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Abstract

We consider user retention analytics for online freemium role-playing games (RPGs). RPGs constitute a very popular

genre of computer-based games that, along with a player’s gaming actions, focus on the development of the player’s in-

game virtual character through a persistent exploration of the gaming environment. Most RPGs follow the freemium business

model in which the gamers can play for free but they are charged for premium add-on amenities. As with other freemium

products, RPGs suffer from the curse of high dropout rates. This makes retention analysis extremely important for successful

operation and survival of their gaming portals. Here, we develop a disciplined statistical framework for retention analysis by

modeling multiple in-game player characteristics along with the dropout probabilities. We capture players’ motivations through

engagement times, collaboration and achievement score at each level of the game, and jointly model them using a generalized

linear mixed model (glmm) framework that further includes a time-to-event variable corresponding to churn. We capture the

inter-dependencies in a player’s level-wise engagement, collaboration, achievement with dropout through a shared parameter

model. We illustrate interesting changes in player behaviors as the gaming level progresses. The parameters in our joint model

were estimated by a Hamiltonian Monte Carlo algorithm which incorporated a divide-and-recombine approach for increased

scalability in glmm estimation that was needed to accommodate our large longitudinal gaming data-set. By incorporating

the level-wise changes in a player’s motivations and using them for dropout rate prediction, our method greatly improves on

state-of-the-art retention models. Based on data from a popular action based RPG, we demonstrate the competitive optimality

of our proposed joint modeling approach by exhibiting its improved predictive performance over competitors. In particular,

The research was supported by NSF DMS-1811866 and NSF DMS-2015250 grants.
3Corresponding author: gmukherj@marshall.usc.edu

1



we outperform aggregate statistics based methods that ignore level-wise progressions as well as progression tracking non-joint

model such as the Cox proportional hazards model. We also display improved predictions of popular marketing retention

statistics and discuss how they can be used in managerial decision making.

Keywords: joint modeling, shared parameter model, freemium games, dropout, retention analysis, player motivation, con-

sumer engagement, social contagion, role-playing games, divide and recombine, scalable glmm.

1 Introduction

Role-playing games (RPGs) constitute a very popular genre of computer-based games where the player controls the actions of

a character in a persistent virtual world (Badrinarayanan et al., 2015, Chris, 1982, Pierre-Louis, 2019). He or she can assume

a role of a fantasy character and interact with other players in the virtual game world (Bowman, 2010). RPGs have a devoted

consumer base which is rapidly growing (Hill, 2019). As such, Statista (2018) predicts the revenue of RPG industry to reach

43 billion USD in 2021. A vibrant consumer base and huge revenue potential has attracted several game producers to this

market segment. This has led to increased competition and the current gaming market is extremely crowded. Monetization

policies associated with these digital products is rapidly revolutionizing the marketing and advertisement space in information

systems (Appel et al., 2019, Liu et al., 2014). Another challenge faced by marketing managers is that most of the revenues

from these games are generated through the freemium business model (Evans, 2016, Kumar, 2014, Niculescu and Wu, 2011)

where consumers play the game for free and revenue is accumulated through advertisement or purchase of premium add-on

components to the game. Developing a disciplined analytics framework for monetization and sustainability of these games is

critical for these platforms.

In these freemium games there is no subscription, so dropout is a very important challenge that managers face (Yang

and Peterson, 2004). Compared to other entertainment sectors, the dropout (churn) rate in freemium games is very high –

typically ranging from 20% to 50% per month (Castro and Tsuzuki, 2015). Also, acquiring new players is costly and can

significantly exceed the cost of retaining existing players (Fields, 2014). Thus, retention analysis, which involves predicting

and understanding churn rates, is an important problem for revenue planning and budgeting in freemium RPG games (Kawale

et al., 2009, Periáñez et al., 2016). Retention analysis is a widely used technique in a wide range of industries such as telecom

(Mozer et al., 2000), retail business (Xie et al., 2009), banking (Coussement and Van den Poel, 2008), insurance (Morik

and Köpcke, 2004) and credit card (Nie et al., 2009). However, dropout analysis in these new age of freemium products is

intrinsically different from retention analysis in the aforementioned traditional business sectors (Borbora et al., 2011).

In freemium RPGs it is important to understand if there is a consistent rate of churn or if there are instances or game levels

where there are higher dropouts. A player’s propensity to continue playing the game is governed by his/her in-game experi-

ences and achievements. These outcomes need to be factored in the dropout analysis. Here, we capture players’ motivations

through level-wise engagement times, collaboration and achievement score. We develop a disciplined statistical methodology

for estimating the hazard rate of churn by tracking a player’s behavior through the following three level-wise gaming attributes:
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i. We measure a player’s engagement El in the game at level l by the playing time needed by him/her to cover level l of

the game. Estimating El for future players is important as high variations in these engagement times across different

levels suggest non-uniformity in the game and can be potentially linked to peculiarities in the drop-out rate (Huang et al.,

2019). These level-wise progression statistics El reflect the time-span in which a player is directly engaged in the game

which provides the portal revenue earning opportunities such as banner ads.

ii. We measure a player’s collaboration activity by the binary variable Cl which is positive if he/she has collaborated with

other players and played at least one team game in level l. A distinguishing feature of RPGs is that they not only

aspire for a player’s skill development but also aim to provide an enhanced gaming experience by involving sharing,

collaboration and team building in game-play. It has been witnessed that increased in-game social interactions and

collaboration immensely help in adoption of the game and retaining players (Park et al., 2018, Wei et al., 2019, Zhang

et al., 2017).

iii. We measure a player’s achievement Al at level l by the points he/she got by completing the level. In online RPGs, the

level completion points vary across players depending on his/her exploits and achievement in the level. Rather than

solely focusing on skill development, RPGs promote a never ending quest for exploration of the virtual world for the

growth of the player’s virtual character (Clements, 2012). A player gets satisfaction by fulfilling the minimal mission

needs for level progression and also through additional quests that help to grow his/her in-game character. Players who

get immersed in the game play more missions (and often more dangerous or more challenging ones) and quests than the

average player. This is reflected in their above average level completion points (achievement score). It is easier to retain

enthusiastic players (Castro and Tsuzuki, 2015) and so, it is important to understand the impact of these level-progression

achievement scores in dropout rates.

We develop a joint modeling framework for simultaneous prediction of the aforementioned attributes as a player progresses

through different levels of the game. Most popular retention metrics analysis including player’s lifetime gaming characteristics

(Gupta et al., 2004) such as the lifetime engagement (cumulative playing time across levels) or collaborations, can be easily

computed as functions of these level-wise predictions.

The paper is organized as follows. In the following section, we briefly describe our joint modeling approach and its

advantages over contemporary marketing retention methods. In Section 3, we describe the data set for our case example. In

Section 4, we present a joint model for predicting level-wise playing characteristics (JMLPC) and describe the methodology for

estimating the parameters in JMLPC. The implications from the estimated model, prediction results on the validation data set

as well as a retention marketing application are provided in Section 5. In Section 6, we discuss several variants and extensions

of our joint model approach and thereafter close with a discussion in Section 7.
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2 Statistical Joint Modeling and Improved Retention Analysis

Engagement, collaboration and achievement are three pivotal disparate in-game measures that regulate a player’s motivation

for playing online RPG games (Borbora et al., 2011). In a statistical joint modeling framework (Rizopoulos and Lesaffre,

2014, Rizopoulos et al., 2010) we consider simultaneous estimation of the three longitudinal player motivation attributes via

hierarchical general linear mixed models (Banerjee et al., 2014, Jiang, 2007). We track the joint progression of these player

motivational characteristics and use their propagation as well as level invariant player attributes to model dropout as a time-

to-event variable in the joint modeling framework (Rizopoulos, 2012, Rizopoulos et al., 2009). Figure 1 provides a schematic

illustration of our analysis framework.

Figure 1: Schematic diagram of joint modeling based retention analysis framework.

Based on our estimated joint model JMLPC, we make predictions of the behaviors of future players. These predictions

outperform predictions from non-joint model (see section 5.4) implying that modeling the co-dependencies between a player’s

motivations and churn rate is beneficial. Retention marketing is a well-established research area (East et al., 2006, Rosenberg

and Czepiel, 1984). Though there are plenty of methods in the existing literature on churn prediction (see Borbora et al.,

2011, Jerath et al., 2011, Periáñez et al., 2016 and the references therein), they do not model the co-dependencies between a

player’s in-game motivations. Here, by incorporating those dependencies via a joint modeling approach we provide improved

predictions on future player behaviors. In sections 5.2–5.4, we show that better prediction on player behaviour also help in

formulating better retention marketing policies. Using the estimated JMLPC model we can provide life-time player values by

aggregating the player’s expected playing time across levels. Marketers can use these estimates, particularly those pertaining to

lifetime game-play volume, for efficient budgeting of advertisements in the gaming portal. We show that the predicted lifetime

player values from our joint modeling set-up improve inference compared to predictions based on the marginal distributions

(see section 5.4).
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Another novel aspect of our study is that, unlike most recent approaches for analyzing player behavior in online games

(Banerjee et al., 2019, Huang et al., 2019, Liu et al., 2020, Park et al., 2018), we consider modeling player behaviour aggregated

for each level of the game and not at the daily or weekly resolutions. While daily active user (DAU) based key performance

indicators (KPIs) show that higher levels increase a player’s daily or weekly gaming involvements, they do not directly reflect

the changes in the player’s responses at each progressing levels. Here, unlike DAU based KPIs we explicitly track the level-

induced changes by modeling the propagation in the playing characteristics as the gaming level increases. Figure 2 (a)-(c)

show that player’s engagement and achievement increase at higher levels of the game. We jointly model these drivers’ of

a player’s level progressions as well as his dropout traits. Our model also accounts for the heterogeneity among players’

behaviours. Section 5.1 describes the inter-dependencies among the players’ engagement, achievement, collaboration and

drop-out propensities.

In a single-player action mobile game, Banerjee et al. (2019) showed that joint analysis of player characteristics produces

much improved marketing and general operations strategies. Here, we study players’ responses in online RPGs which differ

from single-player mobile games along multiple games. First, unlike Banerjee et al. (2019), here we have team-play and

in-game collaboration among multiple players. These in-game player collaborations greatly influences game play volume. We

estimate their social contagion effects in an action based RPG which is the case study in our data example (see section 5.3).

Also, RPGs grant players an enhanced degree of control over their characters. Along with the development of direct gaming

skills RPGs promote character growth through persistent exploration of the gaming world which is typically changed daily by

the game developers. Combining an experience system into character development, action based RPGs seek to provide gamers

the satisfaction of the action integrated with character growth and advancement.

To model how dropouts depend on the time-varying player motivations as the players progress through the game, we use

a shared parameter model (SPM). SPMs have been very successfully used in longitudinal studies (Rizopoulos and Lesaffre,

2014, Rizopoulos et al., 2008, Vonesh et al., 2006) to address this bias from informative dropouts. Along with observed

time-invariant covariates, we use correlated random effects to model the longitudinal outcome processes governing player’s

engagement, achievement and collaboration. In our SPM set-up, a player’s dropout level depends on his motivations only

through the random effects and observed covariates. Based on our estimated joint model, we provide level-wise predictions of

future players’ engagement, achievement, collaboration and dropout times.

For estimating JMLPC we use the methodology developed in Rizopoulos (2016) and Rizopoulos et al. (2009). Rizopoulos

et al. (2009) developed a novel Laplace method for evaluating integrals associated with random effects in a joint modeling

framework which is used in Rizopoulos (2016) for calculating the log-likelihood value for the posterior means of the parame-

ters and the random effects, and for obtaining the marginal log-likelihood. Gaming data sets typically contain a large number

of players and to achieve reasonable predictive power we need to incorporate player specific as well as level specific effects

in our joint model. Modeling longitudinal data by a nonlinear cross-classified model with a large number of random coef-

ficients can quickly become computationally intensive (Gao, 2017, Papaspiliopoulos et al., 2020, Zhang et al., 2016). Even
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in the comparatively simpler linear cross classified models, it follows from Gao et al. (2017) that likelihood-based inferences

involving marginalisation over the factors are not scalable to gaming data sets with large number of players. Additionally,

canonical Gibbs sampler is also not scalable in these applications due to its superlinear cost in the number of observations (Pa-

paspiliopoulos et al., 2020). Our JMLPC framework uses multiple and heterogeneous longitudinal outcome variables and the

shared parameters model allows for dependencies across the random effects of the outcomes. The methodology in Rizopoulos

(2016) is not directly scalable for estimation in such framework with large number of players. To resolve this problem we un-

dertake a divide-and-recombine (DR) approach. DR based techniques have been successful in providing scalable and accurate

estimation in a wide range of regression problems (Battey et al., 2015, Chen and Xie, 2014, Jordan et al., 2019). In Section

4.1 using DR to estimate the joint model parameters, we scale the JMLPC modeling framework to accommodate the 10, 000

players present in our training data. In Section 6, we illustrate how our proposed DR based Bayesian estimation algorithm can

be used to fit several variants and complex extensions of JMLPC.

3 Data

To improve a player’s retention and lifetime engagement, we need to understand at what stage a player stops progression and

drops out. We study players’ motivations, progressions, and churn jointly from a lifetime span approach by randomly selecting

15, 000 players in an online action RPG who start from level one at day one. Their progressions in the following three months

are observed. Our data include information on individual level-wise characteristics, social collaboration and game activities.

The highest level reached by any player in this data set is 39.

Table 1 presents the summary statistics of these player characteristics for the different levels of the game. It shows the

number of dropouts among the players who started each level. It provides the summary statistics values for engagement which

is measured by the playing time (in seconds) needed to progress each level as well as that for achievement which is measured

by points received for completing each level. Figure 2 shows the plots of these level-wise progression statistics. On average,

engagement increases exponentially till level 9, then drops till level 13; between level 14 to 30, it increases with a very flat

slope; and starting at level 30, the ascent is very pronounced. We observe 1.6% of the players progress to 39. Around 7.2%

of these players used female game characters. Also, female characters progressed more as their representation went up from

7.2% in the lower level to around 35% in the higher levels.

Achievement scores showed similar trends on average (see subplots (a)-(c) of figure 2). The table and the figure show that

there is a transition in gaming characteristics between levels 10 to 15. In Section 3, we use splines to capture this transition by

allowing non-linear levels effects. The hazard rate also spiked between levels 11 to 15 reaching its peak value of 54% at level

14. Collaborations however steadily increased with level progression. It is to be noted that barring subplot (c), figure 2 shows

statistics pertaining to the marginal distributions.

Geographically, the players were from 337 cities in China. We use corresponding city tiers (I-V) in our predictive frame-

work. We follow the city tier system list published by China Business Network Co., Ltd. in 2019 which ranked 337 major
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Table 1: Level-wise summary statistics aggregated across players.

Level Started Churned Still Hazard Engagement (in sec) Achievement Scores Collaboration

No. Level Playing Rate Mean Sd Mean Sd Proportion

1 15000 10 2 0.07% 205.4 160.0 5963.1 846.7 2.2%

2 14988 16 0 0.11% 559.8 420.6 11932.6 1810.4 2.8%

3 14972 28 1 0.19% 1065.7 984.5 20050.8 4836.5 3.2%

4 14943 69 2 0.46% 1875.1 1637.2 31472.7 10109.1 3.4%

5 14872 63 3 0.42% 3093.4 2547.4 53239.8 28873.7 3.7%

6 14806 62 5 0.42% 3692.4 2984.4 61499.7 33534.3 3.9%

7 14739 229 5 1.55% 4210.7 3340.1 70321.0 37896.9 4.1%

8 14505 640 11 4.41% 4958.4 3849.9 84108.7 45947.8 4.3%

9 13854 1599 32 11.54% 5330.4 5029.3 80206.7 53880.5 5.6%

10 12223 1222 24 10.00% 4803.1 5706.8 85795.6 69497.6 6.7%

11 10977 2513 44 22.89% 5273.3 5402.3 108225.8 90372.3 8.5%

12 8420 2276 35 27.03% 4306.7 5521.9 76972.8 59611.3 11.5%

13 6109 1288 17 21.08% 3745.6 5349.6 67191.6 56640.1 14.1%

14 4804 2627 44 54.68% 5197.3 7939.5 55138.8 44587.5 28.4%

15 2133 470 36 22.03% 5195.6 7634.2 51717.9 41599.5 34.3%

16 1627 223 28 13.71% 6322.8 11837.5 60484.5 51492.8 40.0%

17 1376 97 18 7.05% 6348.8 10770.5 62832.8 58386.9 42.8%

18 1261 91 31 7.22% 6192.4 7661.0 67439.9 75542.9 44.5%

19 1139 53 23 4.65% 5680.4 7089.7 67548.0 63753.9 44.3%

20 1063 33 16 3.10% 5980.3 7733.7 71187.6 65278.2 45.0%

21 1014 22 15 2.17% 5901.0 7368.0 68375.9 59900.5 45.0%

22 977 28 31 2.87% 6225.4 6940.4 70427.9 64969.1 47.5%

23 918 74 55 8.06% 6897.6 7832.5 74320.6 74343.7 52.9%

24 789 27 57 3.42% 7256.3 8999.9 80392.8 64899.4 52.8%

25 705 21 45 2.98% 8017.0 10789.8 81159.3 64293.0 54.8%

26 639 12 39 1.88% 7750.0 9092.0 83416.7 67470.5 59.9%

27 588 13 43 2.21% 7820.0 8778.5 85300.2 70752.9 63.5%

28 532 5 67 0.94% 8791.3 11981.3 79931.4 71697.7 62.0%

29 460 7 94 1.52% 9832.4 10431.4 85983.5 76434.9 77.7%

30 359 1 29 0.28% 11145.3 11194.6 93578.8 102253.4 83.6%

31 329 3 56 0.91% 14894.5 14134.2 117095.5 111583.7 90.0%

32 270 0 3 0.00% 13263.8 14098.0 172299.8 208628.3 91.8%

33 267 2 2 0.75% 13124.9 12052.5 178823.0 205752.8 92.4%

34 263 2 2 0.76% 11745.0 11780.9 174256.1 170769.7 91.5%

35 259 0 1 0.00% 13212.8 15214.3 188498.3 171717.9 93.0%

36 258 1 3 0.39% 15321.9 15547.8 212545.0 206667.9 93.7%

37 254 1 3 0.39% 15963.6 15881.3 209800.0 189389.8 91.2%

38 250 0 4 0.00% 16087.6 16994.8 215173.9 194288.9 88.2%

39 246 17 229 6.91% 19190.5 20455.7 244247.9 247657.3 96.7%
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Figure 2: Level-wise progression statistics aggregated across players. Clockwise from top-left we have (a) Engagement as measured by the
playing time (in seconds) needed to progress the level (the median line is in black and the quartiles are in red lines) (b) Achievement scores
measured by points received for completing each level (the median line is in black and the quartiles are in red) (c) 3D plot of logarithm of
playing time (engagement), points (achievement) and level (d) Cumulative churn rate (e) Hazard rate (f) Collaboration proportion across
levels (g) Distribution of playing times in the level according to the different times of day (h) Proportion of players from different city tiers
who completed the level (i) Proportion of female game characters that completed the level. All the plots except (c), are aggregated across
players and have level plotted along the x-axis.
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cities into six categories based on economic activities. We merged the last two categories to category V. Out of the 15, 000

players 1, 155 were still active in the game and so their dropout levels and lifetime game trajectory are missing. Figure 3 shows

the distribution of players’ lifetime engagement in the game across character genders and city tiers. For each level, a player’s

playing time decomposed at four different time periods of the day (morning, afternoon, evening, midnight) were recorded. On

average, afternoon was the most popular time slot. Along with these information, we also have level-wise progression records

of players in-game engagement, collaboration and achievement and the stage where he dropped out (unless he/she was an

active player).

Figure 3: Distribution of retention times: (a) histogram by gender of game characters (b) box plots by city tiers.

We study the inter-dependencies between these attributes by modeling their joint distribution in the following sections. We

use 10, 000 players for training our proposed joint model and 5, 000 players are used as test set and validation purposes.

4 Joint Modeling of Level-wise Playing Characteristics: JMLPC

For the kth player Elk, Clk and Alk record his/her engagement, collaboration and achievement at the l th level where l =

1, . . . , Lk and k = 1, . . . , n with n = 10000; Lk is the maximum level that the kth player has played till date. The binary

variable Dk records if the player has dropped out (1) or is still playing (0). Thus, if Dk = 0, Lk is the current level that the kth

player is playing. We next describe a simple joint model JMLPC for modeling the different level-wise playing characteristics

of a gamer. Our approach is fairly general and can encompass several variants and extensions of the model. We describe the

simple JMLPC framework below and then discuss the extensions in Section 6.

We model Engagement (in secs) and Achievement (in raw scores) by a log-linear model with level (l) dependent intercepts

αl as well as player (k) specific coefficients β(i)
kl as follows:

logEkl = α
(1)
l + δ(1) Fk + β

(1)
kl , (1)

logAkl = α
(2)
l + δ(2) Fk + β

(2)
kl . (2)
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Fk is a dummy variable representing player k character’s gender with 1 denoting female. Thus, δ(1) and δ(2) are level-

independent exponential changes in engagement and achievement of a female over a male character. The model in (1) is not

identifiable. Later, we impose further constraints on α and β which would make the model identifiable.

We model the binary collaboration indicator Ckl by a logistic regression as:

logit(P (Ckl = 1)) = α
(3)
l + δ(3) Fk +

∑
j∈J

γj Tjkl + β
(3)
kl . (3)

In our data set, only approximately 10% ofCkls are positive and so, we refrained from considering finer details on the nature of

collaborations such as the number of collaborators and their expertise (current level) and concentrated solely on the indicator

variable for measuring collaboration. Apart from gender of the game character, the proportion of time Tjkl that player k played

in day part j at level l, is also used as a covariate in (3) as platform load might fluctuate at different parts of the day. Here,

J = {morning, afternoon, evening}. We have used time of the day in (3) and not in (1), (2) as we are more interested in

observing if the load in the platform affects collaborative activities. Ideally, all the control variables should be considered in

(1)-(3) which is done later in Section 6.

The player invariant intercepts {α(i)
l : l = 1, . . . , 39} captures the varying gaming difficulty across levels. Figure 2

displays the smoothness and non-linear growth patterns in the average statistics associated with engagement, achievement and

collaboration. Thus, we impose smoothness constraints on them. We use natural cubic splines fi with κf knots for modeling

the player invariant intercepts, i.e.,

α
(i)
l = fi(l;a

(i)) for l = 1, . . . , 39 and i = 1, 2, 3. (4)

This imposes level-based contiguity on the effects allowing for non-linear growth patterns. The spline coefficients a(i), i =

1, 2, 3 are estimated in the joint modeling framework. Later in tables 6 and 7 we discuss the implications of these smoothness

constraints by comparing with a joint model without such constraints.

Next, we impose level-based smoothness on the player specific effects β(i)
kl . Consider

β
(i)
kl = si(l; b

(i)
k ) for l = 1, . . . , 39; k = 1, . . . , n and i = 1, 2, 3; (5)

where, si is a natural cubic spline on levels l with κs knots whose canonical basis coefficients are given by b(i)k . So, the form of

the spline function si is invariant across players but the coefficients (and hence the shape) vary across players for k = 1, . . . , n.

With these natural level-based smoothness constraints, the model (1)-(5) is identifiable.

We impose a second-level hierarchical structure on the player specific effects by considering a correlated (across i) prior

structure on their basis coefficients. We consider bk = (b
(1)
k , b

(2)
k , b

(3)
k ) to be independent and identically distributed across

players k = 1, . . . , n from a Gaussian distribution with mean zero, i.e., b1, . . . , bn
i.i.d.∼ N(0,Σ). The correlation structure Σ
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is estimated based on the data and captures the inter-dependencies in a player’s engagement, achievement, and collaborative

actions.

Next, we model the dropout probabilities. Define the hazard rate of player k for dropping out at level l as λkl = P (Dk =

1 | Lk = l) . Then, the dropout probability of player k is: P (Dk = 1) = λkLk

∏Lk−1
l=1 (1− λkl). We estimate the hazard rate

through a shared parameter model:

logit(λkl) = µl + ν1Fk +

4∑
i=1

ν2,iRki + ηT1 b
(1)
k + ηT2 b

(2)
k + η3 Ck,l−1 (6)

where, Rkis are dummy variables corresponding to the five different city tiers is and µl is the level specific intercept. In

the presence of these level specific intercepts µl in (6), we apprehend that residual player specific effects of engagement and

achievement (above or below the level average) will be impacting the hazard rate. For example a highly motivated player

would be involved in more explorations and quests than average and it would be reflected in his over average engagement and

achievement. On the contrary, larger raw engagement and achievement values do not necessarily indicate player enthusiasm as

those vary across the level of the game (as seen in table 1). Thus, for estimating the hazard rate in our shared effect framework

in (6), we consider the residual player specific effects for engagement and achievement and not their current values. As

collaboration Ck· is an indicator variable, we used its value in the penultimate level in (6). Next, we describe estimation of

model in (1)-(6).

4.1 Estimation: Implementation and Scalability

For writing the likelihood function for our model let B = (b1, . . . , bn), and Θ be the collection of all the other coefficients.

Our model assumes that the parameters b1, . . . , bn, account for all the dependencies of between the observed data. Thus, con-

ditioning on them the outcomes, engagement, achievement and collaboration indicators, as well as their measurements for each

level are independent of each other, and of players’ dropout. Thus, the complete likelihood CL(Θ, B) equals
∏n

k=1 Lk(Θ, bk)

with Lk(Θ, bk) being proportional to

λDk

kLk

Lk−1∏
l=1

(1− λkl)
Lk∏
l=1

PEkl PAkl PCkl ,

where, λkl is given by (6) and

PEkl = P (Ekl | a(1), δ(1), σ(1), b
(1)
k ) = φ

(
logEkl − f1(l;a(1))− δ(1)Fk − s1(l; b(1)); σ(1)

)
,

PAkl = P (Akl | a(2), δ(2), σ(2), b
(2)
k ) = φ

(
logAkl − f2(l;a(2))− δ(2)Fk − s2(l; b(2)); σ(2)

)
,

PCkl = P (Ckl | a(3), δ(3),γ, b
(3)
k ) =

exp[Ckl · (f3(l;a(3)) + δ(3)Fk +
∑

j∈J γj Tjkl + s3(l; b(3))) ]

1 + exp
(
f3(l;a(3)) + δ(3)Fk +

∑
j∈J γj Tjkl + s3(l; b(3))

) ,
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with φ( . ;σ) denoting univariate normal density with mean 0 and standard deviation σ. We follow a Bayesian estimation

procedure. We use the following prior specifications. For the parameters δ, γ, ν, η1, η2 and η3 we use independent components

of normal prior with zero mean and variance 1000 (which makes the prior nearly non-informative). We use independent inverse

Gamma priors for the variance parameters σ(1) and σ(2).

For both si and fi, i = 1, 2, 3, we consider natural cubic splines with two knots at l = 9 and 15; this choice was based

by assessing the empirical transitions in the median engagement and achievements across levels as witnessed in Figure 3

and described in Section 2. On the basis coefficients (a(1),a(2),a(3)), non-informative product Gaussian prior with mean

0 and variance 1000 was used. On the player specific basis coefficients bk, the prior used was N12(0,Σ). The covariance

matrix Σ was parametrized with the correlation matrix and the vector of variances. We used Lewandowski-Kurowicka-Joe

(LKJ) prior distribution for the correlation matrix and product half t-distributions for the variance vector. The estimates of

µ = {µl : l = 1, . . . , 39} were based on natural cubic splines with knots adaptively selected based on the data.

The above estimation procedure is implemented by using the R package of Rizopoulos (2016) which uses Hamiltonian

Monte Carlo (Neal et al., 2011). However, as we had player specific random effects in the glmm set-ups of (1)-(6), the package

was not readily scalable to accommodate the very large scale glmm estimation problem that we encounter with our training

data-set of 10, 000 players. Scaling mixed effects models in massive id-level data for modeling user’s personal preferences to

a product is an important topic in current statistical research (see Zhang et al., 2016 and the reference therein). To address this

big-data problem, we use a divide-and-recombine approach. Divide and recombine (D&R) approaches (Jordan, 2012) have

been witnessed to provide accurate estimates in big-data regression problems (Battey et al., 2015, Chen and Xie, 2014, Jordan

et al., 2019). Modifying the methodology of Rizopoulos (2016) in a D&R big-data set-up, we conduct estimation of model

(1)-(6) by an iterative algorithm.

Figure 4: Schematic diagram of the divide & recombine joint modeling algorithm.

A schematic diagram of the proposed D&R joint modeling algorithm is presented in Figure 4. The iterative D&R JMLPC
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algorithm is as follows:

1. Split n = 10, 000 players into g = 20 groups of m = 500 players each.

2. Estimate the multi-outcome mixed effects model (1)-(5) on each of the g splits separately. After burn-in, Ir = 1000

successive iterations from each of the g chains are kept.

3. Pool the estimates of the mixed effects from the g splits and reestimate the fixed effects as follows. For each i =

1, . . . , Ir:

a. Pool the ith stored iterate from the g splits and construct B(i) as the pooled list of all estimated random effects

coefficients.

b. Keeping the random effects B(i) fixed, run MCMC for the fixed effects for each outcome variable separately and

store If = 1000 iterates from chain of fixed effects {Θ(ij) : j = 1, . . . , If} after burn-in.

c. The re-estimated fixed effects coefficients Θ(i) are the posterior mean from the corresponding chain {Θ(ij) : j =

1, . . . , If}.

4. Estimate the joint model using the chain for the longitudinal mixed effects model {(B(i),Θ(i)) : i = 1, . . . , Ir} and

using mvJointModelBayes function in JMbayes package of Rizopoulos (2016). This conducts joint estimation of

the hazard rates along with the longitudinal outcomes.

5 Results

5.1 Fitted Model: Coefficients and Interpretation

Our joint model was estimated on 10,000 players playing a total of 123,681 game levels using the algorithm described in

Section 4.1, and illustrated in Figure 4.

For the longitudinal variables, Figure 5 and Figure 6 look at estimation of the random effects B(i)’s and the fixed effects

Θ(i)’s respectively. The random effects are estimated in several splits of the data and then pooled. The left plot of Figure 5

compares the random effects estimated from the split of the data that was used (the red lines) to other random splits of the data

(the reference boxplots). To create the reference boxplots we randomly split our 10,000 players into 20 parts many times, and

from each of these random splits of 500 players we estimated the Frobenius norm of the random coefficients corresponding to

the three outcome variables. The right plot in Figure 5 shows the estimated correlation matrix of 12 player specific random

coefficients B. Generally, the random effects are positively correlated, not only for each of the outcome variables, but also

across three outcome variables. This indicates that a player who has a greater engagement in the game-play is also more likely

to have higher achievement and more collaboration.
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Figure 5: Posterior estimate of the random effects in models (1)–(3). The left plot shows in red lines the average of the 20 Frobenius norm
of the covariance of the random effects of the players in each split. The reference boxplots are from 25 different random splits of the 10000
players in 20 groups. The right plot shows the posterior correlation matrix of the all 12 random effects.
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Figure 6: Posterior estimate of the parameters of the outcome models (1)–(3). The contour plots are from the reestimated posterior of the
fixed effects. The points in the plots are the means of the estimated distribution from the 20 separate splits of the data, before reestimation.

During our estimation of the random effects, we also had an estimate of the fixed effects from different splits of the

data; these are denoted by Θ(i)[1], . . . ,Θ(i)[20] in Figure 4. But since these estimates only use the players in those splits,

we re-estimated these fixed effects in another step that runs a MCMC conditioning on the pooled random effects estimates.

Figure 6 provides a comparison of our fixed effects estimates to their previous estimates. The 20 points in each plot show the

posterior mean of the parameters estimated in 20 splits. Clearly, the estimates vary in different splits where a smaller number

of players are used. The contour plots are of the posterior distribution of the fixed effects parameters after re-estimation that
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uses all the players. In the first plot of Figure 6, we see that sometimes the estimates from a split was far from the our final

estimate. Additionally, the spread of the parameter estimates in the splits were higher than the re-estimated posterior spread.

For example, the average over the splits of the estimated standard deviations for δ(3) was 0.82, and the standard deviation of

δ(3) from the re-estimated chain was 0.73.

Coefficients for gender in the outcome models are statistically significant. They are significantly positive for engagement

and collaboration, but significantly negative for achievement. Note that, gender Fk was coded as 0 for player k playing with

male character and 1 for player k playing with female character. Thus, there is higher level of engagement and collaboration

for female characters compared to male characters, but a lower level of achievement. Specifically, we estimate on average 47%

more engagement (95% credible interval, 27% to 72%) in game-play for players playing with a female character compared

to a player playing with a male character. But, a female character gets on average 68% (95% credible interval, 60% to 78%)

of achievement points compared to what a male character achieves in similar situation. We also estimate that playing during

the afternoon had a higher propensity to play in teams than if for playing during the morning. The odds ratio of playing in a

team in the afternoon is 1.53 (with 95% credible interval, 1.12 to 2.08) relative to in the morning. Actually, gameplay in the

afternoon showed the highest level of collaboration than any of time of the day.

Table 2: Posterior estimate of the parameters the hazard model in the joint model (1)–(6)

Parameter Posterior mean 95% Credible interval
Gender (0 = male, 1 = female)

ν1 -0.5957 (-0.7484, -0.4412)
Engagement

η11 -1.015 (-1.7598, -0.3613)
η12 -0.1229 (-0.1982, -0.0499)
η13 -0.2076 (-0.5022, 0.0652)
η14 0.1705 (-0.0753, 0.3836)

Achievement
η21 -1.247 (-3.7933, 1.2143)
η22 0.0092 (-0.0828, 0.0972)
η23 -0.0708 (-0.2783, 0.1668)
η24 -0.0013 (-0.0795, 0.0717)

Collaboration
η3 -0.0285 (-0.0505, -0.0091)

The estimates of several of the parameters in the hazard model in equation (6) are given in Table 2. The posterior estimate

shows that player with a male character has exp(−ν1) = exp(0.5957) = 1.81 times (95% Credible interval, 1.55 to 2.11) more

chance of dropout of the game compared to female character. Collaboration is negatively associated with dropout. Accounting

for the logistic model for collaboration in equation (3) the joint model estimates that playing in team decreases the dropout

probability by 1.03 times (95% Credible interval, 1.01 to 1.05). The coefficients in the hazard model (6) that connects dropout

to engagement modeled in (1) are η1 = (η11, . . . , η14)>. The corresponding posterior means of these parameters are negative;

except for η14 whose credible interval contains 0. Thus, for example, a player with better than average achievement has a

lower chance of dropout. But the amount by which the chance is lowered also vary by the level.
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5.2 Retention Profiles of Future Players

Predicting the retention profiles of future players is very important for managerial research. Such prescriptive analysis of

new player behavior is fundamental for the maintenance of existing as well as for the creation of new advertisement based

monetization routes in these gaming platforms. Using our proposed model we predict the retention probabilities of future

players at the different levels of the game as well as their cumulative playing time to reach each those levels. Table 9 presents

the level-wise summaries of the average retention probabilities as well as the average cumulative playing time across future

players from different city-tiers who would be playing with male and female characters. The expected lifetime engagement

of a future player was computed as ELE =
∑L

l=1 p̂l Êl where p̂l and Êl are the predicted average retention probabilities and

average playing times for level l. The predictive distribution of the LE for a random future player was evaluated. Figures 7

and 8 depict these predictive traits. We see that players playing with female characters have higher life-time engagement.

Also, players from Tier I cities have the highest retention probabilities. The expected life-time engagement is lowest for Tier

III cities. As such, players playing with male characters (who constitute more than 90% of the platform) has future life-time

engagement values 46.6%, 33.4%, 15.8% and 19.7% higher for tier I, II, IV and V cites respectively compared to tier III cities.

If player acquisition costs are similar across different tiers, it will benefit to market the game more in tier I cities for attracting

new players and increase representation from tier I cities.

Figure 7: Expected retention probabilities of future players are plotted for different city tiers in the bottom right subplot. The 95% prediction
interval for retention probabilities is shaded along with their expected values for city tiers I to V row wise starting from top left.
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Figure 8: In the left panel, the expected cumulative engagement is plotted across levels in dotted and continuous lines for female and male
characters respectively. The 95% prediction interval is also plotted. In the right panel, the box plots show the predictive distributions of
lifetime engagements across city tiers and character gender.

5.3 A Marketing Retention Application

Collaboration is an important attribute in online RPGs. Managers can regulate collaboration efforts in these platforms by

providing in-game incentives for increased team work. Incentives such as enhanced weaponry, extra character life or virtual

currency that can be used for purchasing improved game amenities are well used in online games for retention marketing and

promotions. Modern managers need to predict the effects of promotions of different magnitudes so that he/she can conduct field

experiments and higher level validation on a short list of selected optimal choices. Simulation based on our prescribed joint

model account for the randomness in the players’ decision-making and can be used for furnishing the manager with a range of

possible outcomes, and their probabilities of occurrence for each possible course of managerial actions. We demonstrate one

such application below.

Consider two scenarios based on a mild promotion and an aggressive promotion campaign that increase the odds for

collaborating respectively by 15% and 40% uniformly across the game. Simulating player behaviours in these scenarios can

be easily done based on our estimated JMLPC by changing the estimates for α(3)
l in (6) and keeping all other estimates in

(1)-(6) invariant. Figure 9 shows how the predictive distributions of the lifetime player engagement values changes over

the baseline due to applications of mild and heavy collaboration inducing promotions. Utilizing our model formulation, we

calculate the benefits of promotion on engagement at different stages of the game. The expected engagement which is the

product of the expected retention probability and the expected playing time of retained players, attains its maximum at level

8 in the baseline and mild encouragement cases and at level 9 for high encouragement case. This is due to that fact that the

retention probabilities sharply decrease in those levels. In the baseline model, the minimum value of expected engagements

is attained at level 22 after which average engagement increases with levels; the ascent is particularly steep after level 32. At

level 22, mild promotion is witnessed to produce 44% increased engagement whereas aggressive promotions increase average

engagement by 143%. Table 10 shows the level-wise changes due to application of the collaboration inducing promotions.

The expected lifetime engagement value of a future player is seen to increase by 6.9% over baseline for mild and 20% for

aggressive promotions.
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Figure 9: Plots of expected retention probability (ERP) and expected engagement (which is ERP times expected playing time of retained
players) for a random player as mild and high collaboration encouragements are introduced in the gaming portal. The right most plot
demonstrates the predictive distribution of lifetime engagement.

In table 10, we also report the value of a player based on premium add-on components purchase. In PP (premium purchase)

value column of table 10, the average revenue that the gaming company makes per player is reported for unit playing time in

each level. We did not have player specific purchase information but we had access to the portal wide average statistics for

our RPG game. Using this portal average statistics, we calculate the expected premium purchase value (EPPV) for a future

player based on the predictions from our estimated model. Unlike lifetime engagement, whose monetization needs planning

and placements of advertisements, EPPV corresponds to the direct revenue that can be obtained from a future player. Table 10

provides EPPV for the baseline model as well as for mild and aggressive collaboration encouragements. The expected lifetime

PPV of a future player in the baseline, mild and aggressive promotion model are Y1.40, Y1.53 and Y1.79 respectively. Thus,

collaboration encouragement can produce 27.4% increase in direct revenue.

5.4 Predictive Performance

We compare the predictive performance of our method to following two approaches that are widely used in retention mar-

keting. The first one is perhaps the most naive and also the most popular. It uses the empirical distributions of engagement,

achievement, collaboration and dropout proportions based on the training set to predict attributes of players in the test set. Here,

the inter-dependencies between player motivations and level progressions are not used in predicting dropout probabilities. At

each particular level, the marginal distributions of engagement, achievement, collaboration and dropout proportions from the

training data are used for predicting the responses in the test data. The second approach uses Cox Proportional Hazards Model
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(CPHM) (Cox, 1972, Efron, 1977) estimated on the training set for predicting dropout probabilities in the test set. CPHM

models the dropout hazard λkl for player k at level l as λkl = λ0l exp(θfFk +
∑

j∈J θt,jTjkl +
∑4

i=1 θr,iRik + θcCk,l−1),

where λ0l is the baseline hazard. The θ coefficients are estimated on the training data. Unlike the empirical approach, in

CPHM a player’s engagement, achievement and collaboration record at the level is used for predicting dropout. However, it

does not use inter-dependencies between the player motivation metrics that is used in our joint modeling set-up. To compare

the predictive performance of these methods, we consider all players in the test set who completed level 10 and drop-out of

the game at one of the succeeding levels. We denote the set of such players by T . Using their in-game history up to level

10 in our estimated joint model of (1)-(6), we predict their engagement times, achievement scores, collaboration and dropout

probabilities at the future levels of the game.

Table 3: Retention probability prediction at future levels using the estimated JMLPC model and gaming history till level 10. We report the
average and the 95% interval of the predicted retention probabilities in RP.

Level RP OR MAD

20

Truth 0.06458 - -

JMLPC 0.07491 2.37175 0.12001
(0.00326, 0.14615)

CPHM 0.08184 1.81832 0.12915
(0.02276, 0.14087)

30

Truth 0.02351 - -

JMLPC 0.04562 3.76030 0.04562
(0.00133, 0.07994)

CPHM 0.06047 2.32155 0.07802
(0.00537, 0.11553)

In Table 3, based on JMLPC and CPHM we report the average of the predicted retention probabilities (ARP) across T at

levels j = 20 and 30. The true retention proportions at level j = 20 and 30 in T are also reported. JMLPC produced 10.7%

and 63.2% improvements respectively at j = 20 and 30 over CPHM. Two other discrepancy measures are also reported for

evaluating the performance of CPHM and JMLPC on T . We calculate the absolute deviations of the predicted probability p̂kj

that player k plays after level j from the true event I{Lk > j} and report the mean absolute deviation across all players in T :

MAD(j) =
∑

k∈T p̂kj · I(Lk ≤ j) + (1 − p̂kj) · I(Lk > j). We also reported the estimated odds ratio for true retention and

dropouts as:

OR(j) =

∑
k∈T p̂kj/(1− p̂kj) · I(Lk > j)∑
k∈T p̂kj/(1− p̂kj) · I(Lk ≤ j)

.

Note that, while lower values of MAD signifies better predictive performance, higher values of OR is preferred. For j = 20

and 30, JMLPC respectively produces 30.4% and 62% improvement in OR over CPHM; the corresponding improvements

in MAD is 7.1% and 41.5%. These shows that modeling the inter-dependencies among the player motivations in JMLPC is

beneficial.

Next, we conduct five-step ahead predictions for engagements of players in T at levels 11, . . . , 15 based on their history up
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to level 10. We report the root mean square error (RMSE) of the log-engagement predictions in table 4 along with the average

log-playingtime (ALPT). Compared to empirical distribution based predictions, JMLPC produces 7.9% improvement in RMSE

for one-step ahead prediction for level 11. The improvement is much more pronounced for multi-step ahead prediction; for

level 15, we observe an improvement of 17.3%. In figure 10, based on gaming history till level 10, we report the dropout

detection rates in JMLPC prediction in the future levels as well as the false positive rate in dropout prediction. The left panel

of figure 10 shows that barring the next two levels the JMLPC fitted model provides good coverage in correctly predicting

dropouts. In the right panel of figure 10, we report the false positive rate (FP) in dropout prediction at level l by the percentage

of players predicted by our JMLPC model to have dropped out at least 3 levels before or 3 levels after than when they actually

dropped out, i.e.,

FPl = 1− number of players predicted by JMLPC to drop out in [l − 2, l + 2]

number of actual dropouts in the test data at level l
.

In figure 10 we observed that FPl increases as l moves further away from level 10. This is expected as the predictive difficultly

for (l − 10)th step ahead prediction increases with l. We found that FPl values were reasonably controlled for an appreciable

range of future levels.

Table 4: One to five step ahead prediction of playing time (in log sec) from level 10 using the estimated JMLPC model

Level 11 12 13 14 15
ALPT RMSE ALPT RMSE ALPT RMSE ALPT RMSE ALPT RMSE

Truth 8.0212 - 7.8224 - 7.6844 - 7.4354 - 7.8439 -
JMLPC 8.2865 1.0839 7.7928 1.0118 7.7653 0.9976 7.7111 1.1275 7.6967 1.0928
Empirical 8.5709 1.1770 8.3429 1.1382 8.1922 1.1029 8.2706 1.3670 8.6230 1.3212

Figure 10: Out of sample dropout detection rate and false positive rate of JMLPC based on gaming history upto level 10.
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The predicted lifetime engagement of a player k in T is given by:

L̂Ek =

10∑
l=1

Ekl +

L∑
l=11

p̂klÊkl ,

where, Ekl is the known engagement duration of the player at level l; Êkl is a point-prediction of engagement duration and p̂kl

are the predicted retention probabilities. CPHM based LE predictions are computed using the predicted retention probability

from CPHM model and engagement predictions based on the empirical distribution. The average of the logarithm of predicted

LE values (ALLE) across all players in T as well as the RMSE of log LE predictions across different methods is reported in

table 5. JMLPC yields 25.5% further reduction in RMSE over its nearest competitor.

Table 5: Prediction of lifetime player engagement based on playing history up to level 10

ALLE RMSE

Truth 10.53142 -

JMLPC 10.43483 0.39376

Cox Model 10.78096 0.52825

Empirical 10.68114 0.55780

6 Extending the JMLPC framework

The joint modeling approach JMLPC used in Section 4 and its associated estimation methodology are very flexible and can

accommodate several variants and extensions of the model described in (1)-(6). First, to understand the role of the smoothness

constraints on {α(i)
l : l = 1, . . . , L} and {β(i)

kl : l = 1, . . . , L} consider the model JMLPC.UN which does not have any

constraints on the α(i)
l s. The number of fixed effects from these unrestricted α(i)

l s in the joint model is 3L which equals 117

for the data set discussed in Section 2. While this large number of fixed effects increases computational time of the proposed

algorithm, JMLPC.UN is still estimable in each split of the training data. Tables 6 and 7 show the performance of the model

on the same test data as in Section 5.4.

Table 6: Performance of retention probability prediction by JMLPC.UN at future levels

Level ARP OR MAD
20 0.07945 2.18342 0.12470
30 0.05391 2.92241 0.05391

Table 7: One step ahead prediction of playing time (in log sec) by variants of JMLPC

Level Model ALPT RMSE

11
JMLPC.UN 8.01494 1.04189
JMLPC.E 8.11175 1.15393
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Comparing table 6 with table 3 and the first row of table 7 with table 4, we find that though JMLPC.UN provides a better

prediction for playing time, its prediction for retention probabilities are worse than the constrained JMLPC model. Deteriora-

tion in predictive performance of the unconstrained model can be due to inefficient estimation of the model parameters. The

smoothness structure across levels helps in reducing the intrinsic number of parameters and increases estimation accuracy by

borrowing information across levels. Unconstrained models have lower relative signal strength due to larger number of free

parameters which can lead to poor estimation of the model parameters. Note that, the random intercepts {β(i)
kl : l = 1, . . . , L}

need to be constrained for identifiability. Incorporating more flexible structures than JMLPC on the random intercepts not only

increases estimation complexity but may also cause convergence issues in the DR based estimation method. Non-convergence

of the estimation algorithm can arise due to lack of data in the higher levels compared to the number of parameters which

results in highly fluctuating coefficients estimates from the different splits.

Table 8: Estimated coefficients of the JMPLC.E model

log(engagement) (family = gaussian, link = identity) Collaboration (family = binomial, link = logit)
Mean St Dev St Error P-value Mean St Dev St Error P-value

a
(1)
1 5.135 0.0885 0.0393 0 a

(3)
1 -1.784 0.4083 0.2603 0

a
(1)
2 -1.1787 0.1102 0.0354 0 a

(3)
2 0.7983 0.4964 0.3025 0

a
(1)
3 1.5157 0.1798 0.0701 0 a

(3)
3 0.3459 0.1252 0.0387 0

a
(1)
4 -0.1657 0.0966 0.0354 0.022 a

(3)
4 0.4995 0.1381 0.054 0

gender: female 0.2024 0.0308 0.0093 0 gender: female 1.7676 0.3098 0.1712 0
afternoon 0.0162 0.0053 0.0006 0 afternoon 0.0539 0.0557 0.0061 0.276
evening 0.0341 0.0053 0.0006 0 evening 0.0809 0.0551 0.0103 0.138
city tier I 0.0871 0.074 0.0194 0.234 city tier I -0.9624 0.3237 0.0764 0
city tier II -0.0068 0.0626 0.0247 0.992 city tier II -2.5351 0.2322 0.0249 0
city tier III 0.0254 0.0547 0.0151 0.66 city tier III -1.3504 0.2644 0.0481 0
city tier IV -0.0911 0.063 0.0235 0.176 city tier IV -2.4431 0.2271 0.0392 0
city tier V 0.1313 0.0615 0.0195 0.012 city tier V -1.6996 0.2787 0.0356 0
log(E· , l−1) 0.4528 0.0213 0.0094 0 log(E· , l−1) 0.1301 0.0769 0.0078 0.09
log(A· , l−1) -0.1681 0.0076 0.0012 0 log(A· , l−1) -0.2943 0.0529 0.0042 0
C· , l−1 -0.0751 0.0369 0.0033 0.044 C· , l−1 3.4701 0.2503 0.0773 0

log(Achievement) (family = gaussian, link = identity) Survival Outcome:
Mean St Dev St Error P-value Mean St Dev St Error P-value

a
(2)
1 8.1641 0.1225 0.0513 0 gender: female 0.4699 0.2153 0.0157 0.038
a
(2)
2 -0.4617 0.1111 0.0316 0 city tier I 0.3866 0.3014 0.0144 0.224
a
(2)
3 2.1299 0.178 0.0641 0 city tier II -0.0611 0.1378 0.0046 0.67
a
(2)
4 -0.6238 0.1117 0.0205 0 city tier III 1.2126 0.1678 0.0058 0

gender: female -0.1834 0.0377 0.014 0 city tier IV 0.5246 0.1358 0.0065 0
afternoon -0.0003 0.0061 0.0004 0.968 city tier V 0.5739 0.2037 0.013 0.002
evening 0.0352 0.0058 0.0006 0 Engagement: η11 3.0826 2.9235 0.413 0.23
city tier I 0.1802 0.0914 0.0197 0.038 Engagement: η12 0.4412 0.3532 0.0441 0.2
city tier II 0.1639 0.0858 0.0307 0.006 Engagement: η13 1.0329 0.9161 0.1271 0.25
city tier III 0.082 0.0771 0.0254 0.284 Engagement: η14 -0.7546 0.7333 0.0802 0.286
city tier IV 0.2808 0.0837 0.0304 0 Achievement: η21 -1.6712 3.2562 0.3783 0.526
city tier V -0.0338 0.0824 0.0216 0.618 Achievement: η22 -0.342 0.302 0.0261 0.254
log(E· , l−1) -0.1175 0.0205 0.0054 0 Achievement: η23 -0.5748 0.637 0.0807 0.384
log(A· , l−1) 0.1828 0.0095 0.0014 0 Achievement: η24 0.0872 0.34 0.0408 0.806
C· , l−1 -0.3417 0.0504 0.0073 0 η3 -0.3141 0.0367 0.0028 0

We next consider an extension JMLPC.E of JMLPC where we use all the available control variables such as gender, time of
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play, city tiers in (1)-(3). Additionally, we also use the player characteristics from the previous level (Ek,l−1, Ak,l−1, Ck,l−1)

for predicting his/her responses at level l. JMLPC.E contains similar structural constraints on the intercepts as JMLPC. In

table 8, we present the fitted JMLPC.E model. All the lagged variables were statistically significant. Most of the city tiers

were not significant in predicting engagement or achievement but they were significant for predicting collaboration and survival

outcomes.

A host of player specific gaming outcomes from the past levels such as {Ek,j , Ak,j , Ck,j : j = 1, . . . , l − 1} can be

used in the JMLPC framework. The usage of these lagged variables will however massively increase the computational costs

associated with multi-step ahead predictions from the associated joint model. Also, using several such lagged variables will

lead to multi-collinearity and reduced interpretability of the fitted model. Increasing model complexity by naively using several

control variables will not necessarily lead to improved predictive performance as the variance of the model also increases.

Comparing the RMSE in the last row of table 7 with the corresponding RMSE in table 4, we observe that JMLPC.E does

worse in the prediction of playing time at the 11th level than JMLPC. Variable selection methods will be needed to properly

select important variables and reduce variance in a joint modeling framework containing several controls and in-game lagged

player attributes.

7 Conclusion

We develop a joint modeling framework to predict player retention as a player progresses through the different levels of the

game. As we describe in the paper, level progression impacts player’s motivation through enhanced gaming experience that

occurs through collaboration and achievement. We capture players’ motivations through level-wise engagement times, collab-

oration and achievement score and jointly model them using a generalized linear mixed model (glmm) framework that also

encompasses a time-to-event variable corresponding to churn. By incorporating the level-wise changes in a player’s motiva-

tions and using them for hazard rate prediction, our method greatly improves state-of-the-art retention models. In particular, we

outperform aggregate statistics based methods that ignores level-wise progressions as well as progression tracking non-joint

model such as the Cox proportional hazards method.

While our findings are based on data from a popular action based RPG, the model framework can be applied to increase

customer retention in other freemium products that use inter-dependencies among users to increase users’ stickiness (Appel

et al., 2019, Ross, 2018). In particular, as our simulation results indicate that by offering different levels of promotion to

enhance collaboration these freemium models can increase customer retention and revenue. Finally, other marketing retention

metrics including player’s lifetime gaming characteristics (Gupta et al., 2004) such as the lifetime engagement (cumulative

playing time across levels) or collaborations, can be easily computed as functionals of these level-wise predictions. These

metrics can offer more granular predictions of customer retention. This will help managers with decisions for offering more

targeted player promotions to increase retention.
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Table 9: Expected average retention probability (ERP) and expected playing time in seconds (EPT) of future players segmented by Gender and City-tiers across different levels of the game. The expected
lifetime engagement (ELE) value is also reported in the last row of the table.

Tier 1 City Tier 2 City Tier 3 City Tier 4 City Tier 5 City

Male Female Male Female Male Female Male Female Male Female

Level ERP EPT ERP EPT ERP EPT ERP EPT ERP EPT ERP EPT ERP EPT ERP EPT ERP EPT ERP EPT

1 1 270.06 1 348.43 1 248.56 1 346.72 1 255.94 1 364.49 1 251.77 1 349.89 1 262.13 1 353.67

2 0.9978 451.27 0.997 584.77 0.998 417.13 0.9976 579.74 0.9946 429.63 0.9941 606.93 0.9968 422.58 0.9963 585.56 0.9965 440.21 0.9958 590.91

3 0.994 741.85 0.992 965.19 0.9946 688.52 0.9935 953.63 0.9853 709.32 0.984 994.39 0.9912 697.58 0.99 964 0.9907 726.99 0.9886 971.32

4 0.9877 1179.5 0.9834 1541.3 0.9888 1099.3 0.9865 1518.2 0.9699 1132.8 0.9674 1577.4 0.9819 1113.9 0.9795 1535.6 0.9809 1161.2 0.9766 1545.1

5 0.9773 1786.9 0.9695 2340.4 0.9793 1669.9 0.9751 2300.1 0.945 1721.2 0.9408 2384 0.9667 1692.3 0.9624 2328.1 0.965 1764.4 0.9574 2339.8

6 0.9611 2533.8 0.9475 3325.9 0.9642 2373.8 0.9572 3264 0.9066 2447.5 0.9001 3377.8 0.9428 2405.9 0.9359 3305.4 0.9401 2508.1 0.9276 3319.9

7 0.9364 3310.9 0.9144 4349.9 0.941 3106.2 0.9301 4267.5 0.8506 3204.4 0.8418 4416.3 0.9068 3148.6 0.8964 4323.6 0.903 3281.1 0.8835 4341.8

8 0.9007 3921.7 0.8674 5152.2 0.9071 3680.9 0.8912 5058.7 0.7745 3802.3 0.764 5248.2 0.8557 3732.8 0.8411 5127.4 0.8505 3886.8 0.8225 5152.3

9 0.8521 4147.1 0.805 5439.5 0.8603 3887.5 0.8386 5352.5 0.6794 4027 0.6688 5583.5 0.7877 3946.2 0.769 5429.3 0.7812 4104.2 0.7438 5464.4

10 0.7894 3883.4 0.7273 5080.3 0.7991 3630.8 0.7713 5015.7 0.5699 3783.2 0.5615 5288.8 0.7031 3693.2 0.6813 5097.6 0.6954 3835.3 0.6493 5143.2

11 0.7028 3299.7 0.6248 4305.9 0.7131 3073.1 0.6789 4265.6 0.4397 3240.2 0.4365 4579.5 0.5919 3139.9 0.5684 4353.8 0.5835 3255.5 0.5305 4411.6

12 0.5839 2634.2 0.4921 3433.6 0.5922 2439.7 0.5531 3407.9 0.2948 2631.7 0.2994 3767.4 0.4497 2516 0.4277 3511.3 0.4414 2604.7 0.3873 3578.2

13 0.4531 2044.1 0.356 2669 0.4557 1881.6 0.4161 2647.2 0.174 2101.8 0.1845 3051.5 0.3083 1968.8 0.2912 2769.3 0.3014 2036 0.2542 2843.5

14 0.33 1594.2 0.2381 2091.3 0.3245 1457.4 0.2896 2067 0.0923 1706 0.1044 2510.2 0.1918 1556.2 0.1814 2208.6 0.1874 1608.4 0.1522 2289.6

15 0.2341 1282.2 0.1545 1695.8 0.2217 1165.2 0.1941 1666.5 0.0476 1437.8 0.058 2142.5 0.1144 1273.8 0.1093 1825.4 0.1122 1316.5 0.0886 1908.6

16 0.1724 1078.3 0.1056 1436.7 0.1565 973.72 0.1353 1403.2 0.027 1263 0.035 1902.4 0.0723 1089.1 0.07 1574.1 0.0715 1125.5 0.0553 1660.7

17 0.1359 939.83 0.0788 1261.4 0.119 844.42 0.1022 1224 0.0177 1142.1 0.0239 1735 0.0508 962.77 0.0498 1400.8 0.0506 995.12 0.0386 1489.2

18 0.1146 843.98 0.0641 1138.8 0.0977 755.07 0.0837 1100.1 0.0132 1056.5 0.0183 1616.3 0.0396 874.54 0.0391 1280 0.0397 904.02 0.03 1367.7

19 0.1019 778.46 0.0556 1054.9 0.0854 694.07 0.073 1015.4 0.0109 997.12 0.0152 1534.4 0.0334 813.93 0.0332 1196.5 0.0337 841.55 0.0253 1283.7

20 0.094 736.15 0.0505 1001.5 0.0778 655.04 0.0665 961.16 0.0095 959.84 0.0135 1483.6 0.0298 775.18 0.0297 1144.1 0.0302 801.66 0.0225 1230.7

21 0.0887 715.73 0.0471 974.9 0.0728 634.94 0.0622 934.18 0.0087 943.77 0.0123 1463.5 0.0274 756.55 0.0274 1118.6 0.0279 782.57 0.0207 1207.1

22 0.0847 714.19 0.0445 975.02 0.069 632.74 0.0589 932.29 0.0081 950.79 0.0115 1475.4 0.0257 757.65 0.0257 1122.1 0.0262 784.28 0.0193 1213.1

23 0.0812 732.47 0.0423 1001.9 0.0657 648.47 0.056 955.58 0.0075 981.72 0.0108 1524.6 0.0242 779.18 0.0242 1155.3 0.0247 807.17 0.0182 1249.8

24 0.078 769.39 0.0403 1054.4 0.0628 680.98 0.0535 1003.2 0.0071 1034.9 0.0101 1605.2 0.0229 819.86 0.0229 1215.4 0.0234 849.94 0.0171 1315.3

25 0.0752 825.23 0.0386 1131.1 0.0603 730.43 0.0513 1075.4 0.0067 1110.1 0.0096 1718.3 0.0217 879.56 0.0218 1302.9 0.0223 912.55 0.0162 1409.3

26 0.0727 903.17 0.037 1239.8 0.058 800.07 0.0492 1176.9 0.0063 1211.7 0.0091 1870.7 0.0207 962.04 0.0208 1423.9 0.0212 999.16 0.0155 1538.2

27 0.0705 1010.7 0.0356 1388.3 0.0559 896.49 0.0474 1316.5 0.006 1351 0.0087 2075.8 0.0198 1075.8 0.0199 1588.9 0.0203 1118.3 0.0147 1714.7

28 0.0684 1154.5 0.0344 1586.8 0.054 1025.3 0.0458 1502.2 0.0057 1534.3 0.0083 2344 0.019 1226.8 0.0191 1808.3 0.0195 1276.6 0.0141 1947

29 0.0666 1338.7 0.0332 1840.3 0.0523 1191 0.0443 1738.8 0.0055 1764.6 0.0079 2682 0.0182 1419 0.0184 2086.2 0.0188 1478.2 0.0135 2238.6

30 0.0649 1572.2 0.0322 2156.2 0.0507 1401.9 0.0429 2040.8 0.0053 2050.4 0.0076 3097.2 0.0176 1660.6 0.0177 2433.5 0.0181 1732.3 0.013 2602.8

31 0.0633 1869.2 0.0312 2567.6 0.0493 1670.4 0.0417 2422.7 0.0051 2405.8 0.0073 3608 0.017 1965.5 0.0171 2868.6 0.0175 2052.7 0.0125 3058.1

32 0.0619 2245.9 0.0303 3082.3 0.048 2013.2 0.0405 2907.8 0.0049 2848.9 0.0071 4238.5 0.0164 2350.1 0.0165 3416.8 0.0169 2457.5 0.0121 3625.4

33 0.0606 2727.2 0.0295 3738.8 0.0468 2451.7 0.0395 3526 0.0047 3404.1 0.0068 5022.1 0.0159 2837.7 0.016 4106.5 0.0164 2971.6 0.0117 4340.5

34 0.0594 3343.3 0.0287 4580.1 0.0456 3016 0.0384 4317 0.0045 4104.9 0.0066 6001.9 0.0154 3460.2 0.0155 4984.1 0.0159 3628.5 0.0113 5242.1

35 0.0582 4140.2 0.028 5664.6 0.0446 3745.7 0.0375 5336.3 0.0044 4995.3 0.0064 7237.8 0.0149 4258.4 0.0151 6103.3 0.0155 4472.1 0.011 6390.3

36 0.0572 5157.2 0.0274 7051.9 0.0436 4683.9 0.0366 6637.6 0.0042 6115.8 0.0062 8776.2 0.0145 5274.8 0.0146 7521.5 0.0151 5547.6 0.0107 7835.6

37 0.0562 6446.3 0.0267 8802.3 0.0426 5876.2 0.0358 8285.4 0.0041 7502.5 0.006 10664 0.0141 6552.1 0.0143 9292.7 0.0147 6900.5 0.0104 9634.1

38 0.0553 8069 0.0261 11001 0.0417 7379.7 0.035 10347 0.004 9203.4 0.0059 12955 0.0138 8142.1 0.0139 11487 0.0143 8589.6 0.0101 11842

39 0.0544 10095 0.0256 13800 0.0409 9303.2 0.0343 12987 0.0039 11275 0.0057 15741 0.0134 10147 0.0135 14242 0.014 10726 0.0098 14611

ELE 29432.66 34011.34 26775.34 35621.92 20072.24 28089.60 23237.95 31504.87 24034.94 30390.89



Table 10: Expected retention probability (ERP) of future players and the expected playing times of those retained (EPT) based on mild,
aggressive and no promotion campaigns for increasing in-game collaboration. The average premium purchase value (PP Value) (in cents)
per one minutes playing duration in each level is also reported. The expected premium purchase (EPPV) value per future players is presented
for each promotion type.

Level PP Value None Mild High
No. (cents/min) ERP EPT EPPV ERP EPT EPPV ERP EPT EPPV

1 0.33992 1.00000 258.07 1.46 1.00000 257.99 1.46 1.00000 257.99 1.46

2 0.32978 0.99687 432.95 2.37 0.99735 432.82 2.37 0.99798 432.82 2.37

3 0.36541 0.99151 714.40 4.31 0.99282 714.19 4.32 0.99452 714.19 4.33

4 0.35798 0.98254 1140.35 6.68 0.98522 1140.01 6.70 0.98870 1140.01 6.72

5 0.29813 0.96792 1731.91 8.33 0.97282 1731.39 8.37 0.97918 1731.39 8.42

6 0.29377 0.94498 2461.65 11.39 0.95329 2460.91 11.49 0.96410 2460.91 11.62

7 0.31113 0.91059 3221.22 15.21 0.92382 3220.26 15.43 0.94116 3220.26 15.72

8 0.29123 0.86195 3818.60 15.98 0.88172 3817.47 16.34 0.90794 3817.47 16.82

9 0.29069 0.79762 4036.98 15.60 0.82526 4035.83 16.14 0.86256 4035.83 16.87

10 0.36985 0.71784 3778.46 16.72 0.75397 3777.45 17.56 0.80384 3777.45 18.72

11 0.35381 0.61307 3212.00 11.61 0.65811 3211.24 12.46 0.72230 3211.24 13.68

12 0.40232 0.47844 2571.94 8.25 0.53066 2571.44 9.15 0.60876 2571.44 10.50

13 0.37902 0.34211 2009.96 4.34 0.39565 2009.69 5.02 0.48079 2009.69 6.10

14 0.21507 0.22568 1585.41 1.28 0.27409 1585.32 1.56 0.35665 1585.32 2.03

15 0.23604 0.14402 1294.46 0.73 0.18383 1294.49 0.94 0.25667 1294.49 1.31

16 0.28500 0.09674 1104.15 0.51 0.12868 1104.27 0.67 0.19073 1104.27 1.00

17 0.49027 0.07123 974.33 0.57 0.09760 974.50 0.78 0.15123 974.50 1.20

18 0.53567 0.05734 883.86 0.45 0.08015 884.05 0.63 0.12804 884.05 1.01

19 0.45001 0.04946 821.75 0.30 0.07002 821.97 0.43 0.11419 821.97 0.70

20 0.46275 0.04471 782.17 0.27 0.06385 782.40 0.39 0.10559 782.40 0.64

21 0.24412 0.04163 762.98 0.13 0.05982 763.22 0.19 0.09990 763.22 0.31

22 0.20998 0.03929 763.89 0.11 0.05673 764.14 0.15 0.09551 764.14 0.26

23 0.30820 0.03727 785.42 0.15 0.05405 785.69 0.22 0.09167 785.69 0.37

24 0.33513 0.03549 826.21 0.16 0.05169 826.49 0.24 0.08828 826.49 0.41

25 0.29015 0.03393 886.24 0.15 0.04960 886.54 0.21 0.08524 886.54 0.37

26 0.75407 0.03253 969.36 0.40 0.04773 969.68 0.58 0.08252 969.68 1.01

27 0.67586 0.03128 1083.85 0.38 0.04605 1084.19 0.56 0.08005 1084.19 0.98

28 0.75244 0.03015 1235.89 0.47 0.04452 1236.26 0.69 0.07781 1236.26 1.21

29 0.67081 0.02913 1429.51 0.47 0.04314 1429.90 0.69 0.07576 1429.90 1.21

30 0.51098 0.02819 1673.27 0.40 0.04187 1673.68 0.60 0.07387 1673.68 1.05

31 0.63375 0.02734 1980.95 0.57 0.04070 1981.38 0.85 0.07213 1981.38 1.51

32 0.68962 0.02655 2369.55 0.72 0.03963 2369.99 1.08 0.07052 2369.99 1.92

33 0.95039 0.02582 2862.68 1.17 0.03863 2863.10 1.75 0.06902 2863.10 3.13

34 0.74168 0.02514 3492.38 1.09 0.03770 3492.75 1.63 0.06762 3492.75 2.92

35 0.57502 0.02450 4300.79 1.01 0.03683 4301.06 1.52 0.06630 4301.06 2.73

36 0.45089 0.02391 5331.14 0.96 0.03602 5331.27 1.44 0.06507 5331.27 2.61

37 0.34155 0.02336 6627.32 0.88 0.03525 6627.20 1.33 0.06390 6627.20 2.41

38 0.69716 0.02283 8243.97 2.19 0.03453 8243.41 3.31 0.06280 8243.41 6.02

39 0.73132 0.02234 9716.20 2.65 0.03385 9714.88 4.01 0.06176 9715.04 7.31
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