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Abstract

We analyze customers adoption of hybrid cars using automobile transaction data from the Sacra-
mento market during the first half of 2008, a critical period when hybrid car adoption was still low.
Modeling demand for durables such as cars is made more difficult by the absence of repeat purchase
data and one way to address this data scarcity is to pool information across similar customers. We
implement such a pooling strategy by proposing a new multinomial probit model that simultaneously
accommodates different similarity structures among customers by connecting them through multiple
weighted networks. Unlike the traditional multinomial spatial probit, our model links consumer con-
nectedness to their preference and marketing mix coefficients so that each subset of the parameter
vector is correlated in a unique way.

We propose and implement a novel Monte-Carlo Expectation-Maximization (MCEM) based ap-
proach to parameter estimation that significantly increases the number of consumers and choice alter-
natives that the model can handle. Our method modifies the computationally expensive E-step in the
classical EM algorithm by a fast Gibbs sampling based evaluation. Further, it implements the M-step

using a fast back-fitting method that iteratively fits weighted regressions based on associated similarity



matrices for each subset of the coefficients. We establish the convergence properties of the proposed
MCEM algorithm, present computational perspectives on the scalability of the proposed method, and
provide a distributed computing-based implementation.

We apply the model to sales data for compact cars from the Sacramento market. The results
show that the version of our model in which the intercepts are based on the geographical closeness
between consumers, and the slope coefficients on the similarity of their previously owned vehicles,
fits the data the best. We explain the coefficients of the fitted model as well as present consistent
estimators of the errors of the coefficients. We analyze the cross-price elasticity matrices to produce
clout and vulnerability measures of the different vehicles and to produce competitive maps of the
marketplace. We show how the multiple network weights explain the changes in price sensitivity of
customers across geographic locations, captures the variation in brand preferences among customers,
which together better estimates of a consumer’s propensity to buy a hybrid.

Finally, we demonstrate how an automobile manufacturer can leverage the estimated heteroge-
neous spatial contiguity effects to develop more effective targeted promotions to accelerate the con-

sumer adoption of a hybrid car.
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1 Introduction

In order to successfully launch a product based on a new technology, it is extremely important to attract
early adopters (Robertson, 1967, Rogers, 2010). Early adopters are thoughtful customers who play a
critical role in accelerating adoption of the product so that it achieves mainstream acceptance (Moore,
1991). Because they may not be very different from the average population in their observable attributes,
it is critically important to use other means to identify and target them effectively and convince them the
utility of the new product is above their adoption threshold.

Automobiles are considered “durable” products, marked by lengthy inter-purchase times (the aver-

age replacement time for new vehicles is the US is about six years), relatively high prices and a high-



involvement purchase process that typically involves significant information search and processing. The
current research focuses on the compact car market, circa 2007, and proposes an approach to help identify
early adopters of a relatively new technology that emerged at that time, namely hybrid cars. Combining
a conventional engine with a rechargeable battery to deliver more fuel efficiency, these vehicles spear-
headed the push towards clean energy transportation that disrupted the traditional car market starting
around the year 2003. The year 2007 represents an ideal time in the product life cycle of hybrid cars
to examine consumer adoption of this new clean-energy technology and to understand how firms may
potentially influence it through their marketing strategies (Heutel and Muehlegger, 2015).

Relative to consumer packaged goods (CPG), modeling consumer choice of durable goods is made
more difficult by the absence of individual purchase histories, which contain valuable information about
a consumer’s preferences (Bucklin et al., 2008). The Random coefficient multinomial probit (RCP) is a
workhorse model that has been applied to both CPG and durable goods markets to identify the impact
of prices, rebates and other marketing instruments (Rossi and Allenby, 1996) on demand. Despite incor-
porating consumer heterogeneity, the coefficients from this model are “global”, potentially constraining
its ability to identify consumers who can be targeted with scarce marketing dollars. Choice models with
individual parameters that are shrunk “locally” capture consumer heterogeneity in a more nuanced way,
which may significantly improve predictive performance and be the foundation of a more effective tar-
geting program. In the absence of purchase histories, marketers build local choice models by borrowing
information from other consumers. Jank and Kannan (2005), Karmakar et al. (2021) report that spatial
choice models that pool information based on consumer similarity deliver better predictive fit than non-
spatial models. Though geographic distance is the most commonly used contiguity metric in the spatial
modeling literature other proximity sources represent an opportunity to augment and improve these mod-
els. Our application explores one such measure of contiguity between buyers that is based upon the fuel
efficiency of the vehicles previously owned by them.

To our knowledge, our model is the first spatial discrete choice model that (See Ch. 6 of Agresti, 2015)
incorporates multiple network weights, each based on a unique consumer closeness measures, yielding
a flexible model in which subsets of the parameter vector have distinctive spatially correlations. Adding

these features to the model also spur the development of new statistical methods to obtain maximum likeli-



hood estimates (MLE) of the parameters. Specifically, we develop a modified Expectation-Maximization
(EM) approach (Dempster et al., 1977, McLachlan and Krishnan, 2007) in which the M-step iterations in-
corporate backfitting. The resulting algorithm is more scalable than extant spatial choice models, greatly
increasing the number of consumers and choice alternatives that the model can handle. Several desir-
able theoretical properties of the algorithm are demonstrated, while our empirical application highlights
its practical use by making it the basis of new target marketing programs designed to more effectively

accelerate consumer adoption of hybrid cars.

1.1 A Multinomial Choice Model based on multiple Network weights

The multinomial probit model (MNP), an unordered categorical data analysis method (Rossi et al., 2012),
is widely used to model the discrete economic choice behavior of customers. However, parameter es-
timation can be computationally burdensome because the likelihood function involves hard-to-compute
multi-normal orthant probabilities. A significant body of previous research, both frequentist (Keane,
1994, McFadden, 1989, Natarajan et al., 2000) and bayesian (McCulloch and Rossi, 1994, McCulloch
et al., 2000), has tried to develop efficient estimation methods for the MNP (see Tosetti and Vinciotti
(2019) and the reference therein for a recent review on the topic).

Spatial structures reflecting structural contiguity in choices of geographically close customers (Jank
and Kannan, 2005, Yang and Allenby, 2003) have been introduced in MNP to strengthen inference in
choice models with few repeated observations, as in durable products, by borrowing information across
related consumers. Recently, Karmakar et al. (2021) showed that using a spatial autoregressive (SAR)
structure (Ch. 6 of Anselin (2013), Ch. 2 of Banerjee et al. (2014)) on the intercepts can improve
prediction of car choices. Here, we explore the advantages of having an alternative spatial structure,
namely weighted regression (WR) (LeSage, 2004). While both SAR and WR are used for modeling
non-stationary data, SAR allows only global shrinkage through the auto-correlation parameter whereas
WR admits local regression coefficients. Thus, unlike traditional SAR, WR models are effective in the
presence of spatial heterogeneity in the data (Fotheringham et al., 2003).

Furthermore, while most of the existing marketing literature has focused on a single contiguity mea-



sure based on geographic closeness, we also harness information based on other criteria such as contiguity
measures based on previous vehicle choices, which recent research on automobile purchase choices re-
veal that features of traded-in previously owned vehicle contain significant information on new vehicle
choices (Karmakar et al., 2021). However, networks with highly varying characteristics are often required
to capture the customer level heterogeneity of the covariates involved in the aforementioned customer sim-
ilarity measures. In these cases, using a single network weight matrix to fecilitate pooling of information
across customers in the MNP may lead to incorrect inference and may deteriorate predictive performance.
To accommodate possibly different similarity network structures among covariates, we consider a flex-
ible multiple weight matrices based shrunken MNP model (MWMNP) that incorporates multiple network
weights from different similarity measures while pooling information across customers. Recently, Fother-
ingham et al. (2017) developed an algorithm, abet in a Gaussian framework, for estimating parameters
in a multi-scale spatial model. While spatial models with multiple weights have been used in analyzing
continuous outcomes such as population (Fotheringham et al., 2017) or housing prices (Li et al., 2019),
till date, to the best of our knowledge such flexible modeling approach has not been developed for dis-
crete outcomes from a multinomial choice process. For modeling buyers car choices among different
alternatives (which include hybrid choices) in the compact category we develop a modeling framework
that is flexible enough to permit different components of the parameter vector to be smoothed based on

different similarity networks.

1.2 Statistical Challenges

Estimating the parameters in the multiple network weights based MNP model pose several statistical
challenges. To address these challenges, we develop a novel Monte-Carlo EM (MCEM) based algorithm
(Wei and Tanner, 1990) for estimating the maximum likelihood estimator. We describe its key ingredients

below:

(i) Monte-Carlo EM. Computationally tractable parameter estimation in the traditional MNP set-
up with a substantially large sample size includes Bayesian MCMC approaches that are based on

Rossi and Allenby (1996) and Roy and Hobert (2007). Frequentist maximum likelihood estimation



is usually implemented via the EM approach (Tosetti and Vinciotti, 2019). However, evaluating
the expectation of the MNP log-likelihood in the E-step using the parameter estimates from the M-
step involve functionals from truncated multivariate normal distributions that do not admit closed
form expressions and is very computationally intensive. In our MWMNP model this issue is further
compounded as our application case involves a large number of alternatives and significantly large
sample size. We modify the MCEM approach in Natarajan et al. (2000) for evaluating expected
log-likelihood to our application set-up. By bypassing direct evaluation of the likelihood function
the MCEM algorithm increases scalability. It is to be noted that in these E-step calculations, our
proposed MCEM algorithm fundamentally differs from the MGWR method developed for Gaussian
models in Fotheringham et al. (2017). In section 4.1 we detail the development of MCEM algorithm

for parameter estimation in MWMNP.

(ii) Backfitting algorithm based M-step. Unlike traditional MNP set-ups (sec. 3 of Natarajan et al.
(2000)) or MNP with a single-weight matrix (Ch. 6 of Anselin (2013)), using an EM approach in
MWMNP is challenging as maximization of the expected log-likelihood in the M-step is non-trivial.
Inspired by the backfitting algorithm in Buja et al. (1989) that is popularly used for calibrating
generalized additive models, we maximize the expected log-likelihood of our multi-weight MWMNP.
Backfitting is a very flexible iterative algorithm which can be applied to a host of cumbersome
additive models (Hirdle et al., 2004, Hastie and Tibshirani, 1990). As MWMNP is an additive model
without any closed form maximization, usage of the backfitting algorithm is a natural choice here.
However, the convergence of the backfitting algorithm as well as the consistency of the solutions
upon convergence is not always guaranteed (Opsomer and Ruppert, 1997), particularly once we
are outside the canonical framework studied in Buja et al. (1989) and subsequently expanded in
Mammen et al. (1999), Opsomer (2000), Tan and Zhang (2019). In section 4.3 we provide detailed
analysis on the properties on our proposed algorithm and thereafter apply it to our application case

on hybrid car adoption in Sections 5 and 6.

(iii) Large scale estimation using distributed computing. The compact car industry in the US has

a large number of alternatives that have consequential market share. Analyzing consumer choices



in large (sample) observational data-sets across a wide range of discrete alternatives is computa-
tionally challenging. For scalable estimation of the MWMNP model in large longitudinal data-sets
we harness the benefits of distributed computing. Recently, distributed computing based algorith-
mic developments for increased scalability and reduced computational time without sacrificing the
requisite level of statistical accuracy have received significant attention. By carefully decoupling
and distributing the unrelated calculations across observations in both E-step and M-step of our
proposed backfitting based MCEM algorithm, we massively reduce computational complexity (see
Lemma 1 and the discussions before it). To implement our proposed methodology, we develop a

R-package MWMNP that can be freely downloaded from Github repository.

We apply the developed MWMNP method for analyzing car purchase data from the Sacramento, California
market in 2017. We study the adoption rates for the two prevalent hybrid cars at that time in the compact

category, viz, Toyota Prius and Honda Civic Hybrid . The key findings in our case-analysis are:

e By using a multiple network weights based discrete choice model, we show that a consumer’s pre-
vious vehicle characteristics contain important information regarding his current vehicle choice.
This information can not be captured by just considering the recent car brands sold in his/her geo-
graphic proximity. Unlike Karmakar et al. (2021), simultaneous usage of these two heterogeneous
customer networks — based on previous vehicle choice and geographic proximity — is conducted
here through the MWMNP model. This greatly increases predictive accuracy over choice models

that use single weight matrix based MNP models (See Table 2 and its discussion).

e The proposed MWMNP model shows that for car buyers in any geographical neighborhood, the
propensity for hybrid adoption increases if his/her previous vehicle had high gas mileage measured
in miles-per-gallon (mpg). However, there is stark difference between the adoption probability

curves for the two hybrid cars. See figure REF and its associated text in Section 5.

e Using the MWMNP model, we showcase how consumer sensitivity to price changes are highly het-
erogeneous and greatly varies across neighborhoods (See Figure 8. We found that the MWMNP model

with geographically varying response coefficient and preference coefficients correlated based on



their previous vehicle choices is the most efficient based on predictive accuracy (see Figure 6 and

its associated text for further details).

e In Section 6 we study incentive programs to increase adoptions for Toyota Prius. We consider a
popular marketing method Conquest Cash that targets customers and provides them a fixed rebate
on the cost of Toyota Prius. We show that using the proposed MWMNP to target consumers for the

Congquest Cash program can create a lift of 6.8% over traditional approach.

The rest of the paper is organized as follows. In Section 2 we describe the data behind our application
case. We introduce the multiple network weights based multinomial probit model in Section 3 and present
a consistent, scalable algorithm for estimation the model parameters in Section 4.1. In section 4.3 we de-
tail on the working principle and computational complexity of our estimation algorithm and demonstrate
its several appealing properties. In Section 5, the results from our empirical application is presented.
In Section 6, we demonstrate how the parameter estimates from the model can be used to dramatically
improve the effectiveness of a promotional program that is designed to target hybrid buyers. We conclude

with a discussion of the limitations of our study and some directions for future research.

2 Data

The data comes from an established market research firm that collects vehicle transaction data from
dealers electronically. In this research we analyze sales in the Premium Compact category from dealers
in the Sacramento market during the first six months of 2007. We are particularly interested in using
the model to notionally help the marketing team of Toyota Prius, the original hybrid car, which launched
in the US in the year 2000. Figure 1 shows the US market share of Prius and Civic Hybrid over years.
Till 2007, hybrid cars have an increasing market share but are yet to cross the 1% market share mark.
Also, Figure 1 shows that the upward trend seen in the early years flattens around 2007 which coincides
with the historical decline in light vehicle retail sales in the US (Carlier, 2021). Thus, it is extremely
important to study the role of efficient marketing strategies for adoption of hybrid Prius cars at this critical

juncture when the market for new cars was declining in US. After seven years of launch, Prius’s the main
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Figure 1: Market share of Prius and Civic Hybrid over the years.

marketing challenge was to accelerate adoption sufficiently by reaching beyond the innovators so that the
Prius could “cross the chasm” (Moore, 2002) to mainstream acceptance in the face of direct competition
from the Honda Civic hybrid, which launched in Spring 2002.

We focus on seven of the top-selling models that together account for about 64% of all sales in the
Premium Compact category. The models are (a) Honda Civic, (b) Toyota Prius,(c) Toyota Corolla, (d)
Nissan Sentra, (e) Honda Civic Hybrid, (f) Scion xB, and (g) BMW m3. Because we wish to examine the
effect of a consumer’s previously owned vehicle on their current choice decision, we restrict ourselves to
only those consumers in our dataset who had also traded-in a vehicle to the dealership while acquiring
a new one. The seven short-listed models accounted for 2196 transactions, which represents 70% of all
Premium Compact purchases via trade-in during the first six months of 2007.The list of traded-in vehicles
is much longer, including a total of 249 different models made by 38 manufacturers.

Transaction records contain information on the prices paid by each consumer, whether the vehicle was
leased, financed or purchased outright, the Annual Percentage Rate (APR), down payment and monthly
payment for for lease and finance contracts, manufacturer rebates and APR subvention (if any), and
the residual value of the vehicle if it was leased and consumer location information.Table 1 reports key

summary statistics for each vehicle model including market share, price levels and promotion spending.
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Table 1: Summary statistics of the compact category Sacramento Market car sale data used in the application case

Vehicle Average Average Average Market
model price($) rebate($) APR(%) share(%)*
Civic 19,065 0 7.7 31.83
Prius 25,475 0 6.59 23.27
Corolla 16, 895 427 7.05 19.63
Sentra 17,559 435 7.91 9.47

Scion xB 17,265 0 8.41 5.28
BMW m3 17,931 0 8.05 5.28

Civic Hybrid 23,315 0 6.69 5.24

* Market share among these seven vehicle models.

We compute Net Price as vehicle Price less rebate and the dollar value of APR subvention. Since vehi-
cle prices are only observed for a purchased product, and models for predicting customer choices require
prices for all alternatives, we construct the vehicle prices based on the parameters of a hedonic regression
(Zettelmeyer et al., 2006), from which the Net Price can be derived. Since vehicle price is endogenous,
potentially correlated with the unobservable utility error term we use the control function approach of
Petrin and Train (2010), that is specifically developed for discrete choice models. The approach requires
an instrumental variable, uncorrelated with consumers demand but highly correlated with the retail prices
vehicle price for which, like Chintagunta et al. (2005), we use wholesale price. Thus, in the first step for
each model we regress vehicle price on its wholesale price and obtain the residuals from this regression.
In the second step, because the choice model is highly non-linear, following Wooldridge (2015), we aug-
ment the utility terms to include two additional variables, the residuals themselves and their interaction
with vehicle price. We explicitly describe all the covariates used in the model in Section 3. Next, we
describe the two different kinds of network weights that we consider in our study to incorporate different

types of customer similarity characteristics.
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2.1 Network Weights reflecting customer connectedness and similarity
2.1.1 Geographic location based weights (W°)

Spatial statistics started by recognizing that observations drawn from different locations are not indepen-
dent of each other and the resulting models represented different ways of exploring the spatial dependency
in observations. Therefore it is no surprise that physical location and distance play an important role in the
theory and empirical application of spatial models. From a theoretical perspective, geographic contiguity
is a proxy for many socio-demographic factors such as education, income, property values and wealth,
which are intricately related to the value and choices of high priced purchases such as houses (Fother-
ingham et al., 2017) and vehicles. Empirically, in a marketing setting, Jank and Kannan (2005) find that
preferences and price sensitivities in a binomial logit model of book choice are spatially correlated across
geographic regions. In the automobile market, Berry et al. (1995) find truck sales are relatively high in ru-
ral areas while sedans dominate urban areas. Yang and Allenby (2003) show that a consumer preferences
for a vehicle’s country-of-origin (Japanese/non-Japanese) are spatially correlated based on the physical
distance between consumers. Therefore geographic location is an important component of our model.
Figure 2 shows that vehicle buyers in our dataset are concentrated around Sacramento though some
of them are more than 120 miles away in Sunnyvale, CA. Figure ?? and Figure 3 provide a more detailed
view of two specific zipcodes, which reveal that the density of consumers varies across zipcodes, being
much higher in the zipcode shown in the former than in the latter. Taken together these figures make clear
that spatial distance variation may help to identify the effect of spatial contiguity on parameters. The

spatial matrix based on geographical location is denoted as WS, with each element given as
WS = ]{?Z exp(l/dij),

where d;; is the Euclidian geographic distance between the residential locations of consumers ¢ and j and

the constants k;’s are chosen to normalize the sum of each row to 1.
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Figure 2: Geographical distribution of new compact car purchases in our data extracted from the Sacramento
market.

2.1.2 Previous Vehicle similarity based weights (W)

A substantial body of research has established that consumer purchasing is high in inertia and past pur-
chases made by a consumer are highly predictive of future choices. Indeed, previous research by Kar-
makar et al. (2021) showed that spatial models, using very general vehicle attributes like vehicle manu-
facturer, country of origin, nameplate, model and the number of cylinders to measure contiguity, is highly
predictive of consumer preferences for automobile models. In the current research, because the Prius was
the first hybrid vehicle on the market with a extremely high fuel mpg ratings, we hypothesize that the
fuel-efficiency of previously owned vehicles maybe indicative of consumer interest in this feature and
thus highly relevant to modeling the spatial correlation in the demand for the Prius. Figure 3 shows the
heterogeneity in mpg within and between two zip-codes in the Sacramento market. To capture customer
similarity on this aspect, we constructed a contiguity matrix based on the fuel efficiency of previously

owned vehicles. As a first step in this process we obtained five fuel efficiency measures from the Bureau
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Figure 3: Two zip-codes from the Sacramento market are zoomed in to show the heterogeneity in the previous
vehicle characteristics in our data set.

of Transportation for each of the 249 different traded-in models, which are are reported as the miles per

gallon delivered by a car under five different conditions — city, highway, comb, UCity and UHighway.
Figure 4, a pair-wise correlation plot for these five variables shows the extremely high correlation

between them. A principal component analysis (PCA) of the variance-covariance matrix yielded the

following weights for each component in the principle factor: 0.359,0.392,0.373,0.500 and 0.574. Each
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Figure 4: Pairwise plot of the five different fuel efficiency measures obtained from the Bureau of Transportation
for the 249 different traded-in vehicles in our dataset.

element of the spatial contiguity matrix, W¥ were calculated as

W), = k; exp(—|mpg; — mpg;]) ,

where the constants l%i’s are chosen to make the sum of elements in each row to total 1.

3 Model

Consider having C' alternative car choices and O; is the observed choice for the ith customer. Thus,

O;€{l,...,C}. Lety; = (yi1, - - ., yic) be the vector of utilities for the C' alternatives for the consumer



1. Note that, we do not observe y;s but only observe:
O; = arg ax Yic - (D
Consider the latent utilities being generated from the following linear model:
Yie = Qe + X, 0; + €, fori=1,... . N; e=1,...,C; (2)

where, ¢, have mean 0 and x;.s are p dimensional vectors corresponding to the values of the covariates

for the 7™ customer and ™ alternative. Stacking the ¢ dimensional vectors x;; as rows in the C' X p matrix

X; = [xly; -+ ;X o], we rewrite (2) as
vi=oa; + X0, +¢€;, fori=1,..., N, 3)
where, o; = (@1, ..., a;c)’. We assume that €; are i.i.d. from Normal(0, ). The Gaussian regression

model (3) has local coefficients. The intercepts c; which denote the preference (Rossi et al., 2012) of
consumer ¢ vary across alternatives ¢ = 1, ..., (; the slope coefficient 3; which measures the response of
customer ¢ to changes in marketing variables is invariant across alternatives but varies across consumers.
In the covariates a}, we consider the logarithm of the Net Price (defined in Section 2), and REF; also
check is I have corrected replaced all n for sample size with N.

While (3) is a very flexible model, based on observing {O; : i = 1,..., N} only, it is not estimable.
We impose additional structures on the model. Powerful locally varying regression models can be con-
structed by using appropriate weights which reflect the underlying heterogeneity in the data (Carroll and
Ruppert, 1988). Following the Weighted Regression (WR) model in Ch.2 of Fotheringham et al. (2003),
we consider (3) with the locally linear structures on intercepts as well as the slope coefficients. Consider
N x N symmetric matrices W and T with wy, t;y > 0for1 < k.l < Nand Y ,w;, =1, ,t3, =1

fork =1,...,N. Forany fixed {3, : i = 1,..., N}, a; is the weighted least squares estimator based on
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weights from W:

N
a; = argminZw?[(yl —a—X8)S y —a—X,|5) . 4)
=1

acRN

Similarly, for fixed a;s, the slopes are based on the minimizing the weighted sum of squares with weights-

based on T™:
N
B = arg minZt?l(yl —oy— X|B)Y Ny — oy — X, B), and, (5)
BERY 121

Consider the NC x p matrix X = [X7;...; X,,] by appending matrices X;s by rows. Next, define

N x N matrix W; = diag(w1, ..., w;n ), the NC' x NC non-negative definite matrix W; as
Wi(E)=(W;@Ic) In@E ) (W, ® Ic), (6)

where, ® denotes kronecker product. Similarly, define 7; and T; for i = 1,..., N. For any fixed A =
[ : 1 <1< N]and B = [5; : 1 <1 < N] values, define nc dimensional residual vectors r,(A) =

[y1 —aq;...;yy —ay]and ro(B) = [y1 — X151;. .. ; yv — XnBy]. Then, the solution to (4) is:
(64| B, X] = Pi(S) ro(B) where, P;(X) = (Z/ W, Z) 2’ W, and Z = 1y ® Ic. 7
Similarly, the solution to (5) is given by:
(61| A, 2] = Si(2) 7, (A) where, $;(2) = (X' T, X) ™" X', . (8)

Note that if 7; = Iy and A = 0, then Bz in (5) is the generalized least squares estimator with co-
variance Iy ® Y~ !. Thus, the weights t;; in (5) provides a localized character to the slopes where the
higher weights exerts greater influence on the MLE. In spatial applications these weights are often set
based on geographic proximity between the observations, for example wy; can be set inversely propor-

tional to the distance between consumers &k and [ (LeSage, 2004). Often, the local characterization of
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the coefficients needs calibration at different resolutions. This necessitates usage of different weights for
different sets of variables. Recently, Fotheringham et al. (2017) showed that using different bandwidth
scales for constructing the weight matrices 1 and 7" based on geographic distances can better explain
spatial heterogeneity in the Gaussian regression model of (3)-(5). For marketing applications, as in our
case, there often exists non-geodesic metrics that capture informative local patterns in the data. Karmakar
et al. (2021) compared modeling product preferences using a SAR model with different kind of similar-
ities between consumers and reported weights based on how similar consumers’ previously purchased
products are to each other to have more predictive power than weights based on geographical distances.

In Section 5 we show the benefits of using multiple spatial weights via (3)-(5) in modeling consumers’
choices in purchasing new cars. We consider different weights I/ and 7" based on geographic as well
as similarities in traded-in vehicles. It is to be noted that the Gaussian regression set-up in (3)-(5) is
similar to multivariate locally weighted least squares regression (see Ruppert and Wand (1994) and the
references therein) with the only difference being that the weights are not based on the local neighborhood
of the concerned covariates but are based on proximity measures calculated using other variables. The
MLE (A, B , f]) of (3)-(5) is usually derived by using back-fitting iterations. However, the existence of
a solution depends on properties of the weights W and 7'. There has been extensive research on the
properties of the back-fitting method for the Gaussian regression model (Mammen et al., 1999, Opsomer,
2000, Opsomer and Ruppert, 1997). In the next section, we discuss estimation in the probit set-up using
back-fitting iterations in a MCEM framework.

To have interpretable models, we impose a nodal covariance structure, i.e., > = diag(o%, - J%).
The MNP model is still not identifiable (Ch. 5.2 of Train, 2009). For identifiability, we further impose

the following constraints:

C C
oc=1land » a,.=0, » a}f=0fori=1_.. N )

c=1 c=1
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4 Estimation

4.1 A Monte-Carlo EM algorithm with backfitting

As we only observe O; and not y;s, we can not directly use (4)—(5) to develop an iterative algorithm for
finding the MLE as done in Gaussian regression model by Fotheringham et al. (2017). We implement an

EM algorithm treating y;s as the missing data. The complete data log-likelihood based on observing the
Y;S 18

Y Zloga o %ZZ 012 (Yic — Qtic — X;cﬁi)2'

i=1 =1 ¢
Let © = (Acxn, Bpxns Zoxc) represent an arbitrary parameter value. Let O® be the values of the
paramters at the " iteration of the EM algorithm. The E-step of the EM algorithm involves evaluating
the expected log-likelihood at all possible © values. Note that, the unconditional distribution of the y;.s
is a multivariate normal based on parameters in ©®). The expected log-likelihood for the E-step is the

conditional distribution of the y;.s given we had observed {O; : 1 <i < n} and is as follows:

E(@K") = ——ZlOgU - _ZZU_2Q10 Oézca/8272|@(t)) (10)
i=1 c=1
Where, Q,-C(ozz-c, Bia E|® == E{ yzc — @cﬁ aic)2 ’ Oi; @(t)} = {Vz(?}z (NE? - Qe — XngZ)

where, Vt {Var(y;c|0:, ©D)1/2 and 11 = E(y;|0;,0®) fori = 1,...,Nandc = 1,...,C.
£(016M) is subsequent maximized over © in the M—step. Calculating £(©]|0®) for any © is difficult as
evaluating Q;.(©|60™) involves moments uw and y Y of C-dimensional multivariate normal distributions
truncated to the sets {y; : vio, > Yi1,---,Yic}. Instead of direct evaluation, we use Gibbs sampling to
estimate these moments. These calculations are done in parallel for each observation 7. Next, we describe

the calculation of the moments ,u(tH

parameter values az@, ﬁi(t), and ¥ from the previous step.

(t+1)

and v;, " at the ¢ + 1 iterative setp of the EM algorithm based on

E-step calculations by Gibbs sampling. By y; \. denote the C' — 1 vector of latent utilities of consumer

i except for the ¢ alternative; similarly define agt\)c, Xi\c and Z;). for the covariate values associated

7

with consumer ¢. Set aEO) =0,8 =0, ,u,(-o) = 0 for all 7 and variance X(°) = .. For each observation 7,
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we conduct Gibbs sampling with an inner loop with m iterations. Starting with y belng a random draw

()

from normal with mean p;” and variance YO fork=1,.

Set yz(f) = yz(f_l) forc = 1,...C. Update y(k)

... sequentially for c = 1,.. ., C from truncated normal

with mean o + xwﬁl(t) + n(t) (y( ) agt\)c - Xiy\cﬁi(t)> and standard deviation " n(t) is the

ic 3,\c
regression coefficient vector which is 0, in the diagonal covariance case. If O; = ¢, the truncation

is from max ygk\)c to co. When O; # c, the truncation is from —oo to max ygk\)c.

Using the values y(k)

’c

s, after burn-in and thinning, calculate their average as u(t+1)

’c

and standard deviation
as V(t+ ). We use m values for burn in and 7 for calculating the (¢ + 1)™ iteration values. The vectors
ugtﬂ) = {u(tﬂ) cc= .,C} and 1/ () — { D) e=1,..., C'} are passed on to the M-step.

’c

M-step: updating parameters by backfitting. At the (¢ + 1)™ iterative step in the EM algorithm, we
maximize ¢(©]0¢+1) over © in the M-step. This exercise decouples into two separate maximization
problems, one over A, B and the other over ..

We maximize ¢(0]|0¢*+1)) over A, B by using the backfitting algorithm (Hastie and Tibshirani, 1990).
The working principle behind the backfitting method is to (a) optimize the slope coefficients correspond-
ing to each spatial weight matrix separately assuming that all the parameters for the other are known (b)
cycle through the blocks of covariates corresponding to different weights estimating their parameters such
that the expected likelihood is maximized (c) iterate till convergence. This again can be done in parallel
for each consumer 7 but the parallel machines need to communicate to update the residuals. We pool the

=1, ... , N'} as input in the

outputs across the n parallel machines used in the E-step and use {p,
M-step. Based on the constraints in (9) we first update u( ) as ugtﬂ - C! Zc e (tH) The other

inputs in the M-step are {.X;, ai ,B.(t ci=1,...,N}. Fori=1,..., N, we define ]P’E) = P;(X®) and

S = S;(X®) using (7) and (8) respectively. With the initialization a( ) = agt) and BZ-(O) = Bi(t) we run
an iterative inner loop. For [ = 1,... b:
(1) Calculate partial residuals for the intercepts: r((ll) = [y,gtﬂ) X ﬁ(l 2 - ,uﬁf D _ Xnﬁv,(f_l)] .
(1) Update intercepts in parallel machines: for7 =1, ..., N calculate dl(-l) = IP’Et) r.
(iii) Calculate partial residuals for the slope coefficients: ri) = [ugtﬂ) — dgl); o ;MSH) — aSP] :
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(iv) Update slope coefficients in parallel: forz = 1,..., N calculate, B,fl) = Sgt) r.
(v) Center the slope coefficients: Bi(l) = Bi(l) — k;1, where, r; = C7'1,X; Bi(l).

Set a§t+1) = dgb) and Bi(tﬂ) = Bi(b). Note that, Pgt) and SZ@ being invariant in the inner loop for the
M-step greatly reduces the computational burden. As such as the weight matrices W and T are fixed
through out the estimation algorithm, IF’Z@, Sgt) only need to be updated based on changes in the diagonal
matrix ©®). Lastly, we update the diagonal covariance matrix parameters: for each ¢ # 1 the standard

deviations are updated as

N N 1/2
R B SN S 3 e

i=1 z‘:l

The outer loop of the MCEM algorithm is continued for increasing values of ¢ until the parameter values

convergence.

4.2 Scalability: Parallel implementation and R-package MWMNP

For our application case, we need the MCEM algorithm to be scalable in sample size [NV as well as the
number of alternatives C'. By using N parallel machines we greatly reduce the computational time. How-
ever, note that the NV parallel machines need to communicate at the end of E-step for pooling information
on the conditional expectation and variance as well as at the end of the M-step for calculating the updated
covariance parameters. Figure 5 shows the schematic of the parallel architecture used in the algorithm.
We optimize the computational time by using minimal updates in the E-step where the mean and variance
parameter of the truncated normal distributions was evaluated only once and stored thereafter in the inner
loop. Similarly, in the M-step ]P and S need evaluation only once. For efficient evaluation of Sgt), we

store the singular value decomposition of X and leveraging the diagonal structure of ']I‘l(-t)

we update Sgt)
by only O(p?) computations. Let X = U DV be the singular value decomposition of X. Note that, at the

(t + 1)™ outer loop iteration of the MCEM algorithm, the /™ inner loop iteration of the M-step involves
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E Step: computing conditional mean & Variance

7 distribute computation for
.<:'lf each customer to n parallel
machines; conduct Gibbs
hJ Sampling (GS) which has
G5 =S GS GS GS complexity mC  for each

machine

Combine conditional mean & variance across
observations and start M-step

A i likelihood maximization for A and B is
v done using backfitting (BF) iterations;
-<:'" using n parallel machines each BF

iteration has complexity p* + C* + NC

%‘|BF||BF||BF||BF|
| !

Combine locally varying regression coefficients
across observations and calculate partial residuals

¥

Update covariance parameter;
end M-step and restart E-step with new parameters

Figure 5: Schematic of MCEM algorithm used for fitting multi-weight MWMNP model

computing:

BY =sD 0 = v'D1J(t,i) r(t,1) , where,

NC -1 NC
J(t,i) = (me) Uzk)wk)) (D) =Yt i) U
k=1 k=1

and Uy is the k™ row of U; 74(¢, ) is the k™ diagonal entry of Tgt). Computing {Bi(l) l=1,...

(11)

(12)

b}

knowing the SVD of X has complexity O(p* + b(NC + p?)) at the (¢ + 1) outer loop iteration. Sim-

ilarly, computing {dgl) 2l =1,...,b}is O(C? + b(NC + C?)). The following lemma documents the

computation complexity of the proposed MCEM algorithm.

Lemma 1. Distributed across n machines, the computational complexity for running T iterations of the
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MCEM algorithm in Section 4.1 is

: mo s el _
O(NC’(p +T|:b—|—N+I€ N + bk N})) where k = max(1,p/C).

The lemma shows that for large samples (N — oo) and p fixed, the complexity of running the MCEM
algorithm with stopping time 7 is O(C(m + 7bN)) with N parallel machines. Using distributed com-
puting we have reduced the complexity to be linear in sample size N instead of N? (Fotheringham et al.,
2017). However, the computation complexity here also depends on the convergence time 7 of the MCEM
algorithm as well as m and b. In practice, we use moderate b and large m. In Sec. 8.2 of the supplement
we present simulation results on the timing and performance of the proposed algorithm along with a dis-
cussion on suitable choices of m and b. The R-package MWMNP is developed to implement the proposed

distributed computing based MCEM algorithm.

4.3 Convergence Properties

The convergence properties of the proposed MCEM algorithm depends on the choices of m, b as well as
the weights 117 and 7'. Lemma 2 shows that the Gibbs sampler used in the E-step is geometrically erdogic
and so, we can throw away an initial small number (m) of draws for burn-in and use the rest 7 draws to

calculate the average.

Lemma 2. For each i = 1,..., N and for any fixed Bi(t) € R?P, al(t) € R® and Egt) = 0, the Gibbs

sampler for arm i at the (t + 1)™ iteration of the MCEM algorithm is geometrically ergodic.

The lemma follows by directly checking the drift condition in Chapter 15 of Meyn and Tweedie (2012)
and is proved in the supplement. For understanding the solutions from the backfitting iterations in the M-
step, consider P\ = (I — C-'11)P" and S = (Ic — C111)X;S{". Define P® and S which
are square matrices of dimension NC, by combining {PZ-(t) ti=1,...,N} and {Si(t) ci=1,...,N}
respectively by rows. In the existing literature, there exist strong sufficient conditions on symmetric
smoothing matrices that ensure convergence of backfitting equations. However, both P®) and S® are

non-symmetric. By corollary 4.3 of Buja et al. (1989), we know that if ||[P®S®|| < 1 for any matrix
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norm, then the backfitting iterations converge as b — oo. This constraint can be made independent of ¢
provided the condition number of X) is bounded which is a reasonable restriction in these applications.
Consider the following verifiable assumption on the weight matrices which does not need to be checked
for every iteration and can be checked only once at the beginning of the algorithm. Define W® =
W oW — C~'151) where o is the hadamard product and J; = ¢; ® (I — C~'1x1’y) where ¢; is the
unit vector in RY corresponding to the ith coordinate. Also, for i = 1,...,n consider the non-negative
definite matrices TZ@) = X (X'T?X)~'X'T? that only depends on X and T". The following assumption is
on maximum row sum norm (|| - ||~ ) of the product of the two weight matrices. The maximum row sum
norm used here has been previously used in Opsomer and Ruppert (1997) (see remark 3.1) and facilitate

a simpler theoretical proof.

Assumption 1. Assume sup,, [sup, »® / inf, 2&?] < L, i.e., the difference between the largest and

smallest diagonal entry of ¥.(*) is always bounded by L and that the following condition holds:

max || W&, TP || < L7 (13)

i=1,...,

The following theorem shows that under assumption 1, if we run the algorithm long enough, then the

iterates at some point will get arbitrarily close to the MLE. The theorem is proved in the supplement.

Theorem 1. Let ©* be a maximizer of the likelihood of observing {O; : i = 1,..., N} in the model
(1)-(5). Under assumption 1, for any ¢ > 0, there exists a neighborhood N* of ©* and 7. > 0 such that

the iterates ©) from the MCEM algorithm initialized within N'* satisfies:

P(||[0Y —©*||, < efor somet < 7.) — 1asm,m,b— co.

5 Results

We consider several choice models for predicting customer responses starting from the naivest empirical
cdf based multinomial model to multinomial probit models using different customer similarity networks.

All the models were estimated on the calibration dataset containing 1896 observations randomly selected
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from the dataset described in Section 2. Each model’s parameter estimates were then used to calculate
the likelihood and the Mean Average Deviation (MAD) in the validation dataset that contains 300 ob-
servations. In all cases, the covariance matrix of the utility error terms included separate variances for
each vehicle model and off-diagonal elements that were set to zero. Table 2 reports the Mean Average
Deviation (MAD) (for calibration and validation samples) and the log-likelihood in the holdout sample.
We report performance of (a) the Naive Empirical approach that uses marginal purchase probabilities
(without price and other covariate information) from the training dataset to predict consumer responses,
(b) a simple multinomial probit model with all the covariates, (c) the Random coefficient probit model
with random intercepts and slope coefficients for each zip-code, as well as the four different MNP models
that shrinks based on the following network structures on the intercepts (preference) and slope (response)
coefficients respectively (d) (W = WO T = W9 (e) (W = WY, T = W) () (W = WY, T = W) (g)
(W = WS T =WYV), where W and T are the weight matrices in the MWMNP model in (4)-(5) and W"
and WE are defined in Section 2.1.

Parameters for the RCP are zipcode-specific and distributed multivariate normal over the population.
The parameter vector can be conveniently divided into two components, each corresponding to the inter-
cepts and the marketing mix parameters, respectively. Each of the models in (d)—(g) is based upon which
of the two contiguity matrices WY and W€ influences which component. This allocation guides our la-
beling strategy so that, the model in (f) for example, is labeled as (WY, W"), to indicate that the network
weights in MWMNP for the intercepts is based on vehicle similarity and those for the marketing mix param-
eters on the geographic closeness between consumers. Note, that while (WY W) and (WY, WY) MNP

models use a single customer similarity structure, they can be well estimated by the MWMNP algorithm.

Table 2: Training and test performances of different choice models

Calibration sample Validation sample
Model MAD MAD | Log likelihood | # Parameters
Empirical 0.786 0.791
Simple MNP 0.653
Random coefficient probit 0.617 0.628 -387.76 16
(WS, W) 0.641 0.597 -380.49 16
(WY, WY) 0.635 0.601 -364.06 16
MNP with different Network Weights | (WY, WY) 0.633 0.598 -361.73 16
(WS WY) 0.640 0.599 -373.07 16
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In both samples, the homogeneous simple MNP and the RCP fit the data significantly better than the
naive model. All MWMNP models fit the validation sample, but not the calibration sample, much better
than the RCP, which suggests that the RCP is prone to over-fitting. We also estimated a version of the
RCP that included the fuel efficiency of the previously owned vehicle as an additional variable. This
model yielded a lower MAD (0.611) than the RCP in the calibration sample, though validation sample
results were mixed, slightly superior MAD (0.626) but inferior log-likelihood (—391.69). The rankings
of the MWMNP are the same for all three different fit metrics, from best to worst: 1. (WV, WG), 2.
(WY, WY),3. (WS, WY), and 4. (WE WY). The positive difference in the log-likelihood of the validation
sample between the (WY, W") and (WY W) MNP models demonstrate that similar previous vehicle

mpg captures more information on similarity among customers than their geographic proximity.

zipA

(WY, WY MWMNP

Customer preferences
towards brands with
similar prices are
correlated by previous
vehicle mpg.

Price Sensitivities of
customers who are
geographically close
are similar.

zipB

Figure 6: Schematic for the best fitting (WY, WY) MWMNP model.

Next, we concentrate on the best performing MWMNP model that uses (WY, WY) as the network
weights for shrinking the intercepts and the slope coefficients respectively. Figure 6 shows the schematic
for this MWMNP model which suggests that customer’s price sensitivity is related through their geographic
proximity but their preferences towards different brands (and in particular hybrid alternatives) with sim-

ilar price is related by the fuel efficiency of their previous vehicle. Table 3 reports the coefficients for
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the best fitting MWMNP model. Note that, the coefficient for the Net Price variable (price less rebate less
Promotional incentive) is negative. This shows that the model though quite complex captures the correct
sign of price sensitivity. The coefficients for the endogeneity correction terms (residual and price residual
interaction) are statistically insignificant (significant), perhaps because (even though) the choice consists
of a set of relatively homogeneous products from the same category. Strong firm-specific inertia effects
are evidenced by the large and statistically significant coefficient for the Last Make variable, which shows

that consumers tend to re-purchase cars made by the same manufacturer (Toyota, Honda).

Table 3: Summary of the coefficients from the fitted (WY, W) MWMNPmodel

Average Preference | Sigma
Civic 0.465 1.000
Prius 0.475 0.864
Corolla 0.241 0.982
Intercepts/ | Sentra 0.083 1.084
Preference | Civic Hybrid -0.481 1.522
Scion xB -0.335 1.239
BMW m3 0.068 0.799
Coefficients Standard Error
Net Price (in 100 thousand $) -5.054
Slopes/ Residual 0.280
Responses | Net Price*residual -1.558
Last make 7.681

To provide some insights into the how the MWMNP model incorporates smoothing, we present two
sets of analysis. The first pertains to the preference portion of the parameter vector (spatially correlated
through W"), specifically focusing on the preference coefficient for the Prius relative to the Corolla and
Sentra respectively. Figure 7 plots these relative preferences from the (WY, W) MWMNP model as previ-
ous vehicle mpg varies. Both graphs in Figure 7 clearly reveal that the higher the fuel efficiency of the
consumer’s currently owned vehicle the greater their preference for the Prius. Moreover, they also illus-
trate the non-linear relationship between previous vehicle mpg and preference for the hybrid alternative
in Toyota Prius.

Figure 8 presents the next analysis, which shows a heat map of the price coefficient (spatially corre-

lated through W) corresponding to the customers living within the area marked by the blue hashed lines
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Figure 7: Estimated preference for Toyota Prius over Toyota Corolla and Nissan Sentra for different previous
vehicle MPG values in the (WY, W) model.

in Figure 2. Geographical zones corresponding to areas of low and high price sensitivity are evident and
clearly reveal the local smoothing aspect of the MWMNPmodel.

We should discuss the preference and response coefficients here.

6 Managerial implications: Market Structure & Optimal Rebating

The fit statistics provide some insights into the relative performance of different models and the analysis
presented in Figures 7 and 8 give a sense of how the MWMNP works. However, a complete picture of the
model’s advantage is best seen by examining its effect on a managerially relevant performance outcomes.

One important aspect of a model are the diagnostics that it can provide. In the current context we study
its portrayal of the prevailing competitive market structure as revealed by the the Competitive Clout and
Vulnerability measures that the model provides. The first step in this process is to derive each elements
of the complete seven-by-seven cross-price elasticity matrix, whose elements represents the effect of a
1% price change of the column vehicle on the percentage change in share of the row vehicle. Table 4
shows the price elasticities from the RCP and the proposed (WY, W) MWMNP model. In other words, the

diagonal elements of the matrix are the “own-price” elasticities and the off-diagonals are the “cross-price”
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Figure 8: Estimated response coefficient for price in the (WY, WY) MWMNPmodel in the greater Sacramento area.

Table 4: Price elasticities of the different brands based on the RCP and multi-weight MNP models.

Price elasticities based on (W", WY) multi-weight MNP model
Civic | Prius | Corolla | Sentra | Civic Hybrid | Scion xB | BMW m3

Civic 052 | -0.18 | -0.31 | -0.33 -0.74 -0.22 -0.43
Prius -0.15 | 1.11 | -0.57 | -0.29 -0.18 -0.48 -0.56
Corolla -0.12 | -0.28 | 1.08 -0.24 -0.12 -0.44 -0.42
Sentra -0.07 | -0.06 | -0.15 0.98 -0.06 -0.07 -0.22
Civic Hybrid | -0.08 | 0.03 | -0.03 | -0.03 0.96 0.05 -0.04
Scion xB -0.03 | -0.05 | -0.15 | -0.07 -0.03 1.71 -0.11
BMW m3 -0.06 | -0.06 | -0.15 | -0.13 -0.07 -0.06 1.70

Price elasticities based on RCP model
Civic | Prius | Corolla | Sentra | Civic Hybrid | Scion xB | BMW m3

Civic 0.88 | -0.08 | -0.31 | -0.36 -0.46 -0.28 -0.75
Prius -0.12 | 1.06 | -0.65 | -0.12 -0.05 -1.12 -0.46
Corolla -0.13 | -0.24 | 1.35 -0.18 -0.07 -0.78 -0.41
Sentra -0.14 | -0.05 | -0.17 0.75 -0.07 -0.21 0.05
Civic Hybrid | -0.31 | 0.00 | -0.12 | -0.12 0.89 -0.13 -0.25
Scion xB -0.04 | -0.15 | -0.26 | -0.07 -0.03 2.28 -0.04
BMW m3 -0.22 | -0.15 | -0.31 0.16 -0.11 -0.10 1.70
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elasticities. Define, Competitive Clout of Brand A as

Z percent decrease in the market share of Brand j if Brand A decreases price by 1%,
J#A

and the Vulnerability of Brand A as

Z percent decrease in the market share of Brand A if Brand j decreases price by 1%.
j#A
To compute the clout and vulnerability from Table 4, the off-diagonal elements are summed column-

and row-wise, respectively, to yield each vehicle’s Competitive Clout (its effect on others) and the its

Vulnerability (others effect on it).

Price elasticities for the RCP model Price elasticities for the spatial model
Toyota Prius
Honda Civic Honda Civic
i 'foyota Prius

Toyota Corolla

Toyota Corolla

= =
o ks
[ [
[} [}
£ =
s s
1- Civic Hybrid 1-
a
BMW m3
. : . Nissan Sentra
N_|ssan Sentra Sf:|on xB o BMW m3
Scion xB s
Civic Hybrid
a
0 i 0
1 2 1 2
Clout Clout

Figure 9: Estimated competitive clout and the vulnerability of the vehicle models using the RCP model and the
(WY, WY) MWMNP model.

Figure 9 shows the Clout-Vulnerability maps from the RCP and best-fitting MWMNP model, which
reveal some key differences in how the two maps depict the competitive market structure. The RCP
model assigns a higher vulnerability to the Toyota Prius relative to the (WY, WY) MWMNP model. Also the

other hybrid car model, the Honda Civic, has a much higher clout and lower vulnerability in the (WY, W)
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map than the RCP map. The four car models Nissan Sentra, Scion XB, BMW m3 and Civic Hybrid are
relatively similar in clout and vulnerability per the spatial model though the RCP model positions them
much further apart in the Clout Vulnerability space. Finally, the BMW m3, despite having a small market
share does not show a large difference in its competitiveness or vulnerability between the two models,
perhaps because of BMW’s brand recognition.

From the viewpoint of the Toyota Prius manager, the competitive market structure is crucially im-
portant when resources have to be allocated in a way that targets the early adopters most effectively.
Since managers often operate with tight promotion budgets, small differences in model performance and
competitive inference can translate into very meaningful difference in performance outcomes such as
profits. To introspect whether differences in the market structure between the RCP and the developed
MWMNP models as exhibited in Figure 9 and described before, we apply both models to the practical
problem of designing a targeted promotion program to stimulate demand among such consumers.

The incentive program used to illustrate these differences is called Conquest Cash, which is a popular
promotional tool used by US automakers to target owners and lessees of competing vehicles with a view
to challenge brand loyalty and increase market share by “conquesting” owners of other manufacturers (as
opposed to retaining current buyers) !. We take the position of the Prius marketing manager tasked with
using a total promotional budget of Py to target 100 out of the 300 customers in the validation sample in
a way that maximizes profits. We consider Py = $16000 as the median rebate in the data was $ 160. To
make the targeting “fair” each customer is constrained to get the same face value for the conquest cash
incentive, i.e. $160. Each model, in turn, is used for the allocation task and the final comparison between
the models is based on the net profits realized.

The basic building block of this analysis is the expected contribution EC, than can be realized from
a consumer [ in ZIP code Z when offered a rebate of $ 160 on the Toyota Prius. This contribution can be

calculated as

EC(l) = Prob(customer [ buys a Prius| Prius Rebate is $160) x Margin(Net Price of Prius — $160).

'ttps://www.carsdirect.com/deals-articles/what-are-conquest-cash-incentives
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Because data on manufacturer margin is not readily available, based on our discussions with industry
experts we assume it to be 25% of the selling price. The total profit is obtained by summing these
contributions over all of the consumers in the validation sample such that the 100 targeted customers get

a rebate of $160 while the remainder get $0.

Table 5: Profit from conquest cash rebates based on different choice models

Model Profit (in $) | Incremental profit relative to RCP ($)
RCP 383265.4

(WS W) | 384402.5 1137.1

(WY, WY) | 396044.6 12779.2

(WY, WS) | 409408.3 26142.9

(WS WY) | 379863.3 -3402.1

Table 5 reports the net profit obtained from the entire validation sample using each model, in turn, to
determine the optimal set of targeted consumers. Profit based model performance matches the fit statistics
in the holdout sample. Profits from the best-fitting MWMNP model (WY, WE) are about $26,000 more than
the RCP and about $13,000 more than the next best MWMNP model (W, W"). Overall this shows that the
models lead to meaningfully different returns on investment.

To get a better sense of why these differences emerge we created a two-by-two matrix (see Table 6)
showing the overlapping and non-overlapping customers targeted by the two models. Only 35 of the
100 targeted customers and 135 of the 200 non-targeted customers are common to both the RCP and
(WY, WY) MWwMNP models. The analysis shows that the vast majority of the consumers targeted by the
two models (65%) are different and supports the idea that the local smoothing provided by the (WY, W°)

MWMNP model helps it to target the right consumers and yield higher profits.

Table 6: Overlap between customers selected for rebates by the RCP and (WY, WE) MwMNP

RCP
Rebate | No Rebate
(WY, WY) | Rebate 35 65
No Rebate 65 135

We probe a little more deeply into these differences by examining the distribution of the mpg of of

the vehicles previously owned by the 91 consumers in the three-digit Zipcode 956. The box-plot for is
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distribution is shown in Figure 10 for (a) the entire group (b) the 19 consumers targeted for rebates by
the RCP model and (c) the 20 consumers targeted for rebates by the proposed (WY, W) MWMNP model.
While the RCP targets people on the lower end of the mpg distribution, the (WY, WE) achieves its higher

profits by focusing on consumers at the higher end of the mpg range.
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Figure 10: Boxplots for previous vehicle’s highway mpg in the three digit ZIP code 956, for all consumers, con-
sumers who only received under the RCP model, and consumers who only received under the (WY, WY) model.

7 Discussion

We develop and estimate a new discrete choice model that permits preference and response parameters
to be correlated based on different network effects. We apply the model to transaction data from the
Sacramento automobile market and find that the proposed model fits the data better than the RCP model
and several benchmark models. While previous applications of spatial models in marketing have high-
lighted the role of geographic contiguity in demand prediction, we show that the similarity in consumers’
previously purchased vehicles is more effective for estimating their preferences towards various brands
of similar prices.

We make a methodological contribution to the weighted regression literature by proposing a new ap-
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proach to simultaneously assimilate different kinds of contiguity matrices in multinomial probit model,
which outperforms the existing approaches. We also expand on the existing promotional targeting liter-
ature by studying discounts based on previous purchases. We show how managers can use the model to
come up with improved rebate programs that can accelerate adoption of hybrid cars. We studied data from
the Sacramento market when hybrid cars had less than 1% of the new car market share and sales of new
cars in the US was falling, which makes it extremely important for marketing managers of hybrid cars
to efficiently target customers to make good use of scarce marketing dollars so that a new technological
innovation is not side-lined.

In future, it will be interesting to study how the phenomena seen in the data evolve over time, i.e.,
how the customers preferences and price sensitivities evolve over time. Methodologically, it would in-
volve incorporating dynamic shrinkage effects. Also, in our work contiguity is only based on geographic
distance and previous vehicle information, which could be expanded to include other socio-demographic
or purchase characteristics. For example, consumer’s income, ethnicity, age or previous search history
or dealership visits may form a viable basis of network matrices that explain variation in intrinsic prefer-
ences. Similarities from the previous vehicle-based contiguity matrix can be expanded to include more
attributes, for example, engine size, gas mileage and so on. Statistically, this would require develop-
ment of new methods that in presence of a large number of potentially useful network weight matrices
can chose optimal network weights for different covariates. Finally, the modeling approach could be
extended to accommodate spatial correlation in the features of the alternatives themselves, similar to the
spatial demand model of Duan and Mela (2009) in which geographic distance between alternatives (outlet

location) serves to identify consumer preferences.
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8 Supplementary Materials

8.1 Proof of Lemma 1

Consider the singular value decomposition of X:

XNC><p = UNCXprXpV;)Xp

where D is a diagonal matrix and V is a orthogonal matrix. Both D and V" have full rank. Based on (12),
given U and r'"), we can evaluate r(t,1) in O(NC) for each ¢ and I. Note that, computing V'D~1J(¢,4) in
(11) needs O(p?) and can be done only once for each ¢ as it is invariant across . Multiplying V' D=1 J (¢, )
and r(t,1) has complexity O(p?). Thus, computing {BZ-(Z) 2l =1,...,b} knowing the SVD of X has
complexity O(p? + b(NC + p?)) at the (t + 1)™ outer loop iteration. Similarly, computing {&\” : I =
1,...,b}is O(C? + b(NC + C?)).

For the E-step for each of the ¢ machines: computing the mean and the variance is O(pC'). But, this
can be done once for any fixed ¢ and ¢. Generating the random variables for the entire inner loop on
the E-step is O(mC'). Thus, the E-step computation for ¢ outer loop is O(mC + pC') for each of the i
machines.

At the " iteration of the M-step, for each of the 7 machines the complexity is O(k*C? + b(NC + ¢2))
where, k = max(1,p/C). Thus, the total complexity for ¢ iterative step of the MCEM algorithm using
n parallel machines is O(mC +pC + k3C3 +b(NC + £2C?)). The SVD of X is of complexity O(NCp?)
which needs to be done only once. So, the complexity for running 7 iterations of the outer loop is

> m 30 el
O(NC(p +T[b+N+li N + bk N}))

8.2 Computation time and performance

Bikram: Can you report the 7 (convergence time) in each cases; the set-up of the parameters; the mean
square errors; In table 7, we report the average computational time as /N and C' varies and m = 300,

m = 50, m 30 (after thinning) and b = 100. How fast does the outer loop converge? — WILL DO.
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Machine is intel core 17 3.4 Ghz, only 16 GB of RAM.
The R code that reproduces our simulation results can be downloaded from the following link: https:
//github.com/gmukher jee.

Table 7: Time in minutes averaged over 100 simulations as sample size /N and C varies

N
1000 | 2000 | 5000
11.36 | 31.93 | 51.52
5] 19.81 | 39.36 | 99.93
10 | 31.07 | 62.53 | 168.25

C

8.3 Proof of Lemma 2

Define yi(k) = {yff) :c=1,...,C}. Forany € R, consider the energy function g(x) = |z|;. Note
that, g is unbounded off compact sets. For any fixed 7, note that the Markov chain (yl(k)) k>1 18 Feller
continuous. Consider the conditional expectation: E{ g(yi(k)) |y£k_1) } based on which, we will establish

the following drift condition on the energy function g

E{g(yNy* "} < pigw® ) + Li | (14)

where, p; and L; are universal constant independent of k£ and p; < 1 for all . Once the above drift
condition is proved, it follows from Theorem 15.2.8 of Meyn and Tweedie (2012) that the Markov chain
in geometrically ergodic. Next, we prove (14). For that purpose, with out loss of generality we assume

the following:

o ol + 2/ 8" is0and o, = 1 foralle=1,...,C,

ic
o the first alternative was chosen by customer ¢, i.e., O; = 1.

(k)

Define the threshold tgk) = max..1 ¥,. - The following properties are obeyed in our iterative algorithm:

(@) yff s generated from a standard normal random variable that is truncated between [tEk), 00),
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() {y;. ) e = 2,...,C} are generated from standard normal random variables that are truncated

between (—oo yz(fﬂ)}.

(k+1)

(c) conditioned on y;; * ’, the utilities in {yw (kD) o = 2,...,C} are independent among themselves,

(k+2) (k+1) | (k1)

(d) The dependence between y;; ~ and {y;. , C'} is only through t;

Now, note that by property (b) it follows that g(ygk)) <C [yff ) 1{yff ) > 0} + | mineg yz(f ) |]. Thus,

C E{g(y)y" VY < E[y1{yy) > 0}y ] +E[|rg¢i{1y§f)\ ly ] (15)

We first concentrate on the first term in the right side of (15). By property (b) and (c), it follows that for
each £ > 1, the distribution of tz(k) is stochastically dominated by Z* which is the maximum of C' — 1
independent standard normal random variables. Note that for £k = 0, t§°) 4 Z*. Thus, the first term in
the right side of (15) is bounded above by E -7 where, 7' is the positive part of the truncated normal

random variable, truncated on [Z*, 00). This can be further simplified as:

B =BT, = /¢<u>(1 — ®(u)" f(u) du

where, f is the density of Z*; ¢ and ® are standard normal pdf and cdf respectively.
Next, we consider the second term on the right side of (15). By property (b) and (c), the conditional

distribution of [| min ., y@(f 4 ‘yf k_l)] is stochastically dominated by the distribution of

7+ [yl > 0}y Y],

where Z* is the maximum of C' — 1 i.i.d. truncated normal random variables with mean 0, standard

deviation 1 and truncated on [0, co). Thus, it follows that
E{g(u")ly" "} < CQE +EZ7) .

The terms on right side above is always bounded above as they are independent of £ and only depend on
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C'. Thus, we have established the drift condition in (14) which completes the proof of the lemma.

8.4 Proof of Theorem 1

(t+

We first show that under assumption 1, for large b, conditioned on p, U the backfitting iterates of
the preference and response parameters converges in the M-step for each iteration ¢ of the outer loop
of the proposed MCEM algorithm. For this purpose, we next show that assumption 1 implies that
[[PUS®||o < 1 for all .

By WZ@ and Tgt) denote the NC' x NC' diagonal matrices used in the ¢th iterative step of the MCEM

algorithm:

W = (W, ® Io)(1, ® (S0) )W @ Ie) = (W2 @ Ie) (I, ® (E0) ) = W2 e (£0)  (16)

T = (L@ Io)(I, @ ()™ )Tiele) = (TP Ie)(L,® (X)) =T2e (SW) . a7

Note that, ]P’Z(»t) = (Z’Wgt)Z)_lZ’Wgt). Again, as the L, norm of each row of W equals 1, we have,
(ZW 2)=1 = £® and so,

Pgt) =0 s (w2 @ (E0) ) =w?® I,

where, w? is the 1 x N row vector representation of the diagonal matrix W72,

Recall, P\ = (Io—C~111)P\" and S = (Ic—C~111")X;S\". Thus, P\ = w2® I, where w; is
a 1x N row vector whose /th element is W2 —C . Define, the N x N matrix, W® = WolW —~C~ 1151}
Note that, the NC' x NC square matrices P*) and S are respectively derived by binding {Pi(t) D=
1,...,N}and {Si(t) :i=1,..., N} row wise. Thus, we have for any t > 1,

I1POSY|| = sup [[WASY|. . (18)
=1 N

i=1,...,

Note that, S\ = J,X(X'T X)) X'T" := J,T? where J; is the C x NC matrix: J; = ¢; ® (I —

C~'11') and ¢; is the unit vector in RY for the ith coordinate. If the condition number of () is bounded
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above by L then (18) is further simplified as

[POSONl <L sup [[WE LT
i=1,..,N
with the bound on the right side now being independent of ¢. From (13) of Assumption 1, it follows
that the right side above is less than 1 which subsequently implies that ||[P®S®|| < 1 for all £. Now,

by corollary 4.3 of Buja et al. (1989), it follows that the backfitting equations used in the M-step are

consistent for any y,gt“). Thus, as b — o0, the iterates in the M-step converges to the maximum value of
the likelihood given by the model in (3)-(5). The remainder of the proof regarding optimality of iterates
produced in the outer loop of the MCEM algorithm follows directly from Theorem 5 of Neath (2013)

which is a modified version of Theorem 1 of Chan and Ledolter (1995).
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