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Abstract

We analyze weekly U.S. prescription claims data over a 36-month period spanning the COVID-19 pandemic

to investigate patterns of overconsumption of the antiparasitic drug Ivermectin (IVM). To quantify the

overconsumption of IVM use following the heightened public attention on IVM as a candidate treatment for

COVID-19, we adopt a causal framework based on synthetic controls, comparing IVM prescription trends

to those of a large set of control medications. We employ a regularized synthetic control (RSC) method using

continuous spike-and-slab shrinkage priors to estimate state-level deviations in IVM consumption. This approach

offers decision-theoretic guarantees on predictive risk, supporting its application in downstream policy analysis at

multiple-time points after the intervention. Its empirical robustness is demonstrated through extensive validation

checks. Our findings reveal a modest increase in IVM prescriptions following early reports of its potential

therapeutic use, with no significant surge over the subsequent eight months. This was followed by a pronounced

increase that coincided with the peak in COVID-19 cases. Strikingly, elevated IVM use persisted even after

COVID-19 vaccines became widely available and multiple federal countermeasures were implemented. Our

estimation approach captures the heterogeneity in long-term effectiveness of these countermeasures across

states. We find that state-level political affiliation significantly explains variation in overconsumption, even after

accounting for COVID-19 incidence rates. These findings highlight deep regional disparities in the effectiveness

of public health messaging and suggest a need for more targeted and trusted communication strategies.

Key words: drug misuse, heath-care communications, Ivermectin, overconsumption, persistence, regularized synthetic

control, spike-and-slab priors.

1. Introduction

During the COVID-19 pandemic, several pharmaceutical treatments attracted widespread public attention

and experienced substantial increases in consumption—often exceeding clinically recommended levels (Perlis

et al., 2023; Vaduganathan et al., 2020). One such drug was Ivermectin (IVM), an antiparasitic medication

primarily used to treat parasitic infections (Hill et al., 2022). Overuse of IVM can lead to adverse health

c© The Author XXXX. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:

journals.permissions@oup.com 1

https://orcid.org/0000-0001-6496-1271
gourab@usc.edu


2 Puranam et al.2025

outcomes, prompting multiple federal regulatory agencies to issue warnings against its misuse (Bray et al.,

2020). Nevertheless, IVM consumption remained elevated throughout the pandemic.

While some exploratory or prophylactic use is expected during a frightening public health crisis, the

persistence and magnitude of IVM overuse raise critical questions about the effectiveness of medical

countermeasures and health communication strategies. Accurately quantifying IVM overconsumption requires

a rigorous causal inference framework (Imbens, 2024) that accounts for confounding factors such as

seasonality, temporal trends, and concurrent COVID-19-related interventions (e.g., shelter-in-place orders,

mask mandates, and travel restrictions), which may have influenced drug purchasing behavior.

In this study, we analyze weekly prescription claims data in the United States over a 36-month period

corresponding to the COVID-19 pandemic to examine patterns of IVM overuse. Prescription claims data

serve as a widely accepted proxy for drug consumption and have been employed in prior studies to investigate

medication overuse (Vaduganathan et al., 2020). To establish a baseline, we compare IVM prescription trends

to those of a control group of medications that did not receive public or media attention as potential COVID-

19 treatments. We apply synthetic controls (SC) (Abadie and Gardeazabal, 2003; Abadie et al., 2010) to

estimate counterfactual prescription levels for IVM, isolating the overconsumption attributable to pandemic-

era attention. The resulting average treatment effect on the treated (ATT) captures the incremental change

in IVM use due to heightened attention.

We construct state-level ATT estimates to map IVM overuse across the U.S. over time, revealing

substantial regional and temporal heterogeneity. These findings point to structural differences in institutional

trust and the effectiveness of public health messaging, underscoring the need for more targeted and resilient

health communication systems in future public health crises.

1.1. IVM Over-consumption: Background and Timeline

Even though Ivermectin (IVM) first received scientific attention in the context of COVID-19 from an

Australian study in April 2020, which was subsequently retracted, it was not widely known outside the

scientific community at that time. IVM gained significant attention as a potential treatment for COVID-19

after Dr. Pierre Kory’s testimony at a US Senate hearing on December 8, 2020, where he advocated for

its use. Subsequently, IVM received considerable attention in conservative media and from celebrities. The

initial evidence supporting IVM was eventually discredited. The countermeasures to inform public about

IVM misuse were primarily informative (Borges Nascimento et al., 2022), with no imposed restrictions on its

prescription for COVID-19 treatment. Further evidence emerged indicating the ineffectiveness of IVM against

COVID-19, and several studies that had brought IVM into the spotlight for COVID-19 were discredited by

July 2021 (Hill et al., 2022).

Table 1. Timeline of Ivermectin (IVM) related events

Event Id Date Event

1 04/01/2020 Australian Study Suggests IVM Could be a Treatment for Covid-19

2 12/08/2020 Dr. Kory testifies in favor of IVM in a senate committee

3 01/14/2021 NIH: Not enough data to say IVM works

4 02/04/2021 Merck issues a warning against IVM Use

5 03/05/2021 FDA warns against IVM use

6 07/04/2021 67% of adults in the US receive at least one dose of vaccine

7 07/15/2021 Key studies that drew attention to IVM discredited

8 08/26/2021 CDC issues warning on IVM use

9 12/31/2021 End of analysis period

We present the timeline of IVM-related events in Table 1 and the plot of the weekly IVM prescription

claims (indexed) in the US in Figure 1. Although the early study in April 2020 offered some preliminary

evidence favoring IVM use against COVID-19, Figure 1 shows that IVM prescription claims increased

substantially only in December 2020, coinciding with a U.S. Senate hearing exploring alternative treatment
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Fig. 1: Plot of total US (indexed) IVM prescription claims (in red) and Covid case counts (in dotted blue) at

weekly resolution. The weeks are indexed by their start date on Sundays. The time points marked by dotted

vertical lines correspond to major related events listed in Table 1.

strategies (Bonis and Curtis, 2020). The National Institute of Health (NIH) issued a formal statement on

January 14, 2021, stating that there was insufficient evidence supporting IVM’s effectiveness against COVID-

19 (National Institute of Health, 2021). However, prescription claims began to rise again in August 2021,

coinciding with an increase in COVID-19 cases. By that time, 67% of the U.S. population had received at least

one dose of the COVID-19 vaccine1, and the initial study promoting IVM for COVID-19 had been formally

discredited (Hill et al., 2022). Interestingly, IVM claims peaked before COVID-19 cases in 2021, suggesting

that some patients might have used IVM as a prophylactic. Additionally, there was an announcement by

the Centers for Disease Control and Prevention (CDC) against IVM use on August 26, 2021 (Christensen,

2021). Despite this announcement, we observe an increase in IVM prescription claims in December 2021. We

aim to determine the causal impact of these measures on observed changes in IVM prescription claims, while

accounting for the effects of confounding factors.

1.2. Causal Study of IVM Overuse

We use the synthetic control (SC) method to estimate the net changes in IVM prescription claims due to

increased public attention during Covid. We consider a very large control set of medications which provides

improved control for unobserved confounders. But, we can not directly apply the widely used SC criterion of

Abadie et al. (2010) for estimating the state wise ATTs for IVM as we have more controls than the number

of pre-treatment observation time points. In such scenarios, it is recommended to use statistical shrinkage to

produce robust SC estimates (Ben-Michael et al., 2021). Detailed literature review on this topic is provided in

Sec 3.1. We employ a spike-and-slab shrinkage prior (Malsiner-Walli and Wagner, 2018; Ročková and George,

2018; Antonelli et al., 2019) based Bayesian SC (BSC) method to estimate the state-wise ATT for IVM.

We provide optimal predictive risk properties of the ATT estimates. Controlling the predictive risk of ATT

estimates is crucial for our application, as we are not only interested in using the ATT as an estimate of the

1 https://www.cbsnews.com/news/biden-covid-19-vaccine-goal-missed/

https://www.cbsnews.com/news/biden-covid-19-vaccine-goal-missed/
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Fig. 2: Plot of weekly per capita IVM prescription claims (indexed) averaged across states that voted

Republican (in red) and those voted Democratic (in blue) in the 2016 US presidential election. The time

points marked by dotted vertical lines correspond to major related events listed in Table 1.

overconsumption, but also in conducting further downstream analysis to study the following two important

scientific questions.

a) Measuring Persistence of IVM overconsumption. We empirically study the weekly changes

in ATTs over twenty months as different countermeasures were announced to understand their impact on

the persistence of IVM over-consumption. Informative countermeasures, such as regulatory advisories and

debunking efforts, have shown mixed effectiveness in prior studies (Borges Nascimento et al., 2022). While

some evidence suggests that the credibility of the source enhances their impact (Fong et al., 2022), other

research finds that drug overuse can persist despite such interventions (Ecker et al., 2010, 2022; Lewandowsky

et al., 2012).
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Fig. 3: Plot of weekly per capita IVM prescription claims (top) and Covid case counts (bottom) in California

(in blue) and Texas (in red).

b) Explaining State-Level Variation in Countermeasure Effectiveness. As IVM gained significant

attention as a potential COVID-19 treatment—particularly in conservative media—we examine whether a

state’s political affiliation explains variation in its responsiveness to federal countermeasures. Prior descriptive

studies have documented a strong correlation between IVM overuse and political affiliation (Barnett et al.,

2022). To explore this relationship, we analyze state-level results from the 2016 U.S. presidential election,

using a conservativeness index defined as the ratio of the Republican vote share to that of the nearest

competitor, following standard practice (Pew Research Center, 2024).
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In Figure 2, we plot per capita IVM consumption averaged across states that voted Republican (hereafter,

Red states) and those that voted Democratic (Blue states). While Red states show substantially higher

average consumption than Blue states (note the differing scales), the timing of consumption peaks is broadly

aligned across both groups. However, their alignment with COVID-19 case surges exhibits more complex and

state-specific patterns as Figure 3 indicates .

We illustrate this phenomenon using two major (large population) states with contrasting political

leanings: Texas, a Red state, and California, a Blue state. See Figure 3. The time trends of IVM prescription

claims show similar patterns across these politically diverse states, suggesting consistent underlying factors

influencing IVM use. However, Texas consistently maintains higher levels of IVM prescription claims per

capita compared to California throughout the observed period, despite having lower COVID-19 cases per

100,000 people. This systematic disparity in per capita claim rates, contrasting with the lower COVID-19

incidence in Texas, raises questions about potential contributing factors beyond disease prevalence.

We provide a formal analysis by using a regression based framework to examine the relationship between

the heterogeneity in ATT across states and weeks, and the states responsiveness to countermeasures based

on conservativeness.

1.3. Our Contributions

We describe the main contributions of our work below:

• We employ a shrinkage prior-based Regularized Synthetic Control (RSC) method to estimate the ATTs,

using continuous shrinkage priors based on the logit-normal distribution (Thomson et al., 2019). The

proposed RSC approach (see Sec. 3) is computationally efficient and enables straightforward Bayesian

inference for ATTs, supporting subsequent analyses of persistence and regional susceptibility.

Within a factor model framework, we show that the ATT estimates generated by the RSC method

exhibit well-controlled prediction error (see Sec. 3.1). To establish this property, we build upon theoretical

results on the predictive performance of LASSO estimator (Chatterjee, 2013; Tibshirani and Wasserman,

2017) and posterior contraction results for spike-and-slab posteriors (Bhadra et al., 2016; Bhattacharya

et al., 2015; Song and Liang, 2023). This predictive risk control ensures that multi-step-ahead ATT

estimates can be reliably used for inference in the downstream analyses.

• We report state-level ATTs capturing the net increase in IVM consumption over a 72-week period following

early reports of its potential therapeutic use. At the national level, IVM use exhibited a modest uptick

following Dr. Kory’s Senate testimony and remained elevated thereafter, with pronounced peaks in July

2021 coinciding with a surge in COVID-19 cases. This temporal alignment supports the interpretation

in existing literature (Rockwell et al., 2025; Kautsar et al., 2025) that IVM overconsumption was partly

driven by prophylactic use during periods of heightened infection risk. We empirically demonstrate that the

reported ATTs are robust to a placebo test, and we rule out alternative explanations such as stockpiling,

drug shortages, and differences in media coverage of countermeasures across states in the robustness

section.

• We investigate the medium-term effects of IVM overuse by analyzing prescription claims up to twenty

months after public interest in its efficacy began. In contrast to prior work—which has primarily focused

on short-term, descriptive analyses of prescription trends (Vaduganathan et al., 2020; Barnett et al.,

2022)—our study adopts a causal framework to assess sustained impacts. Remarkably, we find that IVM

prescriptions remained elevated even after the initial studies promoting its use were discredited. Most

notably, IVM prescribing increased by approximately 16 times after COVID-19 vaccines became widely

available (see Sec. 4.2).

• We examine whether political beliefs influences the effect of countermeasures. Our findings indicate that

regulatory messaging were less effective in politically more conservative states. We also investigate the

incremental effect of definitive scientific evidence against the use of IVM on prescription claims. See

Sec. 4.3.
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1.4. Organization of the paper

The paper is organized as follows. In Section 2, we present the details of the data used for the IVM case

study. In Section 3, we describe the robust synthetic control methodology employed to estimate the state-wise

ATT, reflecting the relative increase in IVM claims compared to control drugs. We also present the subsequent

inferential analyses based on the functionals of the estimated ATTs and provide asymptotic guarantees on

the accuracy of the ATT estimates. To understand the persistence of overconsumption and the impact of

countermeasures, we conduct bulk-level as well as subgroup-level analyses based on state characteristics. In

Section 4, we present our empirical results using the data set described in Section 2. We conclude with a

discussion in Section 5. All proofs and detailed supporting tables, plots, and results are provided in the

appendix.

2. Data

We use three different data sources: data on prescription claims, data on COVID-19 cases, and vote shares

for the presidential candidates in the 2016 U.S. presidential election.

Prescription Claims Data. Our primary data for estimating the ATT for increased relative claims

of IVM is obtained from GoodRx, a company that offers a telemedicine platform, as well as a website and

mobile app that provide free drug coupons for discounted medications in the United States (US). We obtained

state-level weekly prescription claims at the drug name level for the years 2019 (start) to 2021 (end) from

GoodRx, covering all 50 states. Prescription claims fulfilled in a hospital setting are not included in our data.

In other words, all our prescriptions require healthcare experts to agree to the course of treatment outside of

a hospital setting, which is outside the emergency use authorization (EUA) orders issued by the FDA during

the pandemic.

In Figure 4, we plot the average IVM prescription claims per capita for each states for four different time

interval. We see not only high temporal variability but also significant differences across the US states. The

IVM claims increased after Event 2 in Table 1. This increased claims continued even after event 8, i.e. after

CDC’s warning on IVM usage.

We have weekly claims data recorded at the drug name level, from which we identify IVM prescription

claims and tabulate claims for other drugs. We broadly divide the drugs into (a) COVID-19 drugs based

on NIH’s treatment advisories between April 21, 2020, and December 30, 2021, and (b) non-COVID-19

drugs. For the group of non-covid drugs, we aggregate claims by GPI2 code for each week. Thus, our control

group of medications consists of COVID-19 drugs and GPI2 code categories. We exclude Hydroxychloroquine

drugs from our control group as they were also subject to widespread media and public interest during the

pandemic (Perlis et al., 2023). We also excluded drugs and GPI2 categories with low volumes in the pre-

treatment window and finally considered 81 COVID-19 drugs and 92 GPI2 categories. For presentation ease,

hereon we term all 173 of them as control group drugs, keeping their aggregation based on category codes

implicit.

As our data spans January 2019 to December 2021, it allows us to observe prescription claim behaviors

well after scientific evidence showed that IVM is not a treatment for COVID-19 and that viable vaccine

alternatives exist. To address data privacy concerns, the claims are indexed before conducting the analysis.

The indexing is constructed by multiplying an arbitrary scaling factor for all values before any modeling.

This masks the actual magnitude but preserves relative magnitudes, which are sufficient statistics for all our

analyses. We report indexed claims in all the plots presented in the paper.

Secondary Data: COVID-19 Case Counts and Political Affiliations. To measure political

affiliation of each state, we use state-level results from the 2016 U.S. presidential election from

New York Times (2016). To control for the potential impact of countermeasures or policies on IVM

prescriptions, we use the event timelines reported in Table 1. For COVID-19 case counts, we rely on the

weekly time series data published by New York Times (2023).
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Fig. 4: Maps of average weekly IVM prescription claims for US states across four time intervals based on

Table 1. From top-left, row wise we have maps for (a) Before Event 1 (b) Event 1 to Event 2 (c) Event 2 to

Event 8 (d) Event 8 to Event 9.

3. Methodology

3.1. Estimating State-level ATTs using SC

Let Xcst denotes the prescription claims of control drug c = 1, . . . , C at state s = 1, . . . , S and time t =

1, . . . , N weeks. The treatment date is April 1, 2020, the date when the first study on IVM was published

online. The treatment occurs between n and n + 1 weeks, so we have n pre-treatment weeks and (N − n)

post-treatment weeks. Let Yst denotes the observed IVM prescription claims at state s = 1, . . . , S and time

t = 1, . . . , n weeks. After the intervention, we denote the observed IVM prescription claims by Y
(1)
st . For

all t > n and s = 1, . . . , S, by Ŷ
(0)
st we estimate the counterfactual Y

(0)
st – IVM prescription claims had

there been no intervention. Then, the ATT estimate for state s and time t is: ÂTTst = Y
(1)
st − Ŷ

(0)
st . To

estimate Ŷ
(0)
st , we employ synthetic control methodology (Abadie and Gardeazabal, 2003; Abadie et al.,

2010). We utilize a large control set comprising both COVID-19-related drugs and medications categorized

at the GPI-2 level. The inclusion of a rich set of control units allows us to implicitly adjust for multiple

confounding factors, including platform-specific effects such as GoodRx market penetration, seasonality,

long-term trends, and pandemic-related policies (e.g., shelter-in-place orders, mask mandates, and travel

restrictions). We assume these COVID-19-related measures affect all drug claims similarly, except in cases

where patients may reasonably forgo a prescription. Notably, by incorporating COVID-19 drugs into the

control pool, we also account for shifts in the underlying intensity of the pandemic. We next consider a factor

model structure (Abadie et al., 2010) on the prescription claims.
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3.2. Factor Model

For any 1 ≤ s ≤ S and 1 ≤ t ≤ n, assume the observed IVM prescription claims are generated from a

low-dimensional factor model:

Yst =
K∑
k=1

φsk µkst + εst . (1)

Consider counterfactual IVM prescription claims from the same model:

Y
(0)
st =

K∑
k=1

φsk µkst + εst for t = n+ 1, . . . , N. (2)

The claims of the control units for 1 ≤ s ≤ S and 1 ≤ t ≤ N obey:

Xcst =
K∑
k=1

ψcsk µkst + εcst, (3)

where, the coefficient ψcs = (ψcsk : 1 ≤ k ≤ K) varies across units and states but is invariant across

time whereas the factor µst = (µkst : 1 ≤ k ≤ K) is invariant across units but varies across time and

state and are bounded by m. The noise terms εcst are independent with E(εcst) = 0, E(ε2cst) = ν2 and

E(εc1s1t1 · εc2s2t2) = 0 whenever c1 6= c2 or s1 6= s2 or t1 6= t2.

3.3. LNP based regularized SC

As C � n here, the standard SC criterion of Abadie et al. (2010) cannot be directly applied, as it may

lead to overfitting (Carvalho et al., 2018; Doudchenko and Imbens, 2016), resulting in high prediction error

for the estimated ATT. Since we rely on multi-step-ahead ATT estimates for inference, it is essential to

ensure adequate control over their predictive accuracy. To address this, Doudchenko and Imbens (2016)

and Carvalho et al. (2018) recommend incorporating statistical shrinkage to produce robust SC estimates in

high-dimensional settings.

The importance of shrinkage in synthetic control methods has been both theoretically and empirically

validated in recent studies (Amjad et al., 2018; Abadie and L’hour, 2021; Ben-Michael et al., 2022, 2021; Kim

et al., 2020). In particular, Ben-Michael et al. (2021) demonstrate that shrinkage-based SC estimators can

achieve well-controlled predictive risk, and Karmakar et al. (2024) further establish the necessity of shrinkage

for robust SC inference in high-dimensional regimes. To this end, we employ a Bayesian Synthetic Control

(BSC) method using spike-and-slab shrinkage priors (Ishwaran and Rao, 2005; Malsiner-Walli and Wagner,

2018; Ročková and George, 2018; Antonelli et al., 2019) to estimate state-level ATTs.

We consider estimating Yst in (1) via a linear combination of the outcomes of control drugs: Ŷst(βs) =

β′sxst =
∑C
c=1 βcsXcst, where βs ∈ RC for all s. We examine the difference between Yst and its linear

estimate Ŷst(βs) under the aforementioned factor model across all time periods t = 1, . . . , N . This difference

can be decomposed into the sum of two distinct components: one that depends on the model parameters

and one that does not. Specifically, for any b ∈ RC , define the residual Rsk(b) = φsk −
∑C
c=1 bcΨcsk, and

let Rs(b) = {Rsk(b) : k = 1, . . . ,K}. The decomposition result is stated below. To simplify the presentation

and to state the results uniformly for all t = 1, . . . , n, we omit the superscript on the counterfactual in (2) in

the display below.

Lemma 1 In (1)-(3), for any b ∈ RC , Yst can be decomposed as:

Yst = Ŷst(b) +
K∑
k=1

Rsk(b)µkst + ρ(b) ζst, for all s and t ≤ n , (4)

where, ρ(b) = ν (1 + ‖b‖22)1/2 and ζst has standard normal distribution and independent among each other

for all (s, t) pairs.
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If the linear coefficients b can be optimized such that both residual components in equation (4) are small,

then the counterfactual outcome can be well approximated. To this end, we consider state-specific linear

estimators βs. For tractability, we ignore the first residual term in (4) and the dependence of the scale of the

second term on ‖βs‖, and instead consider a simplified misspecified model: Yst = Ŷst(βs) + σzst, where zst
are i.i.d. standard normal noise. We construct our regularized SC estimates based on this misspecified model

observed for all s but t = 1, . . . , n. In the following section, we show that despite the model misspecification,

the resulting estimators accurately approximate the counterfactual outcomes generated from the factor model

in (1)-(3).

Next, consider shrinkage priors on the βs = {βcs : c = 1, . . . , C} coefficients. Following Thomson et al.

(2019) we consider an exchangeable hierarchical structure: for c = 1, . . . , C and s = 1, . . . , S:

[
βcs|λcs

] i.i.d.∼ N(0, τλ2
cs) and λcs

i.i.d.∼ LogitNormal(m, v)

where, m ∈ R and τ, v > 0. The above prior structure on βs is equivalent to:

[
βcs|zcs

] i.i.d.∼ N
(
0, τ exp(2zcs)(1 + exp(zcs))

−2
)

and zcs
i.i.d.∼ N(m, v) .

Note that, the shrinkage of |βcs| towards 0 is monotone in zcs. As zcs ↓ −∞, βcs → 0 where as as

zcs ↑ ∞, βcs → N(0, τ), where, τ is the global shrinkage factor. This Logit-Normal prior (LNP) structure is

a global-local continuous shrinkage prior (Bhattacharya et al., 2015; Bhadra et al., 2016; Miller and Harrison,

2018) where τ controls the overall level of shrinkage and the local shrinkage parameters λcs applies individual

shrinkage to each parameter separately. LNP allows for varying levels of shrinkage across different parameters,

enabling the model to retain important control units with minimal shrinkage while shrinking less important

ones more aggressively (Ročková and George, 2018).

Akin to the horse-shoe priors (Bhadra et al., 2019), LNP is a fully continuous approximation to the mixed

spike-and-slab prior which has an atom at origin and a continuous slab (Castillo and Mismer, 2018). Unlike

the mixed prior, it is much easier to sample from the LNP based posterior though the hard distinction

between zero and non-zero parameters is no longer retained (Malsiner-Walli and Wagner, 2018). However,

as LNP substitutes the discrete Bernoulli distribution in the mixed prior with a logit-normal distribution,

with appropriate parameter settings it can resemble a U-shaped distribution over (0, 1), concentrating most

of its mass near the endpoints. We prefer LNP over the more commonly used Beta distribution (Ročková and

George, 2018) as it can be derived as a transformation of standard normal random variables, significantly

enhancing the convergence of the sampler (Thomson et al., 2019).

For any fixed σ, τ,m, v, the logarithm of the posterior distribution of B = {βs : s = 1, . . . , S} is given by

π(B|Y,X,Z) =
∑S
s=1 π(βs|Ys, Xs, Zs), where, π(βs|Ys, Xs, Zs) equals

1

2σ2

n∑
t=1

(
Yst − β0s −

C∑
c=1

βcsXcst

)2

+
1

2τ

C∑
c=1

(1 + exp(−zcs))2β2
cs +

1

2v

C∑
c=1

(zcs −m)2 .

We use an inverse-gamma prior on σ, and a half-Cauchy prior on τ . We work with centered variables that

directly evaluate β0s. Using code written in the PyMC 4.0 probabilistic programming language (Salvatier

et al., 2016), we sample from the posterior distribution and define the counterfactual estimate as Ŷst[m] :=

Ŷ
(0)
st (β̂s[m]) = x′stβ̂s[m], where β̂s[m] denotes the posterior mean of βs. The code for implementing the

proposed regularized synthetic control estimates is publicly available from the GitHub repository https:

//github.com/rrbhuyan/ivermectin.

3.4. Risk Properties of regularized SC

For linear SC estimators of the form Ŷ
(0)
st (b) = b′xst, it follows from appendix B of Abadie et al. (2010) that

for any fixed b ∈ RC and for all s and t > n, the error of linear SC estimates in the factor model of (1)-(3)

https://github.com/rrbhuyan/ivermectin
https://github.com/rrbhuyan/ivermectin
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is upper bounded as:∣∣Y (0)
st − Ŷ

(0)
st (b)

∣∣ ≤ ||µst||2 λs {Ims(b) + νρ(b)
||Ws||2√

n

}
+ νρ(b)|W̃st|, (5)

where, ρ(b) = (1 + ||b||22)1/2 involves the L2 norm of b, Ims(b) = [n−1
∑n
t=1(yst− b′xst)2]1/2 is the average

pre-treatment imbalance (see Theorem 1 of Ben-Michael et al. (2021)) and λs is the Kth eigen value of

Ms = n−1
∑n
t=1 µ

′
stµst; Zs is a vector of dimension n with Ws

d
= Nn(0, I) and Z̃st is white noise. Also,

{Ws : s = 1, . . . , S} and {W̃st : s = 1, . . . , S; t = n+ 1, . . . , N} are independent with each other.

For linear estimators of this form, unless ‖b‖2 is properly constrained, the error in equation (5) can

become unbounded. Given that the number of control units is very large and C � n, the use of unregularized

estimators can easily lead to this issue. However, imposing a constraint on ‖b‖2 indiscriminately may also

result in large imbalance that will be reflected in Ims(b). To address this, the LNP prior induces sparsity in

the state-specific coefficient vectors bs, thereby achieving a balance between controlling the estimation error

and maintaining low imbalance.

In our factor model structure in (1)–(3), we impose a sparsity assumption. Specifically, we assume that

although there is a very large number (C) of control units, for any treated unit s, the coefficient vector

φs = (φs1, . . . , φsK)′ can be well approximated by a linear combination Ψs involving only `s control units,

where `s � C for all s. The set of contributing control units may vary across treated units, and the identity of

these effective control units is unknown a priori. We show that, with high probability, the proposed regularized

synthetic control (SC) method based on the LNP (latent noise perturbation) framework accurately selects

this subset of relevant control units. Before proceeding, we formally state the sparse factor model assumption.

Sparsity assumptions of this type have been widely adopted in the synthetic control literature (see Abadie

(2021); Chen and Li (2024) for a comprehensive review).

Assumption 1. We consider an asymptotic regime where n → ∞ and lim infn→∞ C/n > 1. For each

s ∈ {1, . . . , S}, we assume that there exists β∗s ∈ RC such that:

(a) Let δn := maxk |Rsk(β∗s )|. Then, nδn → 0 as n→∞.

(b) Let αn := ‖β∗s‖∞ and `n := ‖β∗s‖0, where ‖·‖0 denotes the number of nonzero entries and ‖·‖∞ denotes

the supremum norm. Then, limn→∞ n−1`n(logC)3 = 0 and limn→∞ αn/n = 0.

Note that, since C � n, ignoring benign pathological cases we have infb∈RC Rsk(b) = 0 for all k and s.

Assumption 1 guarantees the existence of at least one unknown b∗s ∈ RC with controlled L0 and L∞ norms

such that Rsk(b∗s) is asymptotically negligible. Moreover, if φsk and Ψcsk in equations (1)–(3) are uniformly

bounded and the matrix ψ.s. has full rank, then Assumption 1 automatically holds, as Rsk(b∗s) would be

exactly zero.

In the context of (5), Assumption 1 ensures that both the imbalance Ims(b∗s) and the variance ‖b∗s‖2
remain controlled as n→∞. In such a set-up, we can set the hyper-parameters of LNP prior based on n and

C only (and without using any information of the sparsity level) such that its posterior concentrates around

β∗s and so, the resultant SC predictor Ŷ
(0)
st [m] have controlled predictive risk. To arrive at this result, based

on calculations in Chatterjee (2013), we first show that the SC predictor Ŷ
(0)
st [mo] := Ŷst(β̂s[mo]) = x′stβ̂s[mo],

based on the posterior mode β̂s[mo] of the LNP inherits the slow rate associated with the LASSO predictor

(Tibshirani and Wasserman, 2017).

Theorem 2 In (1)-(3), under Assumption 1, as n→∞, there exists an LNP prior sequence calibrated only

on n and C, such that its posterior mode based SC predictions Ŷ
(0)
st [mo] satisfy:

E
(
Y

(0)
st − Ŷ

(0)
st [mo]

)2
= O

(
R(1)
n +R(2)

n +R(3)
n +R(4)

n

)
,

for 1 ≤ s ≤ S and n+1 ≤ t ≤ N , where the error terms on the right side are, R(1)
n = ‖β∗s‖21 (logC)3/2 n−1/2,

R(2)
n = ‖β∗s‖1 δn ‖µst‖1 (logn)1/2, R(3)

n = δ2n ‖µst‖21 and R(4)
n = ν2(1 + ‖β∗s‖22).

The proof of Theorem 2 is provided in the appendix. The first term on the right-hand side of the bound

reflects the slow convergence rate of the LASSO predictor. This slower rate is justified, as we make no
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assumptions regarding the correlations among the control variables, which may be quite high for certain

controls. The second and the third term capture the prediction error due to the model misspecification. The

last term R(4)
n is due to future variability and is the unavoidable part of the prediction error (Ben-Michael

et al., 2021). Moreover, if the time-varying components µ in the factor model are uniformly bounded, then

under Assumption 1, the first three terms in the bound become asymptotically negligible. Consequently, the

prediction error is essentially R(4)
n , which represents the theoretically achievable lower bound using synthetic

control methods with perfect oracle knowledge of β∗s .

The above result can be extended for the LNP posterior mean based SC estimate Ŷ
(0)
st [m]. In the appendix,

using the results in (Song and Liang, 2023), we show that {Ŷ (0)
st [m] : n + 1 ≤ t ≤ T} concentrates around

{x′stβ∗s : n + 1 ≤ t ≤ T} with high probability. It provides asymptotic control on the predictive risk of

the proposed regularized SC estimates over post treatment time-points. We subsequently use the statewise

ÂTTst for subsequent analysis.

Theorem 3 Under Assumption 1 and the factor model structure in equations (1)–(3), the posterior

predictive density induced by the LNP prior sequence in Theorem 2 for predicting the counterfactual based

on Dn(s) = {Yst, Xcst : 1 ≤ t ≤ n, 0 ≤ c ≤ C} concentrates around x′stβ
∗
s at the following rate:

P
(

log
{
π
(
‖y − x′stβ∗s‖ ≥ c1εn

∣∣∣Dn(s)
)}
≥ −c2nε2n

)
≤ exp

(
−c3nε2n

)
,

where εn = c4`
1/2
n (logC)3/2n−1/2 and c1, c2, c3, c4 are positive constants. Consequently, the trimmed

posterior mean Ŷ
(0)
st [m] concentrates around the true counterfactual Y

(0)
st as:

P
(∥∥Ŷ (0)

st [m]− Y (0)
st

∥∥ ≤ (c1εn + δn‖µst‖1 + c5ρ(β∗s )
))
≥ 1− e−c3nε

2
n for all t ≥ n.

3.5. Persistence Analysis of IVM Overconsumption

In addition to addressing the C � n problem, the proposed regularized synthetic control (RSC) method

overcomes several issues of the difference-in-differences model (Imbens and Rubin, 2015). The difference-in-

differences approach would require us to pick one control drug that satisfies all the necessary assumptions,

including the parallel trend assumption, from the entire set of potential controls or treat all controls as

equally important, which significantly reduces the flexibility of the model. An advantage of the proposed

LNP based Bayesian RSC approach over frequentist SC methods is straightforward statistical inference,

facilitating hypothesis testing.

We use the aggregated state-wise ATT estimates to plot the overall US effects over time as several counter

measures were implemented after n. We also look at the effects for different sub-group of the states. Results

are robust to an alternative prior, the horseshoe (Kim et al., 2020), although in some instances the horseshoe

prior-based model did not converge. The critical and untestable assumption is that the relationship between

the focal drug and the control drugs/GPI2 categories in the pre-treatment period would continue to hold

after the treatment.

3.6. Analysis of State-Level Countermeasure Effectiveness

We consider the variation in state-level support for the Republican party in the 2016 elections to assess

how state-level ATTs vary with differences in political beliefs. To do so, we use state-level ATT estimates

ÂTTst for s = 1, . . . , S and t = n + 1, . . . , T . Our approach to analyzing the heterogeneity in state-week

ATTs is similar to meta-analysis (Fuhrer and Cova, 2020). Specifically, the state-level synthetic control

approach provides us with both a point estimate of the incremental effect and the posterior distribution

of the incremental effect for each state-week combination (Esposo et al., 2013). The standard deviation of

each posterior distribution serves as an estimate of measurement error. To account for measurement error,

we incorporate the square of this measurement error as weights in a weighted least squares regression. We

estimate the following equation:

ATT Per Capitast = µ0 + µ1 ·Weekt + µ2 · Consvi + µ3 · Covid cases per capitast + εst . (6)
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The regression model analyzes the relationship between incremental IVM prescription claims per capita

(ATT Per Capita) and various factors across states and time. It includes variables for time trends (Week),

state conservatism (Consv), and COVID-19 cases per capita, allowing for the examination of how these

factors correlate with IVM usage while controlling for potential confounding variables. Our focal variable of

interest in this regression is a state’s conservativeness (Consv).

We estimate the model in (6) over three distinct time periods. The first period, T1, spans from April 1,

2020 to December 7, 2020. This period commences with the emergence of Ivermectin (IVM) in the context

of Covid-19, marked by a study that was subsequently retracted, and concludes just prior to Dr. Pierre

Kory’s testimony at the Senate hearing. The second period, T2, extends from December 8, 2020 to August

25, 2021, encompassing the duration between Dr. Kory’s testimony advocating for IVM’s use and the day

before the CDC’s warning. The third period, T3, begins on August 26, 2021, coinciding with the CDC’s

warning against IVM use for Covid-19, and continues until December 31, 2021. This temporal segmentation

allows us to examine the evolving impact of key events on IVM prescription patterns and public perception

throughout the course of the pandemic.

4. Results

4.1. IVM Overconsumption patterns over 20 months

We standardized all the indexed claims by the mean and variances till the intervention n. We set treatment

date to April 1, 2020, the date when the first study on IVM was published online. In figure 5, we plot

the statewise ATT estimates aggregated across the three interesting time intervals reported in figure 4. Our

analysis reveals consistent temporal patterns in IVM prescription claims across states, with notable differences

in magnitude between politically diverse regions. Prior to the emergence of IVM in the COVID-19 pandemic

as a potential treatment option, incremental claims per capita were negligible in all states, as expected.

However, post-pandemic, we observe a significant increase in claims, with red states exhibiting nearly four

times higher rates than blue states. Comparing the ATT plots in figure 5 with the raw claims in figure 4, we

see fundamental differences. For example, comparing between the penultimate and last maps in both figures,

we see that the ATTs of Texas, Florida and even California are comparatively much pronounced than raw

claims maps in figure 4. This differences show the importance of conducting a causal study based on control

drugs rather than reporting the differences based on raw IVM claims only. Next, we study these ATTs as

counter measures are introduced.

In Figure 6, we plot the weekly ATT estimates for IVM prescription claims aggregated across all US

states. We see that the two major peaks coincide with the peaks of increased COVID19 case counts in the

US. The latter peak is much pronounced than the former peak and occurred after key studies that drew

attention to IVM usage for COVID19 was scientifically discredited. Next, we study the fluctuation in the

ATTs as countermeasures was introduced.

4.2. Persistence Analysis

Considering the time varying treatment effects in the ATT plot of figure 6 we observe a small, short-lived

increase in prescription claims in relation to the counterfactual on April 1, 2020, but the major increase

does not occur till December 8, 2020, when Dr. Kory testified for the senate committee. This increase

sustains till the end of 2021, with a substantial increase in 2021 coincident with an increase in COVID cases.

Thus, we observe a persistent effect of IVM overconsumption, despite federal informative countermeasures.

Unlike restrictive countermeasures that involves banning consumption, informative countermeasures are

actions designed to reduce the spread and impact of misleading information by enhancing public knowledge,

promoting critical thinking, and improving access to accurate information. All IVM countermeasures were

informative in nature.

In table 2, we summarize the information in the weekly ATTs plots of figure 6 by considering three

interesting time periods from the span of the study. Note that, as these ATT estimates are based on indexed

claims, the estimates unless compared to a base is not interpretative. For each of the time-period, we report

the average increase in total US ATTs as relative change over the counterfactual, i.e., for any time-interval
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Fig. 5: From top-left row-wise, we have maps of ATT estimates for IVM averaged across the time invervals

(a) Event 1 to Event 2 (b) Event 2 to Event 8 (c) Event 8 to Event 9. Events listed in Table 1.

T , we report (
∑
s∈S,t∈T Yst(1)− Ŷst(0))

/
(
∑
s∈S,t∈T Ŷst(0)). For approximately a month after Dr/ Kory’s

testimony, the relative increase in IVM claims were around 6 times. However, we observe that the highest

increase on average which was 16 times occurred after 67% of the US population had received at least one

dose of the COVID19 vaccine. Also, at that point there has been scientific evidence refuting the initial studies

that suggested IVM usage for COVID19. This shows that the effect of overconsumption persisted even after

counter measures and vaccination.

Table 2. Change in Incremental IVM Claims Over Time

Interval Significance ATT Increase

12/08/2020 – 01/14/2021 Immediately after Dr. Kory’s Senate Testimony 6.15 times

01/21/2021 – 07/04/2021 After NIH Refutes IVM usage for COVID19 4.52 times

07/04/2021 – 12/31/2021 After Vaccination reaches 67% of US population 16.18 times

4.3. State-wise variability in regulatory countermeasure efficacy

We next calculate the weekly ATT per capita across the Blue and the Red states. This is done by adding the

ATTs across all the Blue states and then dividing by their cumulative population size. Similar calculation is

done for Red states. We plot the weakly time series in Figure 7. In figure 8, we plot the ATT per capita for

California and Texas as representative examples of Blue and Red states. Note the difference in scale for the

y-axes for Red states (on the left) and Blue states (on the right). The ATT per 100,000 people zero for both

Red and Blue states, prior to IVM gaining attention. Subsequently the increases in claims are systematically
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Fig. 6: Plot of weekly ATT estimates for IVM prescription claims aggregated across all US states (in red) and

of total US weekly Covid case counts (in blue). The time points marked by dotted vertical lines correspond

to major related events listed in Table 1.

higher in Red states than in Blue states. The disparity we see between the Red and Blue series in figure 7 is

even more pronounced in figure 8. Both states show similar temporal trends, starting with zero incremental

claims per capita before the IVM gained public attention. However, after Dr. Kory’s testimony on December

8th, 2020, Texas demonstrates a markedly higher increase in IVM prescription claims compared to California,

despite having lower COVID-19 case rates per capita (see Figure 4 bottom subplot).

To systematically analyze these discrepancies and understand the association between countermeasure

efficacy and political affiliation, we divide the study period into three distinct intervals. These intervals

correspond to those considered in Table 2. We use state-level ATT-derived per capita estimates of

overconsumption of IVM claims as our response variable, which measures Ivermectin prescribing beyond

expected baseline levels. For each of the three intervals, we conduct a regression analysis based on the

framework described in (6). Weighted least squares estimates are employed to down-weight states with low

claims. The results are reported in Table 3.

Our analysis reveals that Covid case counts have a significant positive effect on increasing incremental

IVM claims across all three intervals. Conservatism, however, was not a significant predictor at the 5%

level in two intervals. It was significant and positively associated with incremental IVM claims during the

last interval. This finding is noteworthy because, by July 15, 2021, the initial studies suggesting that IVM

could help with Covid-19 had been discredited. Moreover, the CDC issued a statement on August 26, 2021,

discrediting the effectiveness of IVM, which led to a reduction in prescription claims. Thus, the significant

positive association between conservatism and incremental IVM claims in the third column of Table 3, along

with the exploratory findings in Figures 7 and 8 showing a subsequent increase in prescription claims towards

the end of 2021, suggests that even though definitive evidence discrediting IVM was effective, its impact was

short-lived and insufficient to return IVM prescriptions to the counterfactual baseline.
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Fig. 7: Plot of weekly ATT estimates for IVM prescription claims aggregated across Blue and Red states.

The time points marked by dotted vertical lines correspond to major related events listed in Table 1.

Table 3. Variability in countermeasure efficacy. Results from regression analysis based on (6) for three time periods are presented.

Note: *p < 0.05; **p < 0.01; ***p < 0.001.

Immediate After NIH Refutes IVM After Vaccination

12/8/2020-1/7/2021 1/14/2021-7/4/2021 7/4/2021-12/31/2021

Constant -1.085 (0.773) 0.868 (0.588) 1.628* (0.742)

Cases Per Capita 0.007*** (0.002) 0.007*** (0.002) 0.022*** (0.002)

Conservativeness 0.600 (0.400) 0.039 (0.129) 2.199*** (0.473)

Observations 150 1,100 1,250

R2 0.127 0.106 0.318

Adjusted R2 0.103 0.087 0.303

Residual Std. Error 3.367 (df = 145) 2.616 (df = 1076) 8.899 (df = 1223)

F Statistic 5.269*** (df = 4, 145) 5.531*** (df = 23, 1076) 21.927*** (df = 26, 1223)

4.4. Robustness Checks

We conduct robustness checks in two main categories: data, model-related checks and tests for alternative

explanations of our observed effects. The results are provided in the appendix.

5. Discussion

This study is the first to examine the medium-term effects of Ivermectin (IVM) overuse and the efficacy

of federal informative countermeasures within a causal inference framework. Our findings reveal that IVM

overuse persisted well beyond the initial reports of its potential therapeutic use, despite the implementation

of regulatory advisories and public health messaging. While countermeasures yielded some benefits, their

overall impact was limited, and substantial residual overuse remained.
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Fig. 8: Plot of weekly ATT estimates for IVM prescription claims for California (in blue) and Texas (in red).

The time points marked by dotted vertical lines correspond to major related events listed in Table 1.

We observe significant heterogeneity in the effectiveness of countermeasures across states. States with

higher levels of political conservativeness experienced greater per capita overconsumption and exhibited

lower responsiveness to federal advisories. Additionally, the dissemination of definitive scientific evidence

discrediting IVM’s efficacy appeared to have only a modest impact on curbing its overuse.

These findings highlight the limitations of federal informative countermeasures during the pandemic and

underscore the need for more targeted, localized health communication strategies. The substantial variation

in state-level responses suggests that one-size-fits-all messaging is insufficient. Tailoring messages to specific

subpopulations—based on behavioral, cultural, and political contexts—can improve salience and effectiveness.

Integrating data analytics and behavioral insights into communication design may enhance message uptake

and public compliance. Effective health communication will require coordinated efforts across disciplines,

including public policy, healthcare, behavioral science, and communication, to develop adaptive and resilient

strategies for future public health crises.

A. Robustness Checks

Our robustness checks broadly fall into two types: data/model related and alternative explanations for our

observed effects.

Single Platform Data. Our data is sourced from a single platform, GoodRx. We view our analysis

as an index of claim patterns in the market. As a data check, IVM claims at the national level from

another data supplier, who wishes to be anonymous. The anonymous data supplier is a hub for an extensive

pharmacy network, routing real-time Rx claims transactions between pharmacies and pharmacy benefit

managers (PBMs). This connectivity offers broad coverage of pharmacies, prescribing providers, and PBMs

sourced as a part of the business platform. Coverage includes specialty pharmacy claims, general distribution

prescription drugs, and durable medical equipment claims filled via pharmacy. The data supply is 1st party

and deliverable on a t+1 basis from the claims submission date. The Pearson correlation between GoodRx

data and the data supplier data for IVM claims is 0.9.
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Fig. 9: Based on an alternative control set we plot the ATT estimates for IVM prescription claims aggregated

across all US states (in red) and of total US weekly Covid case counts (in blue).

Choice of Controls. We estimated models with other drugs that were used to treat Covid-19 and

available at pharmacies along with aggregate GPI2 categories as controls. We identified drugs used for

Covid-19 treatment from the NIH’s treatment advisories between April 21, 2020 and December 30,2021

(inclusive) for Covid-19. We check if the results substantively remain the same if we use different control sets.

We tried (a) top 200 drugs by volume (b) use a random sampling of 200 drugs, and (c) use top 100 drugs

by volume and aggregate GPI2 categories as controls. We see very similar results in all the three cases. To

avoid repetition, we present the results from case (c) only. We plot the ATT estimates based in case (c) in

figure 9. We see that with this alternative specification the treatment effect estimates are even larger. The

regression results for this alternative specification are presented in Table 4. Comparing with table 3 we see

that these results are also substantively the same.

Table 4. Moderating Effect of Susceptibility based on an alternative control set. Results from regression analysis based on (6) for

three time periods are presented. Note: *p < 0.05; **p < 0.01; ***p < 0.001.

Immediate After NIH Refutes IVM After Vaccination

12/8/2020-1/7/2021 1/14/2021-7/4/2021 7/4/2021-12/31/2021

Constant -1.242 (0.766) 0.342 (0.611) 1.432 (0.755)

Cases Per Capita 0.007*** (0.002) 0.008*** (0.002) 0.014*** (0.002)

Conservativeness 0.742 (0.429) 0.098 (0.130) 2.895*** (0.446)

Observations 150 1,100 1,350

R2 0.126 0.110 0.289

Adjusted R2 0.102 0.091 0.274

Residual Std. Error 3.442 (df = 145) 2.657 (df = 1076) 8.920 (df = 1321)

F Statistic 5.235*** (df = 4, 145) 5.772*** (df = 23, 1076) 19.217*** (df = 28, 1321)

Placebo Test. As a falsification test, we assume that the treatment occurred at the beginning of 2020,

i.e., we move back the treatment date by three months from April 1, 2020, the date when the first study

suggesting IVM might work was published, to January 12, 2020. We re-estimate the counterfactuals by SC

and present the results in Figure 10. We observe no incremental IVM claims prior to April 1, 2020. This

suggests that our model specification is appropriate and indicates that there was no stockpiling in anticipation

of shortages before April 1, 2020.
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Fig. 10: In red and blue we have the actual and predicted IVM claims when the treatment date was preponed

by 12 weeks for a placebo test. In dotted black line we have Covid case counts.

Covid Cases. Inclusion of covid death rates in place of case rates does not substantially alter our results.

Differential Media Coverage of Countermeasures across states. It is quite possible that the

media covered countermeasures differently across states. This could mitigate the effect of countermeasures.

However, our study focuses on prescription claims - where physicians have to sign off on the prescription.

Ideally, experts like physicians should be able to directly access updated information outside of media sources.

Substitutes for IVM. There are no over-the-counter (OTC) substitutes for IVM and IVM purchase

requires a prescription. Therefore, differential access to over-the-counter substitutes does not explain our

results. Some consumers used animal formulations of IVM, but this is not pertinent to our study as such

consumption does not include physician decisions.

B. Proofs of the results in Section 3.1

B.1. Proof of Lemma 1

Based on our factor model, we have Yst =
∑K
k=1 φsk µkst + εst, and similarly the controls are Xcst =∑K

k=1 ψcsk µkst + εcst. The residual loadings for any b ∈ Rc is defined as

Rsk(b) = φsk −
C∑
c=1

bc ψcsk.

Since φsk = Rsk(b) +
∑C
c=1 bcψcsk, we can rewrite Yst as

Yst =
K∑
k=1

(
Rsk(b) +

C∑
c=1

bcψcsk
)
µskt + εst

=
K∑
k=1

Rsk(b)µkst +
C∑
c=1

bc

K∑
k=1

ψcskµkst + εst .
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Next, by using the factor models for the control units, we can replace
∑K
k=1 ψcskµkst with Xcst − εcst,

to simplify as follows,

Yst =
K∑
k=1

Rsk(b)µskt +
C∑
c=1

bc
(
Xcst − εcst

)
+ εst

=
K∑
k=1

Rsk(b)µkst + Ŷst(b)−
C∑
c=1

bc εcst + εst .

The final result follows by noting that εst −
∑C
c=1 bc εcst

d
= ρ(b)ζst, where ρ(b) = ν(1 + ‖b‖22)1/2 and ζst is

standard normal.

B.2. Proof of Theorem 2

Consider the setup for a particular state s. We remove subscripts pertaining to state s for ease of notation.

In this case we model the pre-treatment IVM claims {Yt : t = 1, · · · , n}, with the misspecified model for a

single state as

Yt =
C∑
c=1

βcXct + εt ;
[
βc|λc

] i.i.d.∼ N(0, τλ2
c) and λc

i.i.d.∼ LogitNormal(m, v),

For fixed σ, τ and a fixed sequence of λc, the negative log likelihood of posterior distribution of βc without

the prior structure on λc is

l(β|Y,X, λ) ∝
1

2σ2

n∑
t=1

(
Yt −

C∑
c=1

βcXct
)2

+
1

2τ

C∑
c=1

β2
c

λ2
c

.

The posterior mode β̂ is the minimizer of the above loss function (negative log-likelihood), β̂ =

arg min l(β|Y,X, λ). The optimization problem of minimizing the loss can be rewritten as a constrained

problem for some K as

min
β

τ

σ2

n∑
t=1

(
Yt −

C∑
c=1

βcXct
)2

s.t.
C∑
c=1

β2
c

λ2
c

≤ K . (7)

We next provide the construction to choose prior hyperparamaters for λc.

Lemma 4 Let X ∼ LogitNormal(−tf(t), t2), where f(t) is the solution to the equation

f(t)2

2
+ log f(t) = (1 + u) log t ,

then as t→∞, for some u > 0, there exists constants k1, k2 such that

P [X ∈ (0, t−1/2)] = 1− k1t−(1+u) P [X ∈ (1− t−1/2, 1)] = k2t
−(1+u)

Using the above lemma, we set the prior mean −Cf(C) and variance C2 for λc. The limiting distribution

closely resembles a Bernoulli distribution. With this choice of parameters λc ≤ C−1/2 with probability

1−k1C−(1+u) and the entire sequence of λc is bounded by 1/
√
C with probability (1−k1/C1+u)C ≈ 1−C−u

for some u > 0. Thus, λc ≥ 1/
√
C for only constants s λc’s as C grows. Without loss of generality assume
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that λ1, λ2, · · · , λs are greater than 1/
√
C and λs+1, λs+2, · · · , λC ≤ 1/

√
C. Consider 2s

√∑C
c=1 β

2
c/λ

2
c,

2s

√√√√ C∑
c=1

β2
c/λ

2
c = 2s

√√√√ s∑
c=1

β2
c/λ

2
c +

C∑
c=s+1

β2
c/λ

2
c ≥ s

√√√√ s∑
c=1

β2
c/λ

2
c + s

√√√√ C∑
c=s+1

β2
c/λ

2
c

≥ s

√√√√ s∑
c=1

β2
c +

√√√√C
C∑

c=s+1

β2
c ≥ ‖β‖1 .

This means that
∑C
c=1 β

2
c/λ

2
c ≤ K implies that ‖β‖1 ≤ 2s

√
K. Thus consider the following optimization

problem instead of (7),

min
β

n∑
t=1

τ

σ2

(
Yt −

C∑
c=1

βcXct
)2

s.t. ‖β‖1 ≤ 2s
√
K , (8)

where, Ỹt =
√
τ/σ2Yt and X̃ct =

√
τ/σ2Xct, the problem is thus normalized for the prior parameters.

While the objective function of the optimization problems in both (7) and (8) are the equivalent, since∑C
c=1 β

2
c/λ

2
c ≤ K implies that ‖β‖1 ≤ 2s

√
K, thus, the feasible set of (8) is a subset of the feasible set

of (7). Minimising over a smaller region can only increase (or leave unchanged) the optimal value, so the

infimum attained in (8) is at least as large as that for (7). Because our ultimate goal is to derive an upper

bound on the prediction error, we concentrate on solving the tighter problem (8). The optimization problem

in (8) resembles the problem defined in Chatterjee (2013) to show the bound on the prediction error. We

provide a version of the result from Chatterjee (2013), which we use to provide our result

Result (Chatterjee (2013)) Consider the regression setup Yt =
∑C
c=1 β

∗
cXct + εt where ‖β∗‖1 ≤ Kβ and

the errors have variance σ2. Let MSPE stand for the mean squared prediction error, defined as E
(
Ỹ − Ŷ

)2
where Ŷ is the prediction based on β̂ (restricted to ‖β̂‖1 ≤ K) and Ỹ is the best possible prediction based on

the true parameter β∗, then

E
(
Ỹ − Ŷ

)2
= K̃Mσ

√
log(p)

n
+ 2K̃2M2

√
log (p)

n
,

where max |Xct| ≤M and K̃ := (K +Kβ)2.

In our case, as described in Lemma 1, we have

Yt =
C∑
c=1

β∗cXct +
K∑
k=1

Rk(β∗)µkt + ρ(β∗) ζt . (9)

Since we have formulated our optimization problem in (8) using the normalized Ỹt, the variance in our

setting is thus τρ(β∗)/σ2. Also M is the maximum of n of Xct’s which is of the order
√

logn. The model

misspecification term
∑K
k=1Rk(β∗)µkt also adds another error of MK̃

∑K
k=1Rk(β∗)µkt into our exisiting

error. Combining all, we get for out case, given fixed τ and σ,

E

[(
Ỹ

(0)
t − Ŷt

)2 ∣∣∣τ, σ] = K̃M

√
τρ(β∗) logC

σ2n
+ 2K̃2M2

√
logC

n
+MK̃

K∑
k=1

Rk(β∗)µkt

= K̃M

(√
τρ(β∗) logC

σ2n
+ 2K̃M

√
logC

n
+

K∑
k=1

Rk(β∗)µkt

)
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If σ ∼ Inverse-Gamma(a0, b0) and τ ∼ Half-Cauchy(c0, γ), then E[1/σ] = a0/b0 and E[
√
τ ] = c0 +

√
2/γ.

Since σ and τ are independent of each other, we can simplify E(Ỹ
(0)
t − Ŷt)2 as,

E

[
E

[(
Ỹ

(0)
t − Ŷt

)2 ∣∣∣τ, σ]]

= K̃M

(
a0

b0
(c0 +

√
2/γ)

√
ρ(β∗) logC

n
+ 2K̃M

√
logC

n
+

K∑
k=1

Rk(β∗)µkt

)

≤ K̃
√

logn

(
c1

√
ρ(β∗) logC

n
+ 2K̃

√
logn

√
logC

n
+ δn‖µk‖1

)

= O

(
‖β∗‖1

√
ρ(β∗) logn logC

n
+ ‖β∗‖21

√
logC(logn)2

n
+
√

logn‖β∗‖1δn‖µk‖1

)

= O

(
‖β∗‖21

√
(logC)3

n
+
√

logn‖β∗‖1δn‖µk‖1

)
,

where the last inequalities follows since C ≥ n,
√
ρ(β∗)

O
= ‖β∗‖1 and logn dominates

√
logn. Note that

this simplification only gives us the error between Ŷt and Ỹ
(0)
t , while we want to finally compute the error

between Ŷt and Y
(0)
t . Thus, next we consider E(Y

(0)
t − Ỹ (0)

t )2 which constitutes the random error on the

final prediction.

Note that based on our factor model, Y
(0)
t − Ỹ (0)

t =
∑K
k=1Rk(β∗)µkt + ρ(β∗) ζt ≤ δn‖µk‖1 + ρ(β∗) ζt.

Thus, E(Y
(0)
t − Ỹ (0)

t )2 ≤ δ2n‖µk‖21 + ρ(β∗)2. Combined with the simplification of E(Ỹ
(0)
t − Ŷt)2, this proves

our final bound since

E
(
Y

(0)
t − Ŷt

)2
≤ E

(
Ỹ

(0)
t − Ŷt

)2
+ E

(
Y

(0)
t − Ỹ (0)

t

)2
.

B.3. Proof of Theorem 3

We first describe some properties pertaining to our choice of prior in our model coefficients βc. The coefficients

are mean zero Gaussian distributed with the variances being controlled by τ and λ2
c. While τ is distributed

with a Half Cauchy prior, λc’s are Logit Normals with hyperpaparmeter as defined Lemma 4.

Lemma 5 Consider the full prior on βc described with g(βc) where,
[
βc|τ, λc

] i.i.d.∼ N(0, τλ2
c), λc

i.i.d.∼

LogitNormal(−Cf(C), C2), τ ∼ HalfCauchy(c0, γ). Then, for an =
√

4γ(1+u) logC

nC2 ,

1−
∫ an

−an
g(x)dx ≤ C−(1+u) and − log

(
inf

x∈(−n,n)
g(x)

)
= O(logC)

In addition to the properties on g(βc), in our case, we also have,

1.The scaled covariates Xct/
√

lognC are bounded by M .

2.The dimensionality is high, C ≥ n and ln logC ≤ n.

3.max{|β∗c /σ∗|} ≤ c3n for some fixed c3.

The first statement holds since Xct’s have nC Gaussian elements whose maximum is of the order
√

lognC

and the other two statements follow from Assumption 1. Lemma 5 together with the above three assumptions

are similar to the conditions required for Theorem 2.2 in Song and Liang (2023). The only difference being

the first assumption, where Song and Liang (2023) assumes bounded covariates rather than the bound on

scaled covariates.

Define An = { At least C̃ entries of |β/σ| is larger than an}∪{
(∥∥x′stβs−x′stb∗s∥∥ ≥ c1σ∗εn}∪{σ2/σ∗2 >

(1 + εn)/(1− εn) or σ2/σ∗2 < (1− εn)/(1 + εn)}, Bn = { At least C̃ entries of |β/σ| is larger than an} and

Cn = An\Bn, where C̃ is defined exactly as in Song and Liang (2023), C̃ = bmin{ĉ3, c̃3}nε2n/(2 logC)c.
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Following the three-step technique as in Theorem 2.2 in Song and Liang (2023) with the following testing

functions completes the proof. Since the proof is similar, the details are omitted. Consider the following two

testing functions,

φ′n = max
{ξ⊇ξ∗,|ξ|≤C̃+ln}

1{
∣∣yT (I −Hξ)y/(n− |ξ|)σ∗2 − 1

∣∣ ≥ εn}, and

φ̃n = max
{ξ⊇ξ∗,|ξ|≤C̃+ln}

1{‖Xξ(XTξ Xξ)−1XTξ y −Xξβ∗ξ )‖ ≥ c1σ∗εn} ,

where Hξ = Xξ
(
XTξ Xξ

)−1
XTξ .

With these testing functions, we finally get the first main result since y := x′stβs,

P
(
{π
(∥∥x′stβs − x′stβ∗s∥∥ ≥ c1εn∣∣Dn(s)

)
} ≥ e−c2 n ε

2
n

)
≤ exp(−c3 n ε2n) . (10)

Now based on (4) in Lemma 1, we know that for any time t > n,

Y
(0)
st = x′stβ

∗
s +

K∑
k=1

Rsk(β∗s )µkst + ρ(β∗s )ζst .

With the decomposition of the counterfactual, it is easy to note that if ‖x′stβs − x′stβ∗s‖ ≤ c1εn, then

∥∥y − Y (0)
st

∥∥ ≤ ∥∥y − x′stβ∗s∥∥+
∥∥ K∑
k=1

Rsk(β∗s )µkst
∥∥+

∥∥ρ(β∗s )ζst
∥∥

≤ c1εn + δn‖µst‖1 + ρ(β∗s )|ζst| .

(11)

Consider the set, S := {s : π
(∥∥y − x′stβ∗s∥∥ ≥ c1εn

∣∣Dn(s)
)
≤ e−c2 n ε

2
n}, which gives us P (S) ≥ 1 −

exp(−c3nε2n). Based on the definition, under the set S, we have π
(∥∥y − x′stβ∗s∥∥ ≥ c1εn

)
≤ e−c2 n ε

2
n which

is equivalent to π
(∥∥y − x′stβ∗s∥∥ ≤ c1εn

)
≥ 1− e−c2 n ε2n . As shown above in (11), since

∥∥y − x′stβ∗s∥∥ ≤ c1εn

implies
∥∥y − Y (0)

st

∥∥ ≤ c1εn + δn‖µst‖1 + ρ(β∗s )|ζst|, under S, we have

π
(∥∥y − Y (0)

st

∥∥ ≤ c1εn + δn‖µst‖1 + ρ(β∗s )|ζst|
)
≥ 1− e−c2 n ε

2
n .

Finally, since ζst is standard Gaussian, hence P (|ζst| ≤ c5) ≥ 1 − 2 exp(−c25/2). Combining this with the

above bound on the posterior distribution finally gives us that under S and subsequently with probability

1− exp(−c3nε2n),

π
(∥∥y − Y (0)

st

∥∥ ≥ c1εn + δn‖µst‖1 + ρ(β∗s )c5
∣∣Dn(s)

)
≤ exp(−c2 n ε2n) + 2 exp(−c25/2) ,

The trimmed mean result follows directly by considering the 2(exp(−c2 n ε2n) + 2 exp(−c25/2)) trimming

of the posterior distribution in the set S.

B.4. Proof of Lemma 4

We have X ∼ LogitNormal(−tf(t), t2), and exp(f(t)2/2)f(t) = t(1+u).

P [X ∈ (0, t−1/2)] = P [logX ∈ (−∞,−0.5 log t)]

≈ P [logit(X) ∈ (−∞,−0.5 log t)]

= P

[
logit(X) + tf(t)

t
∈
(
−∞,−

log t

2t
+ f(t)

)]
= Φ

(
−

log t

2t
+ f(t)

)
≈ Φ (f(t))

The second inequality holds, since for large t, in the set Θ = (0, t−1/2), θ ∈ Θ logit(θ) = log(θ)− log(1−θ) ≈
log(θ) as log(1− θ) is close to 0 since θ as t−1/2 is small. The last step follows as logit(X) ∼ N (−tf(t), t2)

and consequently t−1(logit(X) + tf(t)) is standard normal.



24 Puranam et al.2025

Using Mill’s inequality, 1−Φ (f(t)) = O(exp(−f(t)2/2)/f(t)) = O(t−(1+u)) or 1−Φ (f(t)) = k1t−(1+u)

for some constant k1 which proves the required.

The second one follows similarly as P [X ∈ (1− t−1/2, 1)] = Φ
(

log t
2t

+ f(t)
)
≈ Φ (f(t)).

B.5. Proof of Lemma 5

For any set of hyperparameters τ , λc, the βc is zero mean Gaussian distribution. Thus infx∈(−n,n) g(x) is

g(n) since the marginal distribution is symmetric around zero and keeps decreasing as x increases.

Consider the set A = {τ ≥ γC2 + c0} ∩ {λc ≥ 1− C−1/2}. In this set A, variance τλ2
c ≥ (γC2 + c0)(1−

C−1/2)2 ≥ γC2/2 for C > 1. Under this set A, g(n) ≥ (C
√
π)−1C exp(−n2/γC2). Also the probability

P (A) = P (τ ≥ γC2 + c0)P (λc ≥ 1 − C−1/2) ≈ (2/πC2)C−(1+u) = 2C−(3+u)/π since τ and λc are

independent.

Using the fact that P (A) ≈ 2C−(3+u) and g(n|A) ≥ (C
√
π)−1 exp(−n2/γC2), thus the marginal

distribution g is such that

g(n) ≥ P (Ag(n|A)) ≈
2
√
π
C−(4+u) exp(−n2/γC2)

=⇒ − log(g(n)) ≤
n2

γC2
+ (4 + u) logC − log(2/

√
π) = O(logC) ,

which follows since C ≥ n.

For the second inequality consider the set B = {τ ≤ c0 + γC1+u} ∩ {λc ≤ C−(4+u)/2}. The probability

of this set, P (B) = P (τ ≤ c0 + C1+u)P (λc ≤ C−(4+u)/2). Consider P (λc ≤ C−(4+u)/2),

P [λc ≤ C−(4+u)/2)] = P [log λc ≤ −(4 + u) logC/2] ≈ P [logit(λc) ≤ −(4 + u) logC/2]

= P

[
logit(λc) + Cf(C)

C
≤ −

(4 + u) logC

2C
+ f(C)

]
= Φ

(
−

(4 + u) logC

2C
+ f(C)

)
≈ Φ (f(C)) = 1− c0C−(1+u) ,

for some constant c0 and, where the last inequality follows from Mill’s inequality and exp(f(C)2/2)f(C) =

t(1+u). Also, P (τ ≤ c0 + C1+u) ≈ 1− 2C−(1+u)/π. Thus,

P (B) = P (τ ≤ c0 + C1+u)P (λc ≤ C−(4+u)/2)

= (1− c0C−(1+u))(1− 2C−(1+u)/π) ≈ 1− (2/π + c0)C−(1+u) .

Also, in this set B, the marginal variance of βc is τλ2
c ≤ (c0+γC1+u)C−(4+u) ≤ 2γC−3. Thus, if (τ, λc) ∈ B,

then
∫∞
an
g(x)dx ≤

∫∞
an
f(x)dx, where f is density of Gaussian distribution with variance 2γC−3.∫ ∞

an

g(x)dx ≤
∫ ∞
an

f(x)dx = O(exp(−a2n/2σ2)/(an/σ))

where σ = τλ2
c. Since a2n/τλ

2
c ≥ (4γ(1 + u) logC/nC2)(2γC−3)−1 ≥ 2(1 + u) logC, as C ≥ n. Thus

O(exp(−a2n/2σ2)/(an/σ)) = O(C−(1+u)/
√

logC) ≤ C−(1+u) for large enough C, which completes the

proof.
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