling framework do not involve interactions between successive promotional emails as
we assumed that the impacts of these emails follows a memoryless process, as theorized
in Zhang, Kumar and Cosguner (2017). It will be interesting to estimate the impact of a
chain/sequence of promotional emails in future data sets where such sequences, which can
be parametrized in our framework by higher order interactions among promotional emails,
are estimable.
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SUPPLEMENTARY MATERIAL

Supplement to “Estimating Promotion Effects in Email Marketing using a Large-
scale Cross-Classified Bayesian Joint Model for Nested Imbalanced Data"
The supplement contains several figures and tables. Their numbers are prefixed by S. Lists
of tables and figures are provided in the first two pages of the supplement. The proof of
proposition 1 is also presented in the supplement. All R codes developed for conducting the
analysis described in the paper are available along with their documentation from the GitHub
repository https://github.com/gmukherjee/emarketing.
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S.9 Stage-wise model estimates of SCRON for high engagement customers
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rates of conversions in the test data from the ROC curves of four models in
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List of Figures
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USD), past purchase frequency, age (in years) and income (in USD).

2 Left: Schematic diagram showing di↵erent components of the data; Cus-

tomer responses at di↵erent stages of the conversion funnel are jointly mod-
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Right: Scatterplot of average customer responses to di↵erent promotion

emails.

3 Marginal density of the days since last (a) opened (b) clicked (c) purchased
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4 ROC curves on the test data based on NCG, NCL, and CRON model esti-
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concerned models in the training and the test data.

5 Estimates of promotion e↵ects in the CRON model across open (circles),

click (paralleleograms), and purchase (uptriangles) stages plotted with pro-

motion ID 1 being the baseline.

6 Comparative performance of SCRON and CRON. On left, test-data ROC

curves for purchase stage are plotted. The table on the right presents the

area under the curves for the concerned models in the training and test

datasets.

S.1 Percentage of customers reached by di↵erent promotion emails. The pro-

motion number are in congruence with those in table S.2. In light gray,

black and dark gray respectively are 9 priced (in lightgray), 7 non-priced (in

darkgray) and 9 combination (in gray) promotions.

S.2 Plot of estimates of the promotion e↵ects from SCRON model. In the sub-

plots from top to bottom, we have estimates from the open, click, and pur-

chase stages respectively. H, M, and L, respectively, denote the high, mid,
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S.1 Data Summary

Table S.1: Distribution of the number of promotion emails received by customers during

the concerned campaign.

No of Promotions No.of Recipients

4 2

5 4

6 18

7 18

8 25

9 40

10 66

11 191

12 392

13 668

14 713

15 450

16 363

17 619

18 2196

19 7034

20 15127

21 20518

22 17631

23 9160

24 2461

25 290

Total 77986
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Figure S.1: Percentage of customers reached by di↵erent promotion emails. The promotion

number are in congruence with those in table S.2. In light gray, black and dark gray

respectively are 9 priced (in lightgray), 7 non-priced (in darkgray) and 9 combination (in

gray) promotions.
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Table S.2: Aggregate statistics averaged across recipients for di↵erent promotion emails used in the campaign

Promotions Responses Days: Last Open Days: Last Clicked Days: Last Purchased Past Order Count AOV Retail AOV Web

ID No Type Count OpenRate ClickRate PurchaseRate Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 N 75661 0.3589 0.1031 0.0084 9.73 20.41 27.34 91.31 93.38 102.58 7.69 8.63 13.96 30.36 52.08 33.82

2 P 76103 0.4343 0.2113 0.0326 9.35 20.31 26.66 90.06 92.53 101.49 7.70 8.64 13.96 30.34 52.07 33.81

3 P 77986 0.3828 0.1623 0.0132 0.81 8.20 3.67 35.80 68.56 89.06 7.83 8.66 13.92 30.26 52.30 33.50

4 N 76492 0.4451 0.1449 0.0084 8.45 19.25 23.55 84.52 87.61 88.99 7.69 8.63 13.96 30.34 52.04 33.81

5 P 60048 0.4448 0.1742 0.0119 6.56 15.14 17.19 62.24 85.82 90.67 7.79 8.64 14.04 30.11 52.30 33.75

6 C 76398 0.3971 0.1770 0.0157 5.80 14.11 14.46 53.80 84.26 90.84 7.79 8.66 14.02 30.36 52.27 33.70

7 N 76136 0.3404 0.0881 0.0057 6.98 16.04 18.25 66.89 86.30 90.29 7.78 8.64 14.01 30.35 52.28 33.70

8 N 38782 0.3843 0.1009 0.0105 7.35 17.74 20.61 77.11 88.83 89.60 7.70 8.71 13.81 30.08 52.28 34.07

9 C 76470 0.3666 0.1475 0.0103 8.12 18.39 22.71 79.84 87.47 89.20 7.69 8.63 13.96 30.34 52.04 33.81

10 P 15432 0.4128 0.1812 0.0169 8.70 18.67 21.84 66.88 90.81 90.11 7.68 8.54 14.00 30.77 52.17 32.73

11 C 77140 0.4064 0.1783 0.0100 5.05 9.81 10.15 37.07 79.44 87.85 7.87 8.68 13.93 30.27 52.34 33.43

12 C 76385 0.3685 0.1472 0.0136 5.49 13.51 13.43 52.29 85.25 90.83 7.80 8.66 14.02 30.36 52.27 33.70

13 P 77874 0.5260 0.3129 0.0177 5.60 12.18 12.21 46.89 83.68 90.50 7.83 8.65 13.92 30.26 52.32 33.50

14 P 77323 0.3555 0.1169 0.0159 5.59 11.82 12.21 45.54 83.23 90.60 7.83 8.66 13.92 30.27 52.32 33.49

15 P 38808 0.3326 0.1066 0.0045 0.85 5.80 2.81 17.94 70.61 87.68 8.12 8.80 13.99 30.39 52.73 33.54

16 P 75321 0.4220 0.1780 0.0134 6.06 9.64 11.02 36.40 80.79 87.64 7.95 8.66 13.99 30.36 52.50 33.18

17 N 39951 0.5214 0.1573 0.0126 5.04 7.64 9.41 24.13 90.35 96.80 6.08 6.50 12.31 28.41 50.77 32.94

18 C 76403 0.3508 0.0993 0.0077 5.26 9.18 9.74 32.20 78.28 87.30 7.99 8.72 13.98 30.33 52.47 33.14

19 C 76145 0.3293 0.0883 0.0013 0.31 1.65 1.32 3.30 65.46 90.01 8.16 8.80 13.97 30.16 52.32 32.78

20 C 36076 0.3927 0.1447 0.0150 5.83 6.10 10.17 13.77 87.01 96.07 6.72 7.79 12.12 28.30 51.62 33.63

21 N 76633 0.3696 0.1226 0.0145 6.62 5.74 10.81 11.26 79.85 91.22 8.06 8.75 13.98 30.26 52.43 33.10

22 N 77177 0.5212 0.1621 0.0176 4.90 7.11 8.96 21.06 80.88 90.96 7.97 8.71 13.97 30.30 52.42 33.21

23 C 37755 0.3575 0.1119 0.0073 0.62 2.60 2.64 5.06 65.30 86.60 8.30 8.82 13.98 29.82 52.45 32.55

24 P 52242 0.3780 0.1136 0.0007 4.56 6.46 8.94 13.19 82.67 92.16 6.89 7.19 14.93 31.40 53.78 34.12

25 C 76761 0.4546 0.2103 0.0087 4.54 6.10 8.70 12.15 79.57 91.13 8.05 8.74 13.98 30.25 52.41 33.07



Table S.3: Summary statistics corresponding to the three di↵erent segments of customers

Last Open Last Clicked Last Purchased Past Order Count AOV Retail AOV Web

Type ID Type Count Recipients OpenRate ClickRate PurchaseRate Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Low

Non Price 7 51686 0.3871 0.1164 0.0041 10.25 25.15 26.02 74.31 270.19 85.21 3.38 2.98 10.46 27.26 49.37 36.57

Price 9 60125 0.3855 0.1559 0.0041 7.85 22.85 20.51 66.52 268.34 83.15 3.39 2.97 10.64 27.61 49.56 36.62

Combined 9 66218 0.3695 0.1443 0.0039 6.81 19.88 16.90 57.09 262.22 94.61 3.40 2.97 10.48 27.20 49.47 36.52

Mid

Non Price 7 128000 0.3974 0.1173 0.0057 8.42 16.31 21.17 71.34 118.43 48.42 5.63 5.15 12.84 29.78 53.05 36.24

Price 9 152399 0.3979 0.1612 0.0051 6.36 14.75 16.21 61.53 117.58 48.07 5.63 5.14 13.01 30.01 53.33 36.46

Combined 9 152399 0.3812 0.1446 0.0051 5.63 12.91 13.59 51.67 116.05 54.46 5.67 5.16 12.80 29.83 53.21 36.22

High

Non Price 7 281146 0.4287 0.1304 0.0147 5.97 10.97 13.87 56.32 37.81 52.61 9.39 9.86 14.88 30.75 52.21 31.57

Price 9 338613 0.4284 0.1918 0.0215 4.31 8.96 9.69 43.77 32.45 47.52 9.48 9.84 15.13 30.99 52.60 31.56

Combined 9 374612 0.3832 0.1488 0.0129 3.95 7.63 8.59 35.53 30.71 37.61 9.64 9.98 14.95 30.73 52.34 31.31



S.2 Results

Figure S.2: Plot of estimates of the promotion e↵ects from SCRON model. In the sub-

plots from top to bottom, we have estimates from the open, click, and purchase stages

respectively. H, M, and L, respectively, denote the high, mid, and low engaged customer

segments.
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Table S.4: Stage-wise model estimates of NCG

Coe�cients
Open stage Click stage Purchase stage

Estimate SE Estimate SE Estimate SE

Intercept -0.8818 0.0014 -1.7628 0.0033 -4.4131 0.0053

Ave. Retail Spend 0.0008 0.0001 0.0007 0.0002 0.0031 0.0004

Ave. Web Spend -0.0003 0.0001 0.0017 0.0004 0.0144 0.0007

Past Pur. Freq. 0.0041 0.0003 0.0161 0.0012 0.0611 0.0027

Age 0.0865 0.0019 0.1038 0.0171 0.1676 0.0284

Income: 15K - 25K -0.0024 0.0008 0.0006 0.0016 -0.0122 0.0018

Income: 25K - 35K 0.0131 0.0014 -0.0281 0.0012 -0.1038 0.0018

Income: 35K - 50K 0.0239 0.0028 -0.0342 0.0016 -0.0308 0.0014

Income: 50K - 75K 0.0307 0.0013 -0.044 0.0022 -0.0723 0.002

Income: 75K - 100K 0.0552 0.0010 -0.0664 0.0011 -0.1107 0.0015

Income: 100K - 120K 0.0728 0.001 -0.0686 0.0017 -0.1203 0.0029

Income: 120K - 149K 0.0893 0.0009 -0.0689 0.0006 0.019 0.0012

Income: 150K plus 0.1156 0.0018 -0.0809 0.0028 0.0832 0.0013

Days Since Last Opened 0.3576 0.0011

Days Since Last Opened2 -0.2961 0.0045

Days Since Last Clicked -0.0765 0.0064

Days Since Last Clicked2 0.0322 0.002

Days Since Last Purchased 0.1443 0.0026 0.1228 0.014 -0.2327 0.0095

Days Since Last Purchased2 -0.0147 0.0005 0.006 0.005 0.0725 0.0048
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Table S.5: Stage-wise model estimates of NCL

Coe�cients
Open stage Click stage Purchase stage

Estimate SE Estimate SE Estimate SE

Intercept -0.8212 0.0028 -1.7773 0.0013 -4.2676 0.0049

Ave. Retail Spend 0.0006 0.0002 0.0004 0.0002 0.0009 0.0004

Ave. Web Spend -0.0003 0.0002 0.0007 0.0002 0.0092 0.0005

Past Pur. Freq. 0.0032 0.0008 0.0124 0.0006 0.0423 0.002

Age 0.0813 0.0012 0.0739 0.0051 0.2916 0.0228

Income: 15K - 25K 0.0026 0.0022 -0.0046 0.0016 -0.0367 0.0038

Income: 25K - 35K 0.024 0.002 -0.0225 0.0016 -0.1065 0.002

Income: 35K - 50K 0.0272 0.0023 -0.0422 0.0008 -0.0226 0.0029

Income: 50K - 75K 0.0385 0.0035 -0.0454 0.0009 -0.0595 0.0015

Income: 75K - 100K 0.0518 0.002 -0.0617 0.001 -0.1378 0.002

Income: 100K - 120K 0.073 0.0016 -0.0671 0.0026 -0.1319 0.002

Income: 120K - 149K 0.0733 0.002 -0.0775 0.0013 0.0068 0.0042

Income: 150K plus 0.0978 0.0019 -0.0726 0.0012 0.0882 0.0013

Days Since Last Opened 1.6208 0.0049

Days Since Last Opened2 -0.6053 0.007

Open: Knot 1 -1.4695 0.0052

Open: Knot 2 2.9845 0.0074

Open: Knot 3 -1.0986 0.0044

Open: Knot 4 0.6465 0.0048

Open: Knot 5 -1.0992 0.0046

Open: Knot 6 0.8947 0.0039

Days Since Last Clicked -0.7544 0.0069

Days Since Last Clicked2 1.3947 0.0047

Click: Knot 1 -2.584 0.0044

Click: Knot 2 1.3811 0.0094

Click: Knot 3 0.4162 0.0043

Click: Knot 4 -1.231 0.0063

Click: Knot 5 0.4002 0.0067

Click: Knot 6 0.2666 0.0039

Days Since Last Purchased -0.5232 0.0031 0.0656 0.0088 -1.6554 0.0162

Days Since Last Purchased2 0.0706 0.0052 -0.244 0.0049 1.5163 0.0096

Purchase: Knot 1 0.4417 0.006 0.8402 0.0102 -1.5476 0.0216

Purchase: Knot 2 -0.6094 0.0056 -0.7288 0.0086 -0.1684 0.0136

Purchase: Knot 3 0.1934 0.0034 -0.0431 0.0054 0.2146 0.0141

Purchase: Knot 4 -0.1801 0.0068 0.2862 0.0101 1.4211 0.0213

Purchase: Knot 5 0.0346 0.0064 -0.4838 0.01 -4.764 0.0151

Purchase: Knot 6 0.0358 0.0072 0.3721 0.0136 3.9507 0.0045



Table S.6: Stage-wise model estimates of CRON

Coe�cients
Open stage Click stage Purchase stage

Estimate SE Estimate SE Estimate SE
Intercept 5.2852 0.0012 5.9916 0.0006 2.4787 0.0027
Ave. Retail Spend 0.0007 0.0001 -0.0003 1.00E-04 -0.0006 0.0002
Ave. Web Spend -0.0003 1.00E-04 -0.0007 1.00E-04 0.0034 0.0002
Past Pur. Freq. 0.0035 0.0005 0.006 0.0003 0.0233 0.0005
Age 0.0797 0.0009 -0.036 0.0008 0.0877 0.0016
Income: 15K - 25K -0.0078 0.0022 -0.0041 0.0017 -0.0877 0.0036
Income: 25K - 35K 0.0222 0.0008 -0.0621 0.0011 -0.0433 0.0014
Income: 35K - 50K 0.0346 0.0014 -0.0857 0.0009 0.0005 0.0019
Income: 50K - 75K 0.031 0.0014 -0.1053 0.0006 0.0002 0.002
Income: 75K - 100K 0.0581 0.0007 -0.1453 0.0008 0.039 0.0022
Income: 100K - 120K 0.0812 0.0006 -0.1805 0.001 0.0464 0.0031
Income: 120K - 149K 0.0806 0.0007 -0.196 0.0009 0.0936 0.0048
Income: 150K plus 0.1052 0.0006 -0.2229 0.0008 0.0845 0.0049
Days Since Last Opened -14.62 0.0016
Days Since Last Opened2 10.6154 0.0028
Open: Knot 1 -12.3773 0.0016
Open: Knot 2 2.8874 0.002
Open: Knot 3 -1.7181 0.0015
Open: Knot 4 1.3061 0.002
Open: Knot 5 -1.5721 0.0017
Open: Knot 6 1.1711 0.002
Days Since Last Clicked -17.1054 0.0015
Days Since Last Clicked2 11.8874 0.0011
Click: Knot 1 -11.6616 0.0014
Click: Knot 2 -0.1183 0.0009
Click: Knot 3 0.5473 0.0012
Click: Knot 4 -1.4043 0.0012
Click: Knot 5 0.762 0.0017
Click: Knot 6 -0.0432 0.0011
Days Since Last Purchased -0.4596 0.0025 -0.3902 0.0013 -13.9191 0.002
Days Since Last Purchased2 -0.0439 0.0008 0.0298 0.0015 10.091 0.0015
Purchase: Knot 1 0.6753 0.0011 0.4361 0.0012 -10.1418 0.0024
Purchase: Knot 2 -0.7802 0.0007 -0.6298 0.0033 -0.0325 0.002
Purchase: Knot 3 0.3035 0.0022 0.1602 0.0013 0.1334 0.0018
Purchase: Knot 4 -0.2311 0.001 0.1646 0.0009 0.4342 0.0019
Purchase: Knot 5 0.0058 0.0011 -0.4595 0.0015 -1.8808 0.0044
Purchase: Knot 6 0.06 0.0014 0.3763 0.0012 1.8666 0.0011
Promo 2 0.2537 0.0025 0.8472 0.0007 0.7154 0.0012
Promo 3 -6.0246 0.001 -5.8443 0.0012 -3.8129 0.0012
Promo 4 0.1981 0.0009 0.1563 0.0011 -0.389 0.0022
Promo 5 0.1501 0.0011 0.4743 0.0008 -0.1915 0.0016
Promo 6 -0.2022 0.001 0.6781 0.0006 0.0814 0.0012
Promo 7 -0.304 0.0015 -0.1519 0.0008 -0.2666 0.0012
Promo 8 -0.2167 0.0009 -0.1637 0.0006 0.3096 0.0011
Promo 9 -0.1851 0.0013 0.4961 0.0014 -0.1414 0.0017
Promo 10 0.318 0.0019 0.6597 0.0005 0.165 0.0025
Promo 11 -0.0628 0.0011 0.6766 0.0022 -0.3893 0.0023
Promo 12 -0.3803 0.001 0.4773 0.0008 0.1363 0.0013
Promo 13 0.5475 0.001 1.3002 0.0011 -0.4129 0.0018
Promo 14 -0.2244 0.0011 0.2209 0.0015 0.5437 0.0016
Promo 15 -6.0804 0.0014 -6.0259 0.0008 -3.8896 0.0008
Promo 16 0.3712 0.0012 0.6348 0.0006 -0.1371 0.002
Promo 17 0.4937 0.0016 0.0979 0.0011 0.082 0.0025
Promo 18 -0.2202 0.0009 -0.0051 0.0022 -0.0492 0.0034
Promo 19 -6.2357 0.001 -6.4296 0.0011 -5.5452 0.0018
Promo 20 0.3035 0.0008 0.4395 0.0007 0.3001 0.0014
Promo 21 0.4908 0.0014 0.2896 0.0012 0.4204 0.0014
Promo 22 0.4742 0.0013 0.1394 0.0009 0.2866 0.002
Promo 23 -6.0384 0.0009 -6.0974 0.0015 -3.975 0.0033
Promo 24 -0.2334 0.0024 0.1113 0.0007 -2.5912 0.0013
Promo 25 0.1151 0.0017 0.7958 0.0008 -0.7408 0.0014



Table S.7: Stage-wise model estimates of SCRON for low engagement customers

Coe�cients
Open stage Click stage Purchase stage

Estimate SE Estimate SE Estimate SE
Intercept 5.1055 0.0023 5.7398 0.001 0.0189 0.0024
Ave. Retail Spend 0.0006 0.0002 -0.0003 0.0002 -0.0007 0.0003
Ave. Web Spend -0.0002 0.0002 -0.0007 0.0002 0.004 0.0003
Past Pur. Freq. 0.0032 0.0006 0.0056 0.0008 0.0236 0.0009
Age 0.0759 0.0012 -0.0354 0.0009 0.1212 0.0027
Income: 15K - 25K -0.0026 0.0018 -0.0102 0.0015 -0.0563 0.0012
Income: 25K - 35K 0.0204 0.0017 -0.0647 0.0019 -0.0461 0.0029
Income: 35K - 50K 0.0294 0.0014 -0.0862 0.0007 0.0133 0.0015
Income: 50K - 75K 0.0415 0.002 -0.098 0.0023 0.0229 0.0029
Income: 75K - 100K 0.0576 0.0024 -0.1431 0.0021 0.071 0.0009
Income: 100K - 120K 0.0744 0.0019 -0.176 0.001 0.0266 0.0012
Income: 120K - 149K 0.0823 0.0018 -0.1888 0.0015 0.1005 0.0015
Income: 150K plus 0.0999 0.0009 -0.2264 0.0006 0.0806 0.0015
Days Since Last Opened -14.6378 0.0092
Days Since Last Opened2 10.6483 0.0114
Open: Knot 1 -12.4159 0.0055
Open: Knot 2 2.8864 0.0068
Open: Knot 3 -1.7323 0.01
Open: Knot 4 1.3113 0.0092
Open: Knot 5 -1.5789 0.0065
Open: Knot 6 1.1663 0.0058
Days Since Last Clicked -17.101 0.0097
Days Since Last Clicked2 11.8783 0.0059
Click: Knot 1 -11.6513 0.0079
Click: Knot 2 -0.1214 0.0029
Click: Knot 3 0.5692 0.0042
Click: Knot 4 -1.3804 0.0021
Click: Knot 5 0.6875 0.0056
Click: Knot 6 -0.0211 0.006
Days Since Last Purchased -0.4478 0.0053 -0.4946 0.0043 -15.3012 0.0258
Days Since Last Purchased2 -0.0714 0.0038 0.0923 0.0029 11.1235 0.0158
Purchase: Knot 1 0.7259 0.0063 0.3957 0.0031 -11.4026 0.0243
Purchase: Knot 2 -0.8141 0.0049 -0.6642 0.0049 -0.1895 0.0193
Purchase: Knot 3 0.3235 0.0054 0.2242 0.0039 -0.0839 0.0043
Purchase: Knot 4 -0.2684 0.0151 0.0393 0.0059 4.6886 0.0133
Purchase: Knot 5 0.2064 0.0033 -0.137 0.0059 -7.8951 0.0356
Purchase: Knot 6 -0.1359 0.0046 0.09 0.0037 3.7391 0.0189
Promo 2 0.2631 0.0028 0.6849 0.0007 0.8665 0.0011
Promo 3 -6.0722 0.0027 -5.87 0.0012 -1.3692 0.0011
Promo 4 0.2027 0.0014 0.1776 0.001 -0.8826 0.0021
Promo 5 0.0641 0.0015 0.3807 0.0012 0.7319 0.0012
Promo 6 -0.1297 0.0021 0.6755 0.001 0.7572 0.0009
Promo 7 -0.2311 0.0011 0 0 0.5025 0.0011
Promo 8 -0.2476 0.0016 -0.1639 0.0011 0.608 0.0025
Promo 9 -0.1492 0.0009 0.5648 0.0016 0 0
Promo 10 0.199 0.0027 0.5603 0.001 0.5918 0.0026
Promo 11 0 0 0.7477 0.0013 0.734 0.0034
Promo 12 -0.2903 0.0014 0.5212 0.0015 0.7696 0.001
Promo 13 0.4271 0.0014 1.1998 0.0009 0.526 0.0013
Promo 14 -0.1899 0.0014 0.2088 0.001 1.3859 0.0008
Promo 15 -5.9961 0.0014 -5.9491 0.0015 -1.2487 0.0014
Promo 16 0.4458 0.0012 0.6753 0.001 1.0777 0.0015
Promo 17 0.331 0.0018 0.204 0.0012 1.3672 0.0027
Promo 18 -0.0938 0.0015 0.1729 0.0006 0.6785 0.0045
Promo 19 -6.0752 0.0009 -6.04 0.0005 -3.179 0.001
Promo 20 0.4016 0.0028 0.5986 0.0013 1.8092 0.0012
Promo 21 0.6212 0.0018 0.4186 0.0017 1.7045 0.0014
Promo 22 0.4019 0.0038 0.1374 0.001 1.4751 0.0032
Promo 23 -5.9312 0.001 -5.7605 0.0011 -1.2423 0.0028
Promo 24 -0.1178 0.0014 0.3373 0.0007 -1.0473 0.0014
Promo 25 0.2477 0.0017 0.8613 0.0009 0.5016 0.0019



Table S.8: Stage-wise model estimates of SCRON for mid engagement customers

Coe�cients
Open stage Click stage Purchase stage

Estimate SE Estimate SE Estimate SE
Intercept 5.1055 0.0023 5.7398 0.001 0.0189 0.0024
Ave. Retail Spend 0.0006 0.0002 -0.0003 0.0002 -0.0007 0.0003
Ave. Web Spend -0.0002 0.0002 -0.0007 0.0002 0.004 0.0003
Past Pur. Freq. 0.0032 0.0006 0.0056 0.0008 0.0236 0.0009
Age 0.0759 0.0012 -0.0354 0.0009 0.1212 0.0027
Income: 15K - 25K -0.0026 0.0018 -0.0102 0.0015 -0.0563 0.0012
Income: 25K - 35K 0.0204 0.0017 -0.0647 0.0019 -0.0461 0.0029
Income: 35K - 50K 0.0294 0.0014 -0.0862 0.0007 0.0133 0.0015
Income: 50K - 75K 0.0415 0.002 -0.098 0.0023 0.0229 0.0029
Income: 75K - 100K 0.0576 0.0024 -0.1431 0.0021 0.071 0.0009
Income: 100K - 120K 0.0744 0.0019 -0.176 0.001 0.0266 0.0012
Income: 120K - 149K 0.0823 0.0018 -0.1888 0.0015 0.1005 0.0015
Income: 150K plus 0.0999 0.0009 -0.2264 0.0006 0.0806 0.0015
Days Since Last Opened -14.6378 0.0092
Days Since Last Opened2 10.6483 0.0114
Open: Knot 1 -12.4159 0.0055
Open: Knot 2 2.8864 0.0068
Open: Knot 3 -1.7323 0.01
Open: Knot 4 1.3113 0.0092
Open: Knot 5 -1.5789 0.0065
Open: Knot 6 1.1663 0.0058
Days Since Last Clicked -17.101 0.0097
Days Since Last Clicked2 11.8783 0.0059
Click: Knot 1 -11.6513 0.0079
Click: Knot 2 -0.1214 0.0029
Click: Knot 3 0.5692 0.0042
Click: Knot 4 -1.3804 0.0021
Click: Knot 5 0.6875 0.0056
Click: Knot 6 -0.0211 0.006
Days Since Last Purchased -0.4478 0.0053 -0.4946 0.0043 -15.3012 0.0258
Days Since Last Purchased2 -0.0714 0.0038 0.0923 0.0029 11.1235 0.0158
Purchase: Knot 1 0.7259 0.0063 0.3957 0.0031 -11.4026 0.0243
Purchase: Knot 2 -0.8141 0.0049 -0.6642 0.0049 -0.1895 0.0193
Purchase: Knot 3 0.3235 0.0054 0.2242 0.0039 -0.0839 0.0043
Purchase: Knot 4 -0.2684 0.0151 0.0393 0.0059 4.6886 0.0133
Purchase: Knot 5 0.2064 0.0033 -0.137 0.0059 -7.8951 0.0356
Purchase: Knot 6 -0.1359 0.0046 0.09 0.0037 3.7391 0.0189
Promo 1 0.0600 0.0022 0.0660 0.0011 0.2869 0.0015
Promo 2 0.2631 0.0028 0.8079 0.0032 0.7316 0.0032
Promo 3 -6.0018 0.0042 -5.7259 0.0022 -1.6511 0.0030
Promo 4 0.2370 0.0036 0.2756 0.0023 0.6119 0.0038
Promo 5 0.1710 0.0028 0.5393 0.0035 1.1760 0.0018
Promo 6 -0.0739 0.0036 0.8038 0.0029 1.4671 0.0036
Promo 7 -0.2311 0.0011 0.0000 0.0000 0.5025 0.0011
Promo 8 -0.1854 0.0039 -0.0561 0.0028 1.0623 0.0054
Promo 9 -0.0918 0.0031 0.5648 0.0016 0.6738 0.0014
Promo 10 0.2966 0.0039 0.6717 0.0017 0.9202 0.0035
Promo 11 0.0669 0.0009 0.8296 0.0029 1.2507 0.0059
Promo 12 -0.2903 0.0014 0.6151 0.0030 1.4947 0.0022
Promo 13 0.5607 0.0026 1.3398 0.0017 1.0655 0.0031
Promo 14 -0.1246 0.0043 0.3207 0.0023 2.2080 0.0023
Promo 15 -5.9961 0.0014 -5.7910 0.0020 -1.5469 0.0033
Promo 16 0.4458 0.0012 0.7847 0.0026 1.6643 0.0037
Promo 17 0.4797 0.0039 0.2891 0.0024 1.8743 0.0039
Promo 18 -0.0938 0.0015 0.1729 0.0006 1.7653 0.0059
Promo 19 -6.0752 0.0009 -6.1621 0.0018 -3.1790 0.0010
Promo 20 0.4662 0.0047 0.5986 0.0013 1.9910 0.0024
Promo 21 0.6212 0.0018 0.4997 0.0038 2.3634 0.0031
Promo 22 0.4947 0.0059 0.3144 0.0027 2.2773 0.0049
Promo 23 -5.8418 0.0033 -5.7605 0.0011 -1.3279 0.0044
Promo 24 -0.0652 0.0036 0.3816 0.0020 -0.5405 0.0023
Promo 25 0.3012 0.0046 0.9940 0.0024 1.2706 0.0031



Table S.9: Stage-wise model estimates of SCRON for high engagement customers

Coe�cients
Open stage Click stage Purchase stage

Estimate SE Estimate SE Estimate SE
Intercept 5.1055 0.0023 5.7398 0.001 0.0189 0.0024
Ave. Retail Spend 0.0006 0.0002 -0.0003 0.0002 -0.0007 0.0003
Ave. Web Spend -0.0002 0.0002 -0.0007 0.0002 0.004 0.0003
Past Pur. Freq. 0.0032 0.0006 0.0056 0.0008 0.0236 0.0009
Age 0.0759 0.0012 -0.0354 0.0009 0.1212 0.0027
Income: 15K - 25K -0.0026 0.0018 -0.0102 0.0015 -0.0563 0.0012
Income: 25K - 35K 0.0204 0.0017 -0.0647 0.0019 -0.0461 0.0029
Income: 35K - 50K 0.0294 0.0014 -0.0862 0.0007 0.0133 0.0015
Income: 50K - 75K 0.0415 0.002 -0.098 0.0023 0.0229 0.0029
Income: 75K - 100K 0.0576 0.0024 -0.1431 0.0021 0.071 0.0009
Income: 100K - 120K 0.0744 0.0019 -0.176 0.001 0.0266 0.0012
Income: 120K - 149K 0.0823 0.0018 -0.1888 0.0015 0.1005 0.0015
Income: 150K plus 0.0999 0.0009 -0.2264 0.0006 0.0806 0.0015
Days Since Last Opened -14.6378 0.0092 0 0 0 0
Days Since Last Opened2 10.6483 0.0114 0 0 0 0
Open: Knot 1 -12.4159 0.0055 0 0 0 0
Open: Knot 2 2.8864 0.0068 0 0 0 0
Open: Knot 3 -1.7323 0.01 0 0 0 0
Open: Knot 4 1.3113 0.0092 0 0 0 0
Open: Knot 5 -1.5789 0.0065 0 0 0 0
Open: Knot 6 1.1663 0.0058 0 0 0 0
Days Since Last Clicked 0 0 -17.101 0.0097 0 0
Days Since Last Clicked2 0 0 11.8783 0.0059 0 0
Click: Knot 1 0 0 -11.6513 0.0079 0 0
Click: Knot 2 0 0 -0.1214 0.0029 0 0
Click: Knot 3 0 0 0.5692 0.0042 0 0
Click: Knot 4 0 0 -1.3804 0.0021 0 0
Click: Knot 5 0 0 0.6875 0.0056 0 0
Click: Knot 6 0 0 -0.0211 0.006 0 0
Days Since Last Purchased -0.4478 0.0053 -0.4946 0.0043 -15.3012 0.0258
Days Since Last Purchased2 -0.0714 0.0038 0.0923 0.0029 11.1235 0.0158
Purchase: Knot 1 0.7259 0.0063 0.3957 0.0031 -11.4026 0.0243
Purchase: Knot 2 -0.8141 0.0049 -0.6642 0.0049 -0.1895 0.0193
Purchase: Knot 3 0.3235 0.0054 0.2242 0.0039 -0.0839 0.0043
Purchase: Knot 4 -0.2684 0.0151 0.0393 0.0059 4.6886 0.0133
Purchase: Knot 5 0.2064 0.0033 -0.137 0.0059 -7.8951 0.0356
Purchase: Knot 6 -0.1359 0.0046 0.09 0.0037 3.7391 0.0189
Promo 1 0.2054 0.0015 0.3237 0.0022 3.0569 0.0025
Promo 2 0.6518 0.0035 1.2511 0.0019 3.8000 0.0028
Promo 3 -5.7769 0.0061 -5.5277 0.0021 -1.3692 0.0011
Promo 4 0.4282 0.0026 0.4634 0.0019 2.6974 0.0033
Promo 5 0.3987 0.0036 0.8169 0.0028 2.8405 0.0024
Promo 6 -0.0197 0.0033 0.9983 0.0020 3.1506 0.0022
Promo 7 -0.1136 0.0023 0.1235 0.0018 2.8620 0.0041
Promo 8 0.0118 0.0036 0.1383 0.0030 3.4015 0.0049
Promo 9 0.0136 0.0023 0.8328 0.0031 3.0284 0.0010
Promo 10 0.5951 0.0045 1.0205 0.0021 3.2504 0.0046
Promo 11 0.1377 0.0012 0.9701 0.0042 2.6549 0.0047
Promo 12 -0.2012 0.0041 0.7815 0.0030 3.1772 0.0021
Promo 13 0.8168 0.0030 1.6711 0.0031 2.6507 0.0041
Promo 14 -0.0296 0.0024 0.5644 0.0027 3.5224 0.0038
Promo 15 -5.8775 0.0023 -5.7710 0.0040 -1.4460 0.0028
Promo 16 0.5469 0.0038 0.9328 0.0020 2.8437 0.0029
Promo 17 0.7729 0.0040 0.3807 0.0039 3.1104 0.0039
Promo 18 -0.0374 0.0030 0.2739 0.0034 2.9723 0.0056
Promo 19 -6.0752 0.0009 -6.2444 0.0016 -3.0993 0.0027
Promo 20 0.4483 0.0045 0.7262 0.0020 3.3156 0.0029
Promo 21 0.6212 0.0018 0.5576 0.0030 3.3863 0.0029
Promo 22 0.7453 0.0072 0.4492 0.0025 3.2637 0.0054
Promo 23 -5.9312 0.0010 -5.9169 0.0018 -1.5900 0.0044
Promo 24 -0.1178 0.0014 0.3373 0.0007 0.3053 0.0031
Promo 25 0.2477 0.0017 1.0814 0.0033 2.2192 0.0037



Table S.10: For di↵erent levels of false positive rates, we report the correct detection rates

of conversions in the test data from the ROC curves of four models in Figure 4.

Data Type Stage Model
False Positive Rate

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Training

Open

NCG 0.47 0.58 0.68 0.77 0.83 0.89 0.93 0.97

NCL 0.44 0.57 0.68 0.77 0.83 0.89 0.93 0.97

CRON 0.47 0.6 0.7 0.78 0.84 0.9 0.94 0.98

SCRON 0.47 0.6 0.7 0.78 0.85 0.9 0.94 0.98

Click

NCG 0.21 0.32 0.42 0.52 0.62 0.72 0.82 0.91

NCL 0.27 0.37 0.47 0.56 0.65 0.74 0.82 0.91

CRON 0.34 0.46 0.56 0.66 0.75 0.83 0.89 0.96

SCRON 0.35 0.46 0.57 0.66 0.75 0.83 0.9 0.96

Purchase

NCG 0.29 0.41 0.51 0.61 0.7 0.79 0.87 0.94

NCL 0.31 0.43 0.54 0.64 0.73 0.81 0.88 0.95

CRON 0.44 0.56 0.67 0.76 0.85 0.92 0.97 0.998

SCRON 0.46 0.58 0.7 0.8 0.88 0.95 0.98 0.998

Test

Open

NCG 0.36 0.5 0.62 0.73 0.82 0.88 0.93 0.97

NCL 0.42 0.55 0.65 0.74 0.82 0.88 0.93 0.97

CRON 0.45 0.59 0.69 0.77 0.84 0.9 0.94 0.98

SCRON 0.44 0.59 0.69 0.77 0.84 0.9 0.94 0.98

Click

NCG 0.2 0.3 0.4 0.5 0.61 0.7 0.8 0.9

NCL 0.23 0.35 0.45 0.55 0.65 0.72 0.81 0.9

CRON 0.33 0.45 0.55 0.65 0.74 0.83 0.89 0.96

SCRON 0.33 0.45 0.55 0.65 0.75 0.83 0.9 0.97

Purchase

NCG 0.26 0.38 0.49 0.58 0.67 0.76 0.84 0.92

NCL 0.29 0.4 0.51 0.61 0.7 0.78 0.86 0.93

CRON 0.45 0.55 0.65 0.74 0.82 0.89 0.96 0.998

SCRON 0.47 0.6 0.71 0.81 0.88 0.94 0.98 0.998

S.14



S.3 Proof of Proposition 1

The proof follows by checking the conditions of Theorem 2.1 of Dey et al. (2016) (hence-

forth abbreviated as DB16) that ensures geometric convergence of Markov chains with

transformation-MCMC modifications (TMCMC). Let T = (⇥, B) and dimension(T ) = p.

A distribution h is said to be from a super-exponential family if

lim
||T ||!1

||T ||�1
pX

j=1

Tj
@ log h(T )

@Tj
= �1. (9)

Theorem 2.1 of DB16 showed that if the target density h(T ) is from a super exponential

family and does not have contours parallel to {T : |T1| = |T2| = . . . = |Tp|} then the

corresponding TMCMC chain is geometric ergodic. We next check that our proposal

density defined in Section 4 is super-exponential. The prior distribution g(T ) used here

is continuous and di↵erentiable. Decompose the logarithm of the proposal density as

log h(T ) = lS(T ) + log g(T ) where lS(T ) is the log-likelihood based on sample S defined in

Equation (8) of the main paper.

As done in Equation (6) of the main paper, we decompose T in ⇥, B, and ⌃ and

log g(T ) = log g1(⇥) + log g2(B) + log g3(⌃). Also, note that ⇥ is actually the conglomer-

ation of (�,m,⌫).

Recall, that the parameters are di↵erent for the di↵erent stages of the conversion funnel.

For e.g., �(l)
j varied over l = 1, 2, 3 stages of the funnel. For convenience, we would use the

notation o, c, and p for stages 1, 2 and 3 of the conversion funnel. From its definition in

the main paper, it follows that for a, l 2 {o, c, p}:

@

@�
(l)
j

`
(a)
ik (T ) = UikjI{l = a}, @

@µ
(l)
j

`
(a)
ik (T ) = r

(a)
ikjI{l = a}, and ,

@

@⌫
(l)
j

`
(a)
ik (T ) = I{j = i, l = a}, @

@b
(l)
j

`
(a)
ik (T ) = I{j = i, l = a} . (10)
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Next, note that by definition Equation (8) it follows that

� @

@Tj
lS(T ) =

X

(i,k)2⌦

✓
1� oik �

1

1 + e
`oik

◆
@`

o
ik

@Tj

+
X

(i,k)2⌦c

✓
1� cik �

1

1 + e
`cik

◆
@`

c
ik

@Tj

+
X

(i,k)2⌦p

✓
1� pik �

1

1 + e
`pik

◆
@`

p
ik

@Tj
. (11)

Since we have used independent Gaussian priors with fixed variances for each of the pa-

rameters in ⇥, we have:

�
X

Tj2⇥
Tj

@

@Tj
log g(T ) =

X

Tj2⇥
wjT

2
j (12)

where wj are positive constants. Also, for the consumer specific e↵ects we have:

� @

@b
(l)
i

log g(T ) =
X

j 6=l

⌃̄ljb
(j)
i + ⌃̄llb

(l)
i for i = 1, . . . , N where ⌃̄ = ⌃�1

. (13)

Finally, note that for the ⌃̄ parameter, the contributions are from g2 and g3:

@

@⌃̄
log g(T ) =

@

@⌃̄
log g2(T ) +

@

@⌃̄
log g3(T ).

The first term is the derivative with respect to ⌃̄ of multivariate normal density of B. The

second term is from the Wishart prior log g3(T ) = (d + 4)/2 log |⌃̄| � tr(⌃̄)/2 + constant

where d is the degrees of freedom of the prior. Here, the covariance of the prior is set to I.

Thus,

� @

@⌃̄
log g(T ) = �(N + d/2 + 2)⌃̄+ 2�1

NX

i=1

bib
0
i . (14)

Now, from Equation (11) it follows that
Pp

j=1 Tj
@

@Tj
lS(T ) is bounded above by

X

(i,k)2⌦

oikTj
@`

o
ik

@Tj
+

X

(i,k)2⌦c

cikTj
@`

c
ik

@Tj
+

X

(i,k)2⌦p

pikTj
@`

p
ik

@Tj
.

From Equation (10) it follows that the above does not involve any quadratic terms of

the parameters. Equations (12)–(14) show that all the parameters that appear in the
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above sum are also involved quadratically in
Pp

j=1 Tj
@

@Tj
log g(T ). Thus, for any fixed N ,

Pp
j=1 Tj

@
@Tj

lS(T ) is dominated by
Pp

j=1 Tj
@

@Tj
log g(T ). Note, both assumptions A1 and

A2 are essential to ensure this domination. Moreover, the quadratic terms have negative

coe�cients in
Pp

j=1 Tj
@

@Tj
log g(T ) and therefore, we arrive at Equation (9) which completes

the proof.

S.4 Discussion on Predictive Optimality of BHMT

The adjustments, prescribed in Section 4.2.3 of the main paper, results in consistent es-

timates of the model parameters. Based on this consistent-estimation scheme, our pro-

posed method can be used for predicting the response of future customers. In Section 5

we have provided the ROC curves for test data sets based on models estimated by our

proposed BHMT procedure. Following the analysis framework developed in Fithian and

Hastie (2014), asymptotic optimality of the BHMT methodology can be established. For

any fixed covariate matrix Xte, let Yte = {(Oik, Cik, Pik) : i = 1, . . . ,M ; k = 1, . . . ,K}
responses from m new customers generated from Equations (1)-(4) with true parameters

being ⇥0 and Bte = {btei : i = 1, . . . ,M} being i.i.d. from N3(0,⌃0), for any positive

definite ⌃0. Denote the true distribution of Yte by q(Yte|Xte,⇥0, Bte).

Let Xtr be the fixed training matrix and Ytr is generated from (1)-(4) using Xtr, ⇥0

and Btr = {btri : i = 1, . . . , N} being i.i.d from N3(0,⌃0). Consider the plugin estimate

q(Yte|Xte, ⇥̂S
, B̂

S) for the predictive distribution Yte where B̂
S contains i.i.d. vectors from

N(0, ⌃̂S). Note, that ⇥̂S
, B̂

S are functions of (Ytr, Xtr). The analysis in Fithian and Hastie

(2014) can be extented to provide weak consistency of the estimated paramters ⇥̂S P! ⇥0

and ⌃̂S P! ⌃0. These when substituted in (5) yield the following result on good asymptotic

performance by the BMHT based plugin predictive distribution.

Proposition 2. For any fixed K, as M,N ! 1 the plugin predictive distribution using

BHMT estimates from a subsample S that satisfies assumptions A1 and A2 converges to

the true distribution in Kullback-Leibler loss:
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