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We study predictive density estimation under Kullback-Leibler loss in
`0-sparse Gaussian sequence models. We propose proper Bayes predictive
density estimates and establish asymptotic minimaxity in sparse models. Fun-
damental for this is a new risk decomposition for sparse, or spike-and-slab
priors.

A surprise is the existence of a phase transition in the future-to-past vari-
ance ratio r. For r < r0 = (

p
5� 1)/4, the natural discrete prior ceases to

be asymptotically optimal. Instead, for subcritical r, a ‘bi-grid’ prior with a
central region of reduced grid spacing recovers asymptotic minimaxity. This
phenomenon seems to have no analog in the otherwise parallel theory of point
estimation of a multivariate normal mean under quadratic loss.

For spike-and-uniform slab priors to have any prospect of minimaxity, we
show that the sparse parameter space needs also to be magnitude constrained.
Within a substantial range of magnitudes, such spike-and-slab priors can at-
tain asymptotic minimaxity.

1. Introduction and main results. Predictive density estimation is a fundamental prob-
lem in statistical prediction analysis [1, 9]. Here, it is studied in a high dimensional Gaussian
setting under sparsity assumptions on the unknown location parameters. Fuller references
and background for the problem are given after a formulation of our main results.

We consider a simple Gaussian model for high dimensional prediction:
(1) X ⇠Nn(✓, vxI), Y ⇠Nn(✓, vyI), X ?? Y |✓.
Our goal is to predict the distribution of a future observation Y on the basis of the ‘past’
observation vector X . In this model, the past and future observations are independent, but
are linked by the common mean parameter ✓ which is assumed to be unknown. The variances
vx and vy may differ and are assumed to be known.

The true probability densities of X and Y are denoted by p(x|✓, vx) and p(y|✓, vy) re-
spectively. We seek estimators p̂(y|x) of the future observation density p(y|✓, vy), and study
their risk properties under sparsity assumptions on ✓ as dimension n increases to 1.

To evaluate the performance of such a predictive density estimator (prde), we use
Kullback-Leibler ‘distance’ as loss function:

L(✓, p̂(·|x)) =
Z

p(y|✓, vy) log
p(y|✓, vy)
p̂(y|x) dy.
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The corresponding KL risk function follows by averaging over the distribution of the past
observation:

⇢(✓, p̂) =

Z
L(✓, p̂(·|x))p(x|✓, vx)dx.

Now, given a prior measure ⇡(d✓), the average or integrated risk is

(2) B(⇡, p̂) =

Z
⇢(✓, p̂)⇡(d✓).

For any prior measure ⇡(d✓), proper or improper, such that the posterior ⇡(d✓|x) is well
defined, the Bayes predictive density is given by

(3) p̂⇡(y|x) =
Z

p(y|✓, vy)⇡(d✓|x).

The Bayes predictive density in (3) minimizes both the posterior expected loss
R
L(✓, p̂(·|x))⇡(d✓|x)

and the integrated risk B(⇡, p̂), when the latter is finite, among all density estimates. The
minimum is the Bayes KL risk:

B(⇡) := inf
p̂

B(⇡, p̂) .(4)

We study the predictive risk ⇢(✓, p̂) in a high dimensional setting under an `0-sparsity
condition on the parameter space. This ‘exact sparsity’ condition has been widely used in
statistical estimation problems, e.g. [19, Ch. 8]. With k✓k0 = #{i : ✓i 6= 0}, consider the
parameter set:

⇥n[s] = {✓ 2Rn : k✓k0  s}.
The minimax KL risk for estimation over ⇥ is given by

(5) RN (⇥) = inf
p̂

sup
✓2⇥

⇢(✓, p̂),

the infimum being taken over all predictive density estimators p̂(y|x). We often write prde
for predictive density estimate. The notation an ⇠ bn denotes an/bn ! 1 as n ! 1 and
an =O(bn) denotes |an/bn| is bounded for all large n.

1.1. Main Results. Henceforth, we assume vx = 1. As the problem is scale equivariant,
results for general vx will easily follow. A key parameter is the future-to-past variance ratio

(6) r = vy/vx = vy, v = (1+ r
�1)�1

.

Here v is the ‘oracle variance’ which would be the variance of the UMVUE for ✓, if both
X and Y were observed. The variance ratio r determines not only the magnitude of the
minimax risk but also the construction of minimax optimal prdes. In our asymptotic model,
the dimension n ! 1 and the sparsity s = sn may depend on n, but the variance ratio r

remains fixed.
In the sparse limit ⌘n = sn/n ! 0, for any fixed r 2 (0,1), Mukherjee and Johnstone

[34] evaluated the minimax risk to be:

(7) RN (⇥n[sn])⇠
1

1 + r
sn log(n/sn) =

1

1+ r
n⌘n log ⌘

�1
n ,

and a thresholding based prde was shown to attain the minimax risk.
By their nature, thresholding rules are not smooth functions of the data. This paper devel-

ops proper Bayes prdes – necessarily smooth functions – that are asymptotically minimax in
sparse regimes. Our constructions begin with sparse univariate symmetric priors

(8) ⇡[⌘] = (1� ⌘)�0 +
1
2⌘(⌫

+ + ⌫
�),
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where �0 is unit mass at 0, and ⌘ 2 [0,1] is the sparsity parameter, while ⌫
+ is a probability

measure on (0,1) and ⌫
� is its reflection on (�1,0).

For such sparse priors, we introduce a new risk decomposition, Theorem 2.1, that takes
the degenerate prior �0 as starting point, instead of the more commonly used uniform prior.
This risk decomposition is fundamental for all proofs in the paper.

Priors on vector ✓ are built from i.i.d. draws:

(9) ⇡n(d✓) =
nY

i=1

⇡[⌘n](d✓i),

where ⌘n = sn/n relates the multivariate sparsity sn to the univariate parameter ⌘n. The
Bayes prde based on prior ⇡n is the product density estimate:

(10) p̂⇡(y|x) =
nY

i=1

p̂⇡(yi|xi).

The notation often drops the data suffixes and uses p̂⇡ for both the univariate and the multi-
variate Bayes predictive density when the context is clear.

We begin with a discrete ‘grid prior’ ⌫+G in which the support points have equal spacing

(11) �= �(⌘) =
p

2 log ⌘�v,

and geometric mass decay at rate ⌘
v = e

��
2
/2. More precisely,

⌫
+
G = cG

1X

j=1

⌘
(j�1)v

��j , cG = 1� ⌘
v
.

The corresponding sparse grid prior ⇡G[⌘] built via (8) has a schematic illustration in Figure
1. Such “Mallows" discrete priors are a natural starting point for our predictive setting given
their optimality properties in point estimation, recalled in the next subsection.

The choice ⇡G can also be motivated directly with three observations. The first, stated
precisely in Section 3.5, is that among symmetric univariate three point priors with ⌫

+ =
�a�, a > 0, only the choice a = 1 is asymptotically least favorable. Second, the convex hull
of supp(⌫+) must be unbounded, lest the risk function of p̂⇡ grow without bound for large
✓. Third, the probability decay rate ⌘

v = exp(��
2
/2) as a function of spacing � is similar

to the geometric decay used in [18] for minimax sparse point-estimation using discrete pri-
ors. Among discrete univariate priors, then, the grid prior ⇡G is perhaps the simplest choice
compatible with these remarks.

FIG 1. Schematic for the grid prior. The uniform spacing � between the support points is shown on the

x-axis. The probabilities of the support points are shown on the y-axis using a logarithmic scale, hence

the decay appears linear.
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Our first result gives a precise description of the first order asymptotic maximum risk of the
Bayes prde p̂G based on the multivariate product prior ⇡G,n(d✓) =

Q
n

i=1 ⇡G[⌘n](✓i), where
⌘n = sn/n. Define

hr = (1+ 2r)(1 + r)�2(1� 2r� 4r2)/4  1/4

h
+
r =max(hr,0).

(12)

Let r0 = (
p
5 � 1)/4 be the positive root of the equation 4r2 + 2r � 1 = 0, and note that

h
+
r > 0 iff r < r0.

THEOREM 1.1. As ⌘n = sn/n! 0, for any fixed r 2 (0,1) we have

sup
⇥n[sn]

⇢(✓, p̂G) =RN (⇥n[sn])
�
1 + h

+
r + o(1)

�
as n!1 .

Thus for all r � r0, p̂G is exactly minimax optimal, while for all r < r0, it is minimax
suboptimal but still attains the minimax rate, and has maximum risk at most 1.25 times the
minimax value, whatever be the value of r.

As the future-to-past variance ratio r decreases, the difficulty of the predictive density
estimation problem increases, as we have to estimate the future observation density based
on increasingly noisy past observations. Theorem 1.1 shows that rules which are minimax
optimal for higher values of r can be sub-optimal for lower values of r. This phenomenon
was seen with threshold density estimates in [34, Sec. S.2, Lemma S.2.1] as well as in the
recent work of [29] on non-sparse prediction.

To obtain asymptotic minimaxity for all r, we need to modify the prior. The Bi-grid ⇡B
prior is obtained from ⇡G by selecting an ‘inner zone’ on which the spacing of the prior
atoms is reduced from � to b�, where

(13) b=min{4r(1 + r)(1 + 2r)�1
,1}.

Note that b < 1 iff r < r0. The decay ratio in the inner zone is increased from ⌘
v = e

��
2
/2 to

⌘
vb

2

= e
�b

2
�
2
/2. See Figure 2 for a schematic depiction. Section 3.3 explains why the reduced

spacing in the inner zone is needed. In brief, the narrower grid ‘pulls down’ the maximum
risk of the Bayes rule for ⇡B to the asymptotically minimax level.

More precisely, ⇡B[⌘] is a univariate sparse symmetric prior of form (8) with

⌫
+
B
= cB

h KX

k=1

⌘
(k�1)vb2

�⌫k + ⌘
(K�1)vb2

1X

j=1

⌘
jv
�µj

i
.

The normalization cB = cB(⌘) is at (36). The support points fall in two zones:

FIG 2. Schematic for the bi-grid prior. The x-axis now shows the two spacings, and the y-axis (again

on a logarithmic scale) the two different rates of log-linear decay of the prior probabilities.
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(i) Inner zone: ⌫k = �+ (k� 1)b� for k = 1, . . . ,K
(ii) Outer zone: µj = ⌫K + j� for j = 1,2, . . .

The cardinality of the inner zone is

(14) K = 1+ d2b�3/2e.

In fact, any integer K 2 [1 + d2b�3/2e,1] works, see Section 3.6. For definiteness, and
minimal departure from ⇡G, we use (14).

How do the mass distributions of ⇡B and ⇡G compare? A crude continuous approximation
(see supplementary material) says that the ‘density ratio’ d⇡B/d⇡G(x) increases exponen-
tially in x in the inner zone. In the outer zone it is a constant greater than one, i.e. ⇡B has
more mass in the tails.

A main result of the paper is that the Bayes predictive density estimate p̂B based on the
product prior ⇡B,n(d✓) =

Q
n

i=1 ⇡B[⌘n](d✓i) is asymptotically minimax optimal.

THEOREM 1.2. For each fixed r 2 (0,1), as ⌘n = sn/n! 0, we have

sup
⇥n[sn]

⇢(✓, p̂B) =RN (⇥n[sn])(1 + o(1)) as n!1.

The following theorem shows that the bi-grid prior ⇡B,n is also asymptotically least favor-
able.

THEOREM 1.3. If sn !1 and sn/n! 0, then

B(⇡B,n) =RN (⇥n[sn]) · (1 + o(1)).

Unlike Theorem 1.2 we need the assumption that sn !1. It ensures that ⇡B,n actually
concentrates on ⇥n[sn], namely that ⇡B,n(⇥n[sn]) ! 1 as n ! 1. For the case where sn

does not diverge to 1 an asymptotically least favorable prior can be constructed from a
sparse prior built from ‘independent blocks’. The construction is discussed in Section 3.4.

1.2. Discussion. A fully Bayesian approach is a natural route to prdes with good proper-
ties [15, 2], with advantages over ‘plug-in’ or thresholding based density estimates. Indeed,
a coordinatewise threshold rule p̂T(y|x) =

Q
n

i=1 p̂T(yi|xi) is typically built from univariate
prdes which combine two Bayes prdes – for example based on uniform p̂U and cluster priors
p̂CL, as in [34, Eq. (14)]:

p̂T(yi|xi) =
(
p̂U(yi|xi) if |xi|> v

�1/2
�

p̂CL(yi|xi) if |xi| v
�1/2

�.

This is manifestly discontinuous as a function of the data x.
The bi-grid Bayes rule achieves the same purposes as the hybrid p̂T. Indeed, the close

spacing b� in the inner section of ⇡B yields the same risk control as the (unevenly spaced)
cluster prior for small and moderate ✓, while the uniform � spacing in the outer section of ⇡B

controls risk for large ✓ in the same way as the uniform prior.
Decision theoretic parallels between predictive density estimation and the point estimation

of a Gaussian mean under quadratic loss have been established by [10, 13, 11, 4, 23, 21, 43,
14] for unconstrained ✓, and by [42], [7], [26] and [34] for various constraint sets ⇥.

The phase transition seen in Theorems 1.1 and 1.2 seems however to have no paral-
lel in point estimation. Indeed, it follows from [18] that a first order minimax rule for
quadratic loss in the sparse setting is derived from the Mallows prior [28], with ⌫

+
Q =
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(1 � ⌘)
P1

j=1 ⌘
j�1

��ej
. Here �e =

p
2 log ⌘�1 = v

�1/2
� so that the predictive setting in-

volves a reduced spacing in the prior. More significantly, there is no analog in point estima-
tion of the inner section with its further reduced spacing for r < r0.

Our main technical contribution lies in sharp methods for bounding the global KL risk
for general bi-grid priors, see Lemmas 3.1 and 3.2, and for spike-and-slab priors, Section
4. The sharp predictive risk bounds established here provide new asymptotic perspectives
in the information geometric framework of [22, 24, 44] and augment new sparse prediction
techniques for general multivariate predictive density estimation theory developed in [10, 4,
23, 25, 27, 30, 32].

1.3. Minimax risk of Spike and Slab priors. Some of the most popular Bayesian vari-
able selection techniques are built on the “spike and slab" priors [31, 12, 16]. Such priors and
their computationally tractable extensions have found success in variable selection in high-
dimensional sparse regression models, e.g. [37, 3, 40, 38, 39, 17] and the references therein.
While this is a well established methodological research area [36], optimality of their respec-
tive predictive density estimates has so far not been studied.

Here, we consider simple “spike and slab" prior distributions in the flavor of the founda-
tional paper [31]. Begin with a sparse univariate prior, a special case of (8),

(15) ⇡S[⌘, `] = (1� ⌘)�0 + ⌘/(2`)I{µ 2 [�`, `]} dµ .

In parallel with (9), build a multivariate product prior ⇡S,n from n i.i.d. copies of ⇡S[⌘n, `],
where as before ⌘n = sn/n. We might consider multivariate Bayes predictive densities p̂S [`]
based on ⇡S,n.

It is intuitively clear that such Bayes prdes are necessarily asymptotically sub-optimal: for
any fixed ` 2 [0,1), for all sn > 0, we have

(16)
⇢

sup
⇥n[sn]

⇢(✓, p̂S [`])

��
RN (⇥n[sn]) =1

for each fixed n. Indeed, the support of ⇡S is restricted to [�`, `], and the corresponding prde
has large risk away from the support. A formal proof follows Lemma 4.1.

Consider therefore bounded subsets of the sparse parameter sets ⇥n[sn]:

⇥n[s, t] = {✓ 2Rn : k✓k0  s and |✓i| t for all i= 1, . . . , n}.

We allow t= tn to increase with n, and note next that the increase must be at least as fast
as �n = �(⌘n), cf. (11), to have minimax risk equivalent to ⇥n[sn].

LEMMA 1.4. For all tn there is a simple bound

RN (⇥n[sn, tn]) snt
2
n/(2r).

If tn > �n =
p

2 log ⌘�v
n , then

(17) RN (⇥n[sn, tn])⇠ sn�
2
n/(2r)⇠RN (⇥n[sn]).

The following result exhibits a substantial range of magnitude constraints tn for which
p̂S[tn] is asymptotically minimax over ⇥n[sn, tn]. All proofs for this subsection, along with
a figure and high-level overview of the strategy, appear in Section 4.

THEOREM 1.5. As ⌘n = sn/n! 0, suppose that tn/(log ⌘�1
n )1/2 !1 but log tn/(log ⌘�1

n )!
0. Then as n!1,

sup
⇥n[sn,tn]

⇢(✓, p̂S[tn])⇠RN (⇥n[sn, tn]).
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Note that if tn !1 at a rate slower than (log ⌘�1
n )1/2 then, by Lemma 1.4, RN (⇥n[sn, tn])

is no longer equivalent to RN (⇥n[sn]) as n!1. At the other extreme, we show next that if
tn grows at rate ⌘

��
n or higher for any � > 0, then no spike and uniform slab procedure can

be minimax optimal.

THEOREM 1.6. If ⌘n = sn/n! 0 and log tn = � log ⌘�1
n for some � > 0, then

min
`>1

sup
⇥[sn,tn]

⇢(✓, p̂S [`])� (1 + �)RN (⇥n[sn, tn])(1 + o(1)) as n!1.

We emphasize that Theorem 1.6 shows that, even for true parameters within the support of
the uniform slab, risk can exceed the minimax bound. Informally, the proof shows that if the
slab is small, log ` < ��

2
n, then the risk at ✓ = tn is unacceptably large, while if it is large,

log `� ��
2
n, there is poor risk at ✓ =

p
1 + ��n.

1.4. Organization of the Paper. Section 2 presents the fundamental risk decomposition,
its proof and some discussion. Section 3 presents the risk properties of the Grid and Bi-
grid prior based prdes and proofs of the main results. Section 4 proves the spike-and-slab
results. Section 5 compares the performance of the prdes through simulation experiments.
The Appendix and Sections 1, 2 of the supplement contain the proofs of the lemmas.

Notations. The standard normal density and cumulative distribution are denoted by � and
�; �̃= 1��. For sequences an ⇠ bn means limn!1 an/bn = 1.

2. A risk decomposition for spike and slab priors. Univariate problem. We focus on
priors with i.i.d. components (9), so that the predictive density then has product form (10).
The predictive risk is then additive

(18) ⇢(✓, p̂⇡) =
nX

i=1

⇢(✓i, p̂⇡).

[We use p̂⇡ for both univariate and multivariate Bayes predictive densities: the context will
make clear which is used.]

For our sparse parameter sets ⇥n[s] and ⇥n[s, t], there is an easy reduction of the maxi-
mum multivariate risk of a product rule to a univariate risk maximum. Indeed, (18) yields

(19) sn sup
|✓|tn

⇢(✓, p̂) sup
⇥n[sn,tn]

⇢(✓, p̂) n(1� ⌘n)⇢(0, p̂) + sn sup
✓2R

⇢(✓, p̂).

Sparse priors. Now suppose that X|✓ ⇠N(✓,1) and Y |✓ ⇠N(✓, r) and that the past and
future observations X,Y are independent given ✓. Consider a sparse proper prior of the form

(20) ⇡(dµ) = (1� ⌘)�0 + ⌘⌫(dµ),

for probability measure ⌫ on R and ⌘ 2 [0,1]. The associated (univariate) Bayes predictive
density estimate p̂⇡ is given by (3).

The following risk decomposition is fundamental. It will be applied to study discrete priors
in Section 3 and uniform slab priors in Section 4.

THEOREM 2.1. With the preceding definitions, let Z ⇠ N (0,1) and v = (1 + r
�1)�1

.

For a sparse prior (20),

⇢(✓, p̂⇡) = ⇢(✓, p̂�0)�E logN✓,v(Z) +E logD✓(Z),

= ✓
2
/(2r)�E logN✓,v(Z) +E logD✓(Z),

(21)
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where D✓(Z) =N✓,1(Z) and

(22) N✓,v(Z) = 1+
⌘

1� ⌘

Z
exp

⇢
µZp
v
+

µ✓

v
� µ

2

2v

�
⌫(dµ) .

Decomposition (21) takes the degenerate prior �0 as starting point for comparison of the
risk ⇢(✓, p̂⇡) of a Bayes prde. This is natural for sparse priors (20) and might be contrasted
with the representation George, Liang and Xu [10, Lemma 2], which takes the uniform prior
prde as point of departure.

PROOF. The decomposition (21) compares ⇢(✓, p̂⇡) to ⇢(✓, p̂�0) = ✓
2
/(2r), the Bayes risk

of p̂�0(y|x) = �(y|0, r) corresponding to ⇡ = �0 and ⌘ = 0. Accordingly, using (3), write the
Bayes predictive density as

(23) p̂⇡(y|x) =
R
�(y|µ, r)�(x� µ)⇡(dµ)R

�(x� µ)⇡(dµ)
= �(y|0, r)N(x, y)

D(x)
,

after rewriting numerator and denominator in the first ratio respectively as

⇡0�(y|0, r)�(x)N(x, y), and ⇡0�(x)D(x),

where ⇡0 = ⇡({0}) = 1� ⌘. After simple algebra, we find

(24) N(x, y) =

Z
exp

⇢
µ

⇣
x+

y

r

⌘
� µ

2

2

✓
1 +

1

r

◆�
⇡(dµ)

⇡0

and D(x) is analogous, but without terms in y and r. Note also that

⇢(✓, p̂�0) = E✓ log

✓
�(Y |✓, r)
�(Y |0, r)

◆
= E✓


✓Y

r
� ✓

2

2r

�
=

✓
2

2r
.

Hence, from (23) and the definition of predictive loss

L(✓, p̂⇡(·|x)) = E✓ log

✓
�(Y |✓, r)
p̂⇡(Y |x)

◆
=

✓
2

2r
�E✓ logN(x,Y ) + logD(x).

To obtain ⇢(✓, p̂⇡), take expectation also over X ⇠N(✓,1). Since Y ⇠N(✓, r) indepen-
dently of X , the random variable X + Y/r ⇠ N (✓/v,1/v) may be expressed in the form
✓/v+Z/

p
v. Recalling the sparse prior form ⇡(dµ) = (1� ⌘)�0 + ⌘⌫, we get

N(X,Y )
D
= 1+

⌘

1� ⌘

Z
exp

⇢
µZp
v
+

µ✓

v
� µ

2

2v

�
⌫(dµ) =N✓,v(Z).

Similarly, D(X)
D
=D✓(Z) and the lemma follows from the previous two displays.

Clearly N✓,v(Z),D✓(Z) � 1, and so we have the simple but useful “basic lower” and
“basic upper” risk bounds

(25)
✓
2

2r
�E logN✓,v(Z) ⇢(✓, p̂⇡)

✓
2

2r
+E logD✓(Z).

From Jensen’s inequality,

(26) E logN✓,v(Z) log
�
EN✓,v(Z)

�
,
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and since E exp(⇣Z) = exp(⇣2/2), by Fubini’s theorem

(27) EN✓,v(Z) = 1+
⌘

1� ⌘

Z
exp

⇣
µ✓

v

⌘
⌫(dµ),

and, in particular,

ED0(Z) = EN0,1(Z) = (1� ⌘)�1
.

Consequently, from the right side of (25), then (26) (for v = 1) and the previous display,

(28) ⇢(0, p̂⇡) log(1� ⌘)�1 = ⌘(1 + o(1)) as ⌘! 0.

3. Risk properties for discrete priors. The bulk of this section is devoted to the proof
of Theorems 1.1 and 1.2. We first outline the approach. First, return to the univariate re-
duction (19). From (28) it is clear that n⇢(0, p̂1) n⌘n(1 + o(1)) = sn(1 + o(1)). So for the
minimaxity results of Theorems 1.1 (for r > r0), 1.2 and 1.5, it suffices to show the univariate
bound

(29) sup
✓2R

⇢(✓, p̂1) �
2
n/(2r) + o(�2

n),

for then, with ⇥n =⇥n[sn] or ⇥n[sn, tn],

sup
⇥n

⇢(✓, p̂⇡n) sn[�
2
n/(2r) + o(�2

n)].

To establish (29), we use the key risk decomposition of Proposition 2.1. For this we in-
troduce a class of discrete sparse priors that includes both grid and bi-grid priors. We de-
velop lower and upper bounds respectively for E logN✓,v(Z) and E logD✓(Z) in (21). These
bounds are combined to yield an upper estimate

⇢(✓, p̂D) (2r)�1
�
2
�(✓) +O(�),

for some function �. In Section 3.3 we first provide heuristics—Figure 3—and then a formal
proof of conditions under which �(✓) 1 for all ✓, establishing Theorems 1.1 and 1.2.

3.1. A class of discrete sparse priors. For 0< b 1 and r > 0, let

(30) ⇡D[⌘; b, r] =
X

j2Z
⇡j�µj

where µ�j = �µj , ⇡�j = ⇡j . The support points satisfy µ0 = 0 and µj = �↵j for j > 0,
where the piecewise linear spacing function

(31) ↵j =

(
1 + b(j � 1) 1 j K

↵K + j �K j >K

has increments ↵̇j = ↵j+1�↵j = b or 1 according as j K or j >K . Set ⇣ = ⌘
v . The prior

masses are given by

(32) ⇡0 = 1� ⌘, ⇡j = c(⌘)⌘⇣�j�1
,

for j � 1. The decay function in the prior probabilities

(33) �j =

(
1 + b

2(j � 1) 1 j K

�K + j �K j >K
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has the same form as ↵j with b replaced by b
2. This choice is crucial for Lemma 3.1 below

and its consequent risk bounds. In particular, note that �j  ↵j and that the increments �̇j =
�j+1 � �j satisfy

(34) �̇j = ↵̇
2
j all j � 1.

In addition, l! gl = ↵
2
l
� �l is increasing for l� 1, as

(35) gl+1 � gl = ↵̇l(↵l+1 + ↵l)� �̇l = 2↵̇l↵l > 0,

The normalizing constant c(⌘) = cB(⌘)/2, where,

(36)
1

cB(⌘)
=

1X

j=1

⇣
�j�1 =

1� ⌘
b
2
vK

1� ⌘b
2v

+
⌘
b
2
v(K�1)+v

1� ⌘v
.

3.2. Risk Component Bounds for discrete priors. Since ⇡D is a sparse prior, we may
apply the decomposition of predictive risk given in Proposition 2.1. Inserting the discrete
measure (30), we obtain

N✓,v(Z) = 1+
X

j 6=0

Nj ,(37)

Nj = ⇡
�1
0 ⇡j exp{v�1/2

µjZ + v
�1(µj✓� 1

2µ
2
j
)}(38)

In the special case v = 1, it will be helpful to write D✓(Z) =N✓,1(Z) as

D✓(Z) = 1+
X

j 6=0

Dj ,(39)

Dj = ⇡
�1
0 ⇡j exp{µjZ + µj✓� 1

2µ
2
j
}.(40)

The probability ratio ⇡j/⇡0 can also be written in exponential form. To this end, introduce
c1(⌘) = c(⌘)(1�⌘)�1. Recall that v�1 = 1+r

�1 and ⇣ = ⌘
v = exp(��

2
/2) and then rewrite

⌘ = ⇣
v
�1

= exp{�1
2�

2(1 + r
�1)}. Using (32), we arrive at

(41) ⇡
�1
0 ⇡j = c1(⌘) exp{�1

2�
2(�j + r

�1)}.

We can therefore, for example, rewrite

Dj = c1(⌘) exp{µjZ �G(µj ;✓)}

G(µj ;✓) =
1
2µ

2
j
� µj✓+

1
2�

2(�j + r
�1).

(42)

To obtain an upper bound for ⇢(✓, p̂D) we use (22). It turns out to be enough to focus on
(the logs of) two consecutive terms Nj , Nj+1 in (37); ignoring all other terms trivially yields
a lower bound for N✓,v . For the upper bound for D✓ , a single (suitably chosen) term Dj in
(39) suffices, but more care is needed to show that the neglected terms are negligible.

Bring in a co-ordinate system (l,!) for ✓: each ✓ � 0 can be uniquely written in the form

✓ = �(↵l + !), l 2N, ! 2 [0, ↵̇l).

We can therefore write l= l(✓) and ! = !(✓).
We argue heuristically that l(✓) is an appropriate choice of index for our bounds. Indeed,

from (38) and (41),

(43) E logNj = c� 1
2{(µj � ✓)2/v� �

2
�j}
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after collecting terms not involving j into c. Hence, for ✓ 2 [µl, µl+1), the choice j = l or l+1
will minimize or nearly minimize the quadratic, and these suffice for the lower bound. For
D✓ , we have from (42) that E logDj = log c1(⌘)�G(µj ;✓). We show in the Appendix (in the
proof of Lemma 3.1) that j !G(µj ;✓) is indeed minimized at j = l for each ✓ 2 [µl, µl+1).

Focus therefore on the terms Nl(✓) and Dl(✓). When ✓ = �(↵l + !),

µj✓� 1
2µ

2
j
= 1

2�
2(2↵j(↵l + !)� ↵

2
j
).

Combining this with (41), for j = l, l+ 1, we can write

Nl = c1(⌘) exp{1
2�

2
n(l,!) + ↵l�Z/

p
v}

Nl+1 = c1(⌘) exp{1
2�

2
ň(l,!) + ↵l+1�Z/

p
v}

Dl = c1(⌘) exp{1
2�

2
d(l,!) + ↵l�Z}

(44)

in terms of three linear functions of !:
n(l,!) = v

�1(↵2
l
+ 2↵l!)� �l � r

�1

d(l,!) = ↵
2
l
+ 2↵l!� �l � r

�1
.

(45)

and, corresponding to Nl+1,

(46) ň(l,!) = n(l,!) + 2v�1
↵̇l!� (1 + v

�1)↵̇2
l
.

We now state our key uniform bounds on the risk components of (21).

LEMMA 3.1. For any fixed r 2 (0,1) and b 2 (0,1], with � defined in (11), uniformly in

✓ = �(↵l + !)� �, we have the following bounds:

E logN✓,v(Z)� 1
2�

2(n_ ň)(l,!) +O(1),

E logD✓(Z) 1
2�

2
d
+(l,!) +O(�),

For 0 ✓ < � we just have E logN✓,v(Z)� 0, and E logD✓(Z)O(�).

The proof is given in the appendix. The appearance of the positive part of d(l,!) in the
upper bound may be understood this way: if d(l,!) < 0, we cannot expect the term Dl to
dominate D0 = 1 in (39).

In the reverse direction, we need only a bound for ✓ lying in a subset of [µ1, µ2) in our
proofs of theorems 1.1 and 1.2.

LEMMA 3.2. For any fixed r 2 (0,1), b 2 (0,1], with � defined in (11) and setting

!1 = b(1 + v)/2, uniformly in ✓ 2 �[↵1,↵1 + !1], we have

E logN✓,v(Z) 1
2�

2
n(1,!) +O(�).

3.3. Proof of Theorems 1.1 and 1.2. Inserting the bounds of Lemma 3.1 in risk decom-
position (21), we get

⇢(✓, p̂D) (2r)�1
�
2
�(l,!) +O(�)

�(l,!) =

⇢
!
2 if l= 0,

(↵l + !)2 � r(n_ ň)(l,!) + rd
+(l,!) if l� 1.

(47)

Our task is to bound �(l,!); more specifically for Theorem 1.1 to show that �(l,!) 
1 + h

+
r for the grid prior and for Theorem 1.2 to ensure that �(l,!) 1 for the bigrid prior

with b in (13). Figure 3 shows the idea of the main part of the proof. We argue below that the
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FIG 3. Schematic for the risk bound (47) for ✓! ⇢(✓, p̂G) for the grid prior; being asymptotically minimax when

the second peak is no higher than the first.

maximum of �(✓) = �(l,!) falls in the interval [�,�↵2], which in the case of the uniform
grid prior is just [�,2�]. The function �(✓) is argued to be piecewise quadratic with

max
�✓2�

�(✓) =max{1,1 + �r(�r � 2r)}.

The second maximum is attained at ✓⇤ = �+ �r�, with �r = (2r+ 1)/(2r+ 2). It will then
follow that the grid prior estimate p̂G is asymptotically minimax if and only if �r  2r, which
translates to r � r0 = (

p
5� 1)/4.

For r < r0, the maximum risk can be ‘pulled down’ by reducing the spacing between �

and the next support point �+ b� (we set ↵̇l = b). For the bi-grid prior, the second maximum
then satisfies

✓⇤ = �+ �rb�, �(✓⇤) = 1+ �rb(�rb� 2r) 1

exactly when b is no larger than the value (13).
To begin the proof, observe first that by symmetry we can reduce to ✓ � 0. For l = 0,

control on the risk is immediate from (25), and so, from now on consider l � 1. We make
some observations on �(l,!). When d(l,!)� 0, from (45), r(n� d) = ↵

2
l
+ 2↵l!, and so

(48) �(l,!) (↵l + !)2 � r(n� d) = !
2  1.

Back in the general case, from (46), both n(l,!) and ň(l,!) are linear for ! 2 [0, ↵̇l],
intersecting at !l = ↵̇l(1 + v)/2 < ↵̇l. Now n(l,0) > ň(l,0) while ň has a larger positive
slope. Hence n_ ň equals n on [0,!l] and ň on [!l, ↵̇l]. A calculation shows that

ň(l, ↵̇l) = v
�1(↵2

l
+ 2↵l↵̇l + ↵̇

2
l
)� ↵̇

2
l
� �l � r

�1

= v
�1

↵
2
l+1 � �l+1 � r

�1 = n(l+ 1,0).

Similarly d(l, ↵̇l) = d(l+1,0) and so ✓! d(✓) is piecewise linear, continuous and strictly
increasing from d(1,0) =�r

�1
< 0 to +1 as ✓!1. Consequently there is a unique ✓⇤ =

(l⇤,!⇤) at which d(✓⇤) = 0.
From these remarks, it follows that �(l,!) is piecewise quadratic and convex for ! 2

[↵l,↵l+1]. Hence its maxima can only occur among the join points ! = 0,!l,1 and !⇤ in the



SPARSE BAYES PREDICTIVE DENSITY ESTIMATES 13

single case l = l⇤. However, since d(✓⇤) = 0, it follows from (48) that �(l⇤,!⇤)  1, so we
can safely ignore this case. Consequently, from (47) and noting that �(0,1�) = 1, we have

(49) k�k1 := max
✓�0,✓=(l,!)

�(l,!) = 1_max
l�1

{�(l,0),�(l,!l),�(l, ↵̇l)}.

Now suppose that 0 !  !l and that d(l,!) 0. In this case, since n ň and 1�rv
�1 =

�r, we have

�(l,!) = (↵l + !)2 � rn(l,!)

= !
2 + (↵2

l
+ 2↵l!)(1� rv

�1) + r�l + 1

= 1+ !
2 + r(�l � ↵

2
l
)� 2r↵l!

 1 + !
2 � 2r!

(50)

say, where we used ↵l � 1 and ↵
2
l
� �l � ↵

2
1 � �1 = 0, from (35).

In particular �(l,0)  1, and combining with (48), this holds for all l. Also, for l 2 L =
{l : d(l,!l) < 0}, we have �(l,!l)  1 + !l(!l � 2r), while for l /2 L, again from (48),
�(l,!l) 1. Now, (49) simplifies to

(51) k�k1  1 +max
l2L

!l(!l � 2r)+.

For the grid prior, b= 1. We have !l = (1+ v)/2 = (2r+ 1)/(2r+ 2), and

!l(!l � 2r) = (1 + 2r)(1 + r)�2(1� 2r� 4r2)/4 = hr .

and we have established the upper bound in Theorem 1.1.
For the lower bound it suffices to look at the risk at a single point. In view of Figure 3 and

the discussion preceding (49), we try ✓1 = �(1 + !1). Look at the risk at ✓1. Apply Lemma
3.2 using n(1,!1) = 2v�1

!1, to get from (25)

⇢(✓1, p̂G)� (2r)�1
�
2{(1 + !1)

2 � 2rv�1
!1}+O(�) = (2r)�1

�
2(1 + h

+
r ) +O(�),

since the quantity in braces equals 1 + !
2
1 � 2r!1 = �(1,!1) = 1 + h

+
r . This completes the

proof of Theorem 1.1.
We now turn our attention to proving Theorem 1.2. We first verify that if bmin{1,4r},

then l� 1 + d2b�3/2e necessarily implies d(l,!l)� 0.
From the monotonicity (35), along with ! � 0, we have

d(l,!l) + r
�1 � ↵

2
l
� �l � ↵

2
K � �K � b

2(K � 1)2 � 4b�1 � r
�1

,

using b 2 for the third, K � 1+d2b�3/2e for the fourth and b 4r for the fifth inequalities.
Now, return to (51): if l 2 L then d(l,!l)< 0 and so, from the previous paragraph neces-

sarily l < 1+ d2b�3/2e which by definition entails ↵̇l = b so long as K � 1+ d2b�3/2e. Now
!l = b(1 + v)/2  2r is equivalent to b  4r/(1 + v). So, in this case, k�k = 1, and so for
all ✓ we have ⇢(✓, p̂D) (2r)�1

�
2 +O(�), which establishes (29) and hence Theorem 1.2.

3.4. Proof of Theorem 1.3. By Theorem 1.2 it suffice to prove a lower bound on the
Bayes risk. As ⇡B,n is i.i.d. and due to the product structure of the problem, its Bayes risk
simplifies

B(⇡B,n, p̂B) = nB(⇡B, p̂B).

For the univariate problem the Bayes risk of the prior ⇡B is

B(⇡B, p̂B)� ⌘n c(⌘n){⇢(�n, p̂B) + ⇢(��n, p̂B)}

= 2⌘n c(⌘n)⇢(�n, p̂B)� 2⌘n c(⌘n) [�
2
n/(2r)�E logN�n,v

(Z)],



14

where the equality above follows by symmetry and the inequality by (25). From (36) we
have 2c(⌘n) = cB(⌘)� 1�O(⌘b

2
v

n ). Lemma 3.2 shows that E logN�,v(Z) = O(�) because
n(1,0) [defined in (45)] equals 0. Hence B(⇡B, p̂B)� ⌘n�

2
n/(2r) · (1 + o(1)) and the proof

is done.

3.5. Three point priors. Let ⇡a = ⇡a[⌘] be a sparse symmetric three point prior given by
(8) with ⌫

+ = �a� for a > 0. In Section 7, we prove:

LEMMA 3.3. Let p̂a be the prde corresponding to ⇡a. Then, as ⌘! 0,

⇢(a�, p̂a) (2r)�1
�
2
⌧(a) +O(�)(52)

⌧(a) =

(
a
2

a
2  1,

[1� r(a2 � 1)]+ a
2 � 1.

(53)

In particular, as ⌘! 0, the prior ⇡a is least favorable only when a= 1:

B(⇡a, p̂a)⇠ ⌘⇢(a�, p̂a)⇠ (2r)�1
⌘�

2
⌧(a).(54)

3.6. Remarks. 1. When K =1, the bigrid prior ⇡B has support points (in R+) separated
by (1, b, b, . . .). We denote this special case ⇡B0 , and we emphasize that it is still a bigrid prior
(unless b = 1), though it may be seen as simpler than ⇡B. The proof of Theorem 1.2 shows
that with b= 4r(1 + r)(1 + 2r)�1, prior ⇡B0 is asymptotically minimax for r  r0.

However, there is no choice of b for which ⇡B0 is asymptotically minimax for all r. Indeed,
if b be fixed, simply choose r small enough that b > 4r(1 + r)(1 + 2r)�1 = 4r/(1 + v), and
then from (50), we have

k�k1 � �(1,!1) = 1+ !1(!1 � 2r)> 1.

2. When sn does not diverge to 1, an ‘independent blocks’ sparse prior using ⇡B is
asymptotically least favorable, along the lines of [19, Ch. 8.6]. Let ⇡S(⌧ ;m) denote a sin-
gle spike prior of scale ⌧ on Rm. This chooses an index I 2 {1, . . . ,m} at random and sets
✓ = ⌧eI , where ei is a unit length vector in the ith co-ordinate direction. We randomly draw
⌧ from (⌫+B + ⌫

�
B )/2. However, instead of (11), we choose � = v

1/2(tm � log tm) where
tm =

p
2 logm. The independent blocks prior ⇡IB,n on ⇥[sn] is built by dividing {1, . . . , n}

into sn contiguous blocks Bj , each of length m=mn = [n/sn]. Independently for each block
Bj , draw components according to ⇡S(·;m) and set ✓i = 0 for the remaining n�mnsn co-
ordinates. This prior is supported on ⇥[sn] as any draw from ⇡IB,n has exactly sn non-zero
components. The proof that it is least favorable is then analogous to that of Theorem 6 in
[34].

4. Risk properties of Spike and Slab procedures. We again use the risk decomposi-
tion provided by Lemma 2.1, now with the univariate spike and slab prior ⇡S [⌘, `]. We use
N

S

✓,v
(Z) and D

S

✓
(Z) to denote the associated risk components of Lemma 2.1 for the spike

and slab predictive density estimates p̂S [`] based on the prior ⇡S [⌘, `] for some ` > 0 (the
dependence on ` is kept implicit in the notations).

Figure 4 gives a schematic showing the strategy for the proof of Theorems 1.5 and 1.6.
Separate risk bounds for p̂S [`] are established below for ✓ lying in intervals roughly cor-
responding to [0,�n], [�n,�e] and [�e, `] where �e = v

�1/2
�n; a threshold used in sparse

point estimation. The critical interval is [�n,�e], and the risk bound there suffices for asymp-
totic minimaxity if log `= o(�2

n), which leads to Theorem 1.5 if log tn = o(�2
n) and we take

`= tn.
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If, however, log tn ⇠ ��
2
n, then no uniform slab width works: if log `� ��

2
n/(2v), roughly,

then the maximum at approximately ✓ =
p
1 + ��n is too high, while for log `< ��

2
n/(2v),

the maximum risk is too large near the right endpoint, ✓ = tn.
To ease notation we often drop the suffixes from �n and ⌘n, particularly while discussing

univariate prdes. Their risk functions are calculated in the regime �!1 as ⌘! 0.

FIG 4. Schematic for risk bounds (56) for uniform slab prior ⇡S[⌘, `] and estimate p̂S [`].

Proof of Lemma 1.4. For the first upper bound, simply take ⌫ = �0 in Lemma 2.1; the
corresponding ⇡ = �0 has ⇢(✓, p̂�0) = ✓

2
/(2r). The bound now follows from (19). For the

second statement, we claim that whenever tn > �n, then as n!1,
(55) RN (⇥n[sn, tn])⇠RN (⇥n[sn])⇠ sn�

2
n/(2r).

Indeed, the independent blocks prior ⇡
IB
n constructed in [34, Theorem 6] to show that

RN (⇥n[sn])⇠ sn�
2
n/(2r) is actually, by its very definition, supported on ⇥n[sn,⌫n], where

⌫n <
p
v
p

2 log[n/sn]  �n < tn. Since obviously ⇥n[sn,⌫n] ⇢ ⇥n[sn, tn] ⇢ ⇥n[sn], the
conclusion (55) follows. .

For lower bounds on risk of its predictive density estimate, the following convexity in-
equality is helpful. It is proved in the supplement.

LEMMA 4.1. If ⌘  1
2 and ✓`/v � 1, then

E logNS

✓,v
(Z) ✓`/v.

The proof of (16) follows easily from the above lemma. From the left side of (25) and
Lemma 4.1,

⇢(✓, p̂S [`])�
✓
2

2r
� ✓`

v
, for ✓ � v

`
.

Hence, from (18),
sup

⇥n[sn]
⇢(✓, p̂S [`])� sn sup

✓2R
⇢(✓, p̂S [`]) =1,

while RN (⇥n[sn]) is finite for each n, e.g. [34], so (16) follows.
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4.1. Proof of Theorem 1.5. Recall that � =
p

2v log ⌘�1 and define �̃ = �/
p
v +p

2 log�. We will show a piecewise risk bound

(56) ⇢(✓, p̂S [`])

8
><

>:

✓
2
/(2r) +O(� log�) 0< ✓ < �

�
2
/(2r) + log `+O(� log�) � ✓ < �̃

log `+O(�) �̃ ✓  `.

For 0< ✓ < �, simply use the basic upper bound (25) along with the following bound for
D

S

✓
, shown in the supplement: for each r > 0,

(57) E logDS

✓
(Z)

(
O(� log�) 0< ✓ < �̃

✓
2
/2� �

2
/(2v) +O(�) ✓ � �̃.

For the remaining two cases, i.e. for ✓ > �, we use the full decomposition (21) of Lemma
2.1. To this end, an alternative representation for NS

✓,v
will be useful. Completing the square

in (22), we get

(58) N
S

✓,v
(Z) = 1+ c(⌘)

p
v exp(12Z

2
✓,v

)�`,v,

where we have set Z✓,v = Z + ✓/
p
v and

�`,v =�(v�1/2(`� ✓)�Z)��(v�1/2(�`� ✓)�Z).

In the supplement, we show that, uniformly in v 2 (0,1), `� 1 and |✓| `,

(59) E log�`,v � a0 := log�(0) + 2/3.

The constant c(⌘) = ⌘(1� ⌘)�1{2`�(0)}�1 satisfies

(60) � log `� �
2
/(2v) log{(1� ⌘)c(⌘)}= log�(0)� log `� �

2
/(2v)

From the preceding three displays and EZ2
✓,v

= 1+ ✓
2
/v we obtain

�E logNS

✓,v
(Z)� log c(⌘)� 1

2 log v�
1
2EZ

2
✓,v

�E log�`,v

 log `+ �
2
/(2v)� ✓

2
/(2v) +O(1).(61)

Now observe from (61) and v
�1 = r

�1 + 1 that

✓
2
/(2r)�E logNS

✓,v
(Z) �

2
/(2r)� (✓2 � �

2)/2 + log `+O(1).

Combining this with the bounds in (57) yields the remaining two bounds.
For any `� 1 such that log `= o(�2), we conclude that as �!1,

sup
✓`

⇢(✓, p̂S [`])
�
2

2r
(1 + o(1)).

This completes the proof of (29) and, as remarked there, the proof of Theorem 1.5.

4.2. Proof of Theorem 1.6. We use the basic lower risk bound (25), and show that for
suitable ✓ that E logNS

✓,v
Z cannot be large enough to offset the leading term ✓

2
/(2r). To

obtain a result uniform over all slab widths `, we need two different types of upper bound on
N

S

✓,v
.

Define t� and t̃� = o(t�) by setting log t� = ��
2
/(2v) and log t̃� = log t� � �. We look

first at large values of `, using representation (58). Observe first that for `> t̃�, the right side
of (60) yields

p
vc(⌘)C exp{� log t̃� � �

2
/(2v)}=C exp{�✓̃

2
/(2v)}
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for a constant C =C(v) if we set ✓̃2 = �
2+2v log t̃�. Using now (58) and �`,v < 1, we have

logNS

✓̃,v
(Z) log{1 +C exp[�✓̃

2
/(2v) + (Z + ✓̃/

p
v)2/2]}

 log 2 + log(1 +C) +Z
2
/2 + |Z|✓̃/

p
v.

Consequently E logNS

✓̃,v
(Z) k1 + k2✓̃ where ki = ki(v). Hence, from the left side of risk

bound (25),

⇢(✓̃, p̂S [`])�
✓̃
2

2r
� k1✓̃� k2.

Now observe from the definition of t̃� that ✓̃2 = (1+ �)�2 � 2v� and that ✓̃ < t� for large �.
We conclude that for large �,

(62) inf
`>t̃�

sup
✓2[0,t�]

⇢(✓, p̂S [`])

�2/(2r)
� 1 + � +O(��1).

For ` t̃�, we set ✓ = t� and use the left side of (25), then Lemma 4.1:

sup
✓t�

⇢(t�, pS [`])�
t
2
�

2r
� t�`

v
�

t
2
�

2r
� t�t̃�

v
�

t
2
�

2r
(1 + o(1)),

where in the last inequality we used t̃� = o(t�). Consequently,

(63) inf
`t̃�

sup
✓2[0,t�]

⇢(✓, p̂S [`])

�2/(2r)
�

t
2
�

�2
(1 + o(1)).

Combining (62) with (63) and then using (19) to go over to the multivariate problem, we
obtain

min
`>1

sup
⇥n[sn,tn]

⇢(✓, p̂S [`])� (1 + �)sn�
2
n/(2r)(1 + o(1)).

Theorem 1.6 now follows from (17) of Lemma 1.4.

5. Numerical Experiments. We turn to the numerical effectiveness of our asymptotic
results under different levels of sparsity ⌘n, with special focus on moderate values. The prod-
uct structure and the good bounds (19) relating maximal multivariate and univariate risks
allow us to concentrate on the univariate prdes. We use a constrained prior space

m`(⌘) = {⇡ 2 P(R) : ⇡(✓ = 0)� 1� ⌘, ⇡(|✓|> `) = 0},

and set `= 5�= 5
p

2 log ⌘�v . We consider three sparsity levels: (a) Moderate: ⌘ = 0.1, (b)
High: ⌘ = 0.001, (c) Very High: ⌘ = 10�10.

We compare the following prdes:

• Hard threshold Plug-in prde (H-Plugin): [34, Eqn. (31)]

p̂H(y|x) = p(y|✓̂H , vy) where ✓̂H(x) = xI{|x|> (vx/v)
1/2

�} .

• Cluster prior and Thresholding (C-Thresh) based asymptotically minimax prde p̂T pro-
posed in [34, Eqn. (12)-(14)]

• Bayes prdes based on the grid and bi-grid priors (Grid, Bi-Grid) rescaled on m`: p̂G, p̂B

• Spike and Slab predictive density estimator (SS): p̂S [`].
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Sparsity r Asymp H-Plugin C-Thresh Grid Bi-Grid SS

1 1.1513 120.4% 82.5% 88.3% 88.3% 105.8%

0.5 1.5351 173.6% 108.8% 104.9% 104.9% 118.0%

0.1 0.25 1.8421 278.5% 128.0% 127.0% 129.0% 132.3%

0.1 2.0933 588.1% 145.2% 165.4% 155.9% 146.5%

1 3.4539 109.1% 70.7% 70.8% 70.8% 86.2%

0.5 4.6052 162.1% 85.9% 84.6% 84.6% 96.9%

0.001 0.25 5.5262 267.6% 89.9% 100.2% 96.8% 106.9%

0.1 6.2798 582.8% 107.2% 115.6% 113.4% 118.0%

1 11.5129 123.9% 150.4% 78.6% 78.6% 86.9%

1E-10 0.5 15.3506 185.4% 87.9% 87.1% 87.1% 93.9%

0.25 18.4207 308.4% 94.6% 98.1% 96.3% 100.1%

0.1 20.9326 677.0% 101.8% 110.5% 101.7% 106.3%

TABLE 1
Numerical evaluation of the maximum risk for the different univariate predictive densities over

[�`, `] as the degree of sparsity (⌘) and predictive difficulty r varies. Here, we have chosen `= 5�,

where � is defined in (11). In ‘Asymp’ column we report the asymptotic minimax risk �
2
/(2r). In

the other columns, we report the maximum risk of the estimators as quotients of the ‘Asymp’ risk.

Table 1 reports the maximum value of the risk plots for these predictive estimators (sup-
plement table 1 shows the locations of the respective maximas). Figure 5 plots ✓ ! ⇢(✓, p̂),
showing however the rescaled value ⇢(0, p̂)(1� ⌘)/⌘ at ✓ = 0. [The hard threshold plug-in
density estimator p̂H is omitted, as has poor maximum risk in Table 1 and confuses the plots.]

The tables and plots show that the Bi-grid prior Bayes prde p̂B and the C-Thresh prde
p̂T have similar worst case performance. For each r, the maximal risks of p̂B and p̂T lie
near or below the asymptotic level of log ⌘�1

/(1 + r) under high and very high sparsity,
and at worst moderately above the asymptotic level for moderate sparsity. However p̂T has
substantially higher risk at the origin than the other prdes considered here, particularly for
moderate sparsity. Differences in the performances of the grid and bi-grid prior based prdes
appear under high sparsity; for further comparisons see supplementary figures 2 and 3. The
maximal risk of the spike and slab procedure is higher than that of p̂T or p̂B but does not
exceed the asymptotic minimax level by much. Finally, the basic features of the risk plots are
unchanged even under moderate sparsity.

6. Discussion and future work. Product priors based on infinite cluster priors ⇡1[⌘, r]
of [34, Sec. 6] will lead to minimax optimal Bayes prdes. Details, which do not follow di-
rectly from those for the bi-grid prior, are provided in [8].

Our discussion of spike and slab priors was confined to uniform slabs. Theorem 2.1 can be
used to show that Gaussian slabs are sub-optimal, while Bayes prdes based on heavier tailed
slabs in the range from Laplace to Cauchy are minimax optimal. The tools to bound the
maximal risk of continuous priors differ from those used here and will be detailed separately
[33].

Our results are based on known sparsity levels. We make a few remarks on adaptation to
unknown sparsity from theoretical and computational perspectives. A manuscript in prepa-
ration considers adaptivity for continuous slabs with Laplace and Cauchy tails. Adaptation
to minimax risk is possible up to multiplicative constants and an additive logarithmic term.
Both exact sparsity (`0) and approximate sparsity (`p, 0< p< 2) are considered.

Recently, computationally tractable Bayesian methods which adapt to unknown sparsity
levels and possibly dense signals have been developed for point estimation [5, 3, 40]. In our
sequence model (1), under unknown sparsity level ⌘n = sn/n, there exist fast procedures for
estimating posteriors from spike-and-slab priors that are mixtures of a Dirac measure at 0
and a continuous distribution [20, 6, 41].
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FIG 5. Risk plots ⇢(✓, ·){(1�⌘)/⌘}I{✓=0}
for univariate predictive density estimators p̂T (dark green),

p̂G (skyblue), p̂B (blue) and p̂S (red) versus ✓ 2 [0, `], for `= 5�. Columns vary with moderate, high

and very high sparsity, ⌘ = 0.1,0.001,10�10
, left to right. Rows vary r = 1,0.5,0.25 and 0.1 from

top to bottom. The horizontal line shows the asymptotic univariate minimax risk of log ⌘�1
/(1+ r) =

�
2
/(2r), with �=

p
2 log ⌘�v and ` shown in the insets. Note that, p̂G (skyblue) and p̂B (blue) overlap

exactly in plots for the first two rows.

7. Appendix. We present proofs of the risk bounds in Lemmas 3.1 and 3.3. The proof
of Lemma 3.2 uses tools similar to Lemma 3.1 and appears in the supplement.

Proof of Lemma 3.1. We do the easy lower bounds involving N✓,v(Z) first. Indeed, the
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bound for ✓ < � follows just from N✓,v(Z) � 1. For ✓ = �(↵l + !) � �, from (44) using
E(Z) = 0 we get:

E logNl = log c1(⌘) +
1
2�

2
n(l,!), and,

E logNl+1 = log c1(⌘) +
1
2�

2
ň(l,!).

But log c1(⌘) = log c(⌘)� log(1� ⌘)�1 = O(1) as �!1. Hence, the proof of the lower
bound is completed by using

E logN✓,v(Z)�max{E logNl, E logNl+1}.

The proof of the upper bound on E logD✓(Z) is more involved, and we first outline the
approach. From (39) and 1 + x+ y < (1 + x)(1 + y/x), we have

(64) logD✓(Z) log(1 +Dl) + log(1 + Ďl),

where we set Ďl =
P

i/2{0,l}Di/Dl. Henceforth in the proof, we make the choice l = l(✓)
except that when 0 ✓ < µ1 we set l= 1.

For the first term (henceforth we call it the main term) in (64) we will show

(65) E log(1 +Dl)
(

1
2�

2
d
+(l,!) +O(�) for l� 1

O(1) if 0 ✓ < �

with O(�) being uniform in l. For the other term in (64) we will show that it is O(�) for all l
(and so, henceforth we call it the remainder term). For that purpose, we write Di,l =Di/Dl

and decompose

Ďl =
1X

k=1

Dl+k,l +
l�1X

k=1

Dl�k,l +
1X

j=1

D�j,l.

We use the elementary inequality log(1 +
P

�m)
P

log(1 + �m) to obtain that E log(1 +
Ďl) is bounded above by

E log
⇣
1 +

1X

k=1

Dl+k,l

⌘
+E log

⇣
1 +

l�1X

k=1

Dl�k,l

⌘
+E log

⇣
1 +

1X

j=1

D�j,l

⌘
.

Now, note that D�j

D
=Dj exp{�2µj✓} Dj since µj = �µj ,⇡�j = ⇡j and L(Z) is sym-

metric. Hence
1X

j=1

D�j,l

D


1X

j=1

Dj,l =
l�1X

k=1

Dl�k,l + 1+
1X

k=1

Dl+k,l.

Combining the above two displays and again using the aforementioned inequality on logsums
we obtain

(66) E log(1 + Ďl) 2E log
⇣
1 +

1X

k=1

Dl+k,l

⌘
+ log 2 + 2E log

⇣
1 +

l�1X

k=1

Dl�k,l

⌘
.

We will later show that the two main right side terms are each O(�). This concludes the
outline; we now turn to detailed analysis.

The Main term in (64). We first dispose of the case 0 ✓ < �. From (40) and (41),

D1 = c1(⌘) exp{�Z + �✓� 1
2�

2(2 + r
�1)}.
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Since ✓ < � and c1(⌘)< (1� ⌘)�1, and using log(1 + x) log 2 + (logx)+,

log(1 +D1) log 2 + log(1� ⌘)�1 + �
�
Z � 2�1

r
�1

�
�
+

and hence E log(1+D1)O(1). This last bound uses an inequality we also need later: from
the two term bound on Mills ratio (e.g. [19, Exercise 8.1]),

(67) E(Z � x)+ = �(x)� x�̃(x) x
�2

�(x).

Now suppose that ✓ = �(↵l + !) � � and use representation (44) for Dl. Abbreviating
1
2�

2
d(l,!) as dl! , we obtain

E log(1 +Dl) = E logDl +E log(1 +D
�1
l

)

= log c(⌘) + log(1� ⌘)�1 + dl! + log 2 +E(logD�1
l

)+.

Symmetry of L(Z) about 0 implies that logD�1
l

D
=� log c(⌘) + log(1� ⌘) + µlZ � dl! . As

c(⌘)< 1, we have

E(logD�1
l

)+ � log c(⌘) +E(µlZ � dl!)+.

From the previous two displays and log(1� ⌘)�1 =O(⌘), we have

(68) E log(1 +Dl) dl! +E(µlZ � dl!)+ +O(1).

We now bound the expectation on the right side. Consider first those l for which ↵l  2+r
�1

and thus µl  (2 + r
�1)�. Noting that

E(µlZ � dl!)+ �dl!I{dl!  0}+ µlEZ+,

we then conclude that

dl! +E(µlZ � dl!)+  (dl!)+ + (2+ r
�1)�(0)�.

Now consider the remaining l, with ↵l � 2 + r
�1, for which we claim that

(69) ↵
2
l
� �l � r

�1 � 1
2↵

2
l
.

We verify this via the equivalent form ↵
2
l
� 2�l � 2r�1. Indeed, since �l  ↵l, we have

↵
2
l
� 2�l � ↵l(↵l � 2)� (2 + r

�1)r�1 � 2r�1
.

Since ! � 0, we have from (45) and (69),

dl! � 1
2�

2[↵2
l
� �l � r

�1]� 1
4(�↵l)2 =

1
4µ

2
l
.

From the bound (67), we calculate

E(µlZ � dl!)+  µlE(Z � µl/4)+  16
�(µl/4)

µl

uniformly in � � 1 and l such that ↵l � 2 + r
�1. The right side is uniformly bounded in l.

Combining the two cases with (68), we have proven the bound (65) on the first term of (64).

We turn now to bounding the remainder (66). This depends on the decay between suc-
cessive terms Dj , so we start by using (42) to derive a useful representation for Dj+1/Dj .
Indeed, using µj = �↵j and ✓ = �(↵l + !), we define

�j =�(j; l,!) = (2/�2)[G(µj+1;✓)�G(µj ;✓)]

= ↵̇j [↵j+1 + ↵j � 2↵l � 2!] + �̇j
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and arrive at, for j � 1,

(70)
Dj+1

Dj

= exp{�↵̇jZ � 1
2�

2�j}.

We now show that �j crosses zero at j = l, meaning �j � 0 for j � l and �j  0 for
j < l. This will also verify the claim in Section 2 that j !G(µj ;✓) is minimized at j = l(✓)
for each ✓ 2 [µl, µl+1). The argument splits into two largely parallel cases.

Suppose first that j � l, so that j = l+k for k � 0. Using ↵l+! < ↵l+1, then �̇l+k = ↵̇
2
l+k

and finally ↵̇l+k + ↵l+k = ↵l+k+1, we have for any k � 0,

�l+k > ↵̇l+k[↵l+k+1 + ↵l+k � 2↵l+1] + ↵̇
2
l+k

= 2↵̇l+k(↵l+k+1 � ↵l+1)� 0,(71)

with the last inequality being strict for k � 1.
Suppose now that j < l, so that j = l�k� 1 for k � 0. Using ↵l+! � ↵l, then �̇l�k�1 =

↵̇
2
l�k�1 and finally ↵̇l�k�1 + ↵l�k�1 = ↵l�k, we have

�l�k�1  ↵̇l�k�1[↵l�k + ↵l�k�1 � 2↵l] + ↵̇
2
l�k�1

= 2↵̇l�k�1(↵l�k � ↵l) 0,

with strict inequality when k � 1.

As final preparation, we record a useful bound whose proof is provided in the supplement.

LEMMA 7.1. If a1, a2, . . . are positive, then for each n� 1,

(72) log

✓
1 +

n+1X

k=1

ak

◆
< log(1 + a1) +

nX

k=1

ak+1

ak
.

We next concentrate on bounding the first term of (66). Noting that Djs are positive, use
(72) with ak =Dl+k/Dl and log(1 + a1) log 2 + (loga1)+ to write

(73) E log

✓
1 +

1X

k=1

Dl+k,l

◆
 log 2 +E

⇣
log

Dl+1

Dl

⌘

+
+E

⇢ 1X

k=1

Dl+k+1

Dl+k

�
.

In (70) with j = l, we have seen that �l � 0 and so

E
⇣
log

Dl+1

Dl

⌘

+
 �↵̇lEZ+  ��(0).

When j = l + k, observe from (71) that �l+k � 2↵̇2
l+k

+ 2↵̇l+k(↵l+k � ↵l+1). From (70),
now with j = l+ k for k � 1,

E
⇢
Dl+k+1

Dl+k

�
= exp{1

2�
2[↵̇2

l+k
��l+k]}

 exp{�1
2�

2[↵̇2
l+k

+ 2↵̇l+k(↵l+k � ↵l+1)]}

 exp{�1
2�

2
b
2 � �

2
b
2(k� 1)},

so that the right side of (73) is O(�) +O(e��
2
b
2
/2) =O(�). The last inequality in the above

display uses j ! ↵̇j is increasing and ↵̇j � b.
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Second term of (66). Now use (72) with ak =Dl�k/Dl:

(74) E log

✓
1 +

l�1X

k=1

Dl�k,l

◆
 log 2 +E

⇣
log

Dl�1

Dl

⌘

+
+E

⇢ l�2X

k=1

Dl�k�1

Dl�k

�
.

In (70) with j = l� 1, we have seen that �l�1  0 and so

E
⇣
log

Dl�1

Dl

⌘

+
 �↵̇l�1EZ+  ��(0).

From (70), now with j = l� k� 1,

E
⇢
Dl�k�1

Dl�k

�
= E{exp{��↵̇l�k�1Z + 1

2�
2�l�k�1}}

 exp{1
2�

2
↵̇l�k�1[↵̇l�k�1 + 2(↵l�k � ↵l)]},

as �l�k�1  2↵̇l�k�1(↵l�k � ↵l). Again, using j ! ↵̇j is increasing and ↵̇j � b, we have

↵̇l�k�1 + 2(↵l�k � ↵l) ↵̇l�k � 2(↵l � ↵l�k+1)� 2↵̇l�k �b� 2(k� 1)b.

Using ↵̇l�k�1 � b again, we conclude that

E
⇢ l�2X

k=1

Dl�k�1

Dl�k

�


1X

k=1

exp{�1
2�

2
b
2 � �

2
b
2(k� 1)}=O(e��

2
b
2
/2).

Thus, we have proved the desired bound on the second term. This completes the proof of the
lemma.
Proof of Lemma 3.3. The argument borrows some steps from the proof of Lemma 3.1, but
is simpler, though not a special case. The three point prior corresponds, in (30) to choices
⇡0 = 1� ⌘,⇡1 = ⌘/2, µ1 = a�. From (37)-(38), we have Na�,v(Z) = 1+N1 +N�1, with

(75) N1 = c1(⌘) exp{v�1/2
a�Z + (2v)�1

a
2
�
2 � 1

2�
2(1 + r

�1)},

where c1(⌘) = 2�1(1� ⌘)�1 and N�1 = N1 exp(�2v�1/2
a�Z � 2v�1

a
2
�
2). Correspond-

ingly D✓(Z) = 1+D1+D�1, where D1 and D�1 are obtained from N1 and N�1 by replac-
ing v with 1. From Theorem 2.1, and log(1+D1+D�1) log(1+D1)+log(1+D�1/D1),

⇢(a�, p̂a) = (2r)�1
a
2
�
2 �E log(1 +N1 +N�1) +E log(1 +D1 +D�1)

 (2r)�1
a
2
�
2 �E log(1 +N1) +E log(1 +D1) +E log(1 +D�1/D1)

 (2r)�1
a
2
�
2 � (E logN1)+ + 2 log 2 +E(logD1)+ +E[log(D�1/D1)]+.

From (75), and its analog for D1, we have, on setting ✏(⌘) = log c1(⌘) < 0, recalling that
rv

�1 = r+ 1, and using (67)

(E logN1)+ = [✏(⌘) + (2v)�1(a2 � 1)�2]+ � ✏(⌘) + (2r)�1
�
2(r+ 1)(a2 � 1)+

E(logD1)+  ✏(⌘) + a�EZ+ + (2r)�1
�
2(ra2 � r� 1)+

E[log(D�1/D1)]+ = 2a�E(Z � a�)+ = 2�(a�)/a�=O(�).

Combine the last four displays to get

⇢(a�, p̂a) (2r)�1
�
2
⌧̃(a) +O(�),

where

⌧̃(a) = a
2 � (r+ 1)(a2 � 1)+ + (ra2 � r� 1)+ = ⌧(a).
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SUPPLEMENTARY MATERIAL

Supplementary Materials to: On Minimax Optimality of Sparse Bayes Predictive
Density Estimates
(url). The supplement [35] proves Lemma 3.2 and all the inequalities and lemmas used in
Section 4. It also contains results from additional numerical experiments and further discus-
sions on the risk properties of prdes.
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[40] ROČKOVÁ, V. and GEORGE, E. I. (2016). The Spike-and-Slab LASSO. Journal of the American Statistical

Association.
[41] VAN ERVEN, T., SZABO, B. et al. (2020). Fast Exact Bayesian Inference for Sparse Signals in the Normal

Sequence Model. Bayesian Analysis.
[42] XU, X. and LIANG, F. (2010). Asymptotic minimax risk of predictive density estimation for non-parametric

regression. Bernoulli 16 543–560. MR2668914 (2011g:62110)
[43] XU, X. and ZHOU, D. (2011). Empirical Bayes predictive densities for high-dimensional normal models.

J. Multivariate Analysis 102 1417-1428.
[44] YANO, K. and KOMAKI, F. (2017). Information Criteria For Prediction When The Distributions Of Current

And Future Observations Differ. Statistica Sinica 27 1205–1223.



Submitted to the Annals of Statistics

SUPPLEMENT TO “ON MINIMAX OPTIMALITY OF SPARSE BAYES
PREDICTIVE DENSITY ESTIMATES”

BY GOURAB MUKHERJEE

AND

BY IAIN M. JOHNSTONE

University of Southern California and Stanford University

Here, we provide proofs of Lemmas 3.2, 4.1 and 7.1 as well as the proofs
of all the inequalities used in Section 4 of the main paper. We also provide
further insights on the risk properties of the predictive density estimates dis-
cussed in the main paper.

1. Further results on grid and bigrid priors.

Relative mass distributions of ⇡G and ⇡B. First we compare the normalizing constants cG

and cB for ⌫+G and ⌫
+
B respectively. Let ⇣ = ⌘

v and ✏= ⌘
b2v
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2 + · · · ),

so termwise comparison shows that cB > cG.
If 0< x1 < x2 < (1 + bK)�, then Riemann sum approximations give
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For x > (1 + bK)� the corresponding density ratio is the constant � = cB/cG > 1. To sum-
marize, approximately
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(
� b

�1 exp
�
1
2(1� b)�[x� (1 + b)�]

 
if (1 + b)�< x< (1 +Kb)�

� if x > (1 +Kb)�.

Proof of Lemma 3.2. We modify some of the methods used in Lemma 3.1 to incorporate
now v = r(1 + r)�1 2 (0,1). With Nj defined as in (37) and (38), using (44) and arguing as
around (64), we bound

logN✓,v(Z) log(1 +N1) + log(1 + Ň1),

with Ň1 =
P

j /2{0,1}Nj,1 and Nj,1 =Nj/N1. The desired control of the main term is easier
here than in Lemma 3.1: for l= 1,

E log(1 +N1) log 2 +E(logN1)+
1
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Turn now to the remainder term. Since N�j
D
= Nj exp(�2v�1/2

µj✓), we may argue as
before to obtain the analog of (66):

E{log(1 + Ň1)} 2Rem(�) + 1,

where, using Lemma 7.1 with ak =Nk+1,1 and setting Řk =Nk+1/Nk,
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Using definition (38) and then (41) and (31), we obtain
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where we put ✓ = �(1 + !) and used �̇k = ↵̇
2
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Since b 1, we necessarily have K � 1 = d2b�3/2e � 2, and therefore ↵1 = 1,↵2 = 1+ b

and ↵̇1 = b. Consequently, at k = 1 we have
�1(!, v) = b[(1 + v)b� 2!]� 0

for all ! satisfying 0 !  !1 = ↵̇1(1 + v)/2. We arrive at log Ř1  �v
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The last two paragraphs show that Rem(�) =O(�) and complete the proof.

Proof of Lemma 7.1. We use induction. The bounds 1 + x + y < (1 + x)(1 + y/x) and
log(1 + x) < x, valid for positive x, y, establish the case n = 1. For general n, let a0k =
ak+1/(1 + a1) for k = 1, . . . , n. Then
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where the inequalities use the cases n� 1 and n= 1 in turn.

2. Proofs of the lemmas and the inequalities used in Section 4.

Proof of Lemma 4.1. From (27), we find

ENS
✓,v(Z) 1 +

⌘

1� ⌘

1

2l

Z l

�1
exp
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µ✓

v

⌘
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e
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2w
,

for w = ✓l/v � 1. From this and Jensen’s inequality (26), we obtain

E logNS
✓,v(Z)w+ log
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e
�w +
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(1� ⌘)

1

2w

�
w,

since the term in braces is bounded by 1/e+ 1/2 1.

Proof of (59). Use v  1, then 0 ✓  ` and finally `� 1 to conclude

�`,v ��`,1 ��(�Z)��(�`�Z)��(�Z)��(�1�Z).

Now use symmetry of Z and then Jensen’s inequality to get
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Proof of (57). From the definition (58) with v = 1 and using �`,1  1,

logDS
✓ (Z) log 2 + [log c(⌘) + (✓+Z)2/2]+.

From the upper bound in (60), we have
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which suffices for the first bound.
If ✓ � �̃, we put W = (✓ + Z)2 and c = �

2
/v and apply the inequality E(W � c)+ 
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where the last inequality uses the Mills ratio bound P (Z > x) x
�1

�(x).

3. Risk plots and further insights on the bi-grid priors.
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3.1. Risk Plots. Figure 1 below shows the risk of the grid prior is well controlled below
the desired limit when r = 1. Also, the plot reveals that the risk function exhibits periodic-
ity for sufficiently large parametric values (in this case as |✓| � 2�) with a period of �. In
Figure 2 we have the risk plots of the grid and bi-grid priors for different values of r. The
bi-grid comes in play for r < r0 ⇡ 0.309. From the plots we see that for |✓| 2 [�,2�], the risk
function for the grid prior is roughly decreasing in |✓| for large value of r but is bi-modal as
r decreases towards r0. At r0 its two peaks are equal in height and as r decreases further the
gap between the maximal risk of the grid prior and the bi-grid prior widens. In Figure 3, we
exhibit a scenario where the pde based on the grid prior is no longer optimal and its risk is
far dominated by the bi-grid prior based pde.

FIG 1. Plot of the risk of p̂G as the parameter ✓ varies over R+
. Here, � = 5, r = 1 and ⌘ =

exp(��
2
/2). The risk is well controlled below the asymptotic theory benchmark minimax value of

�
2
/(2r) = 12.5. The vertical lines denote integer multiples of � along the x-axis.

To understand the differences in the risk properties between the grid and bi-grid prior as
r varies, we now concentrate on the behavior of the risk components theoretically analyzed
in Section 3. Following the proofs of theorems 1.1 and 1.2, we concentrate on the dominant
component of the risk �(l,!) as defined in (47) where, ✓ = �(↵l +!). Figure 4 plots �(l,!)
for p̂G and p̂B as l,! vary. Note that the representation of ✓ is different for ⇡G and ⇡B as
the ↵l and �l are different. As such, for p̂G, ! always varies over [0,1] where as for the bi-
grid prior ! only varies over [0, b] for some initial l denominations. In figure 4, we have 3
plots. The top plot shows the dominant risk for p̂G when r = 1. The dominant risk here is
always contained below the minimax value (shown in dotted horizontal line). Here, d+(l,!)
starts being positive roughly at l = 1 and ! = 0.5 onwards; and so, the plot of �(l,!) for
p̂G has 3 piecewise quadratics for ✓ 2 [�,2�] but 2 piecewise quadratics for the following
intervals. The next plot shows the dominant risk for p̂G when r = 0.25. In this case, d+(l,!)
starts being positive roughly at l = 2 and ! = 0.5 onwards; and so, the plot of �(l,!) for
p̂G has 3 piecewise quadratics for ✓ in the interval [2�,3�]. Here, the dominant risk is not
always contained below the minimax value. The bottom plot shows the dominant risk for p̂B

when r = 0.25 and it is always contained below the minimax value. Note, that we have used
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FIG 2. Plot of the risk of p̂G (in black) and p̂B (in red for r < r0 = (
p
5�1)/4⇡ 0.309) as the parameter

✓ varies over R+
. Here, �= 5 and ⌘ = exp(��

2
/(2v)). The vertical lines denote integer multiples of

� along the x-axis.

different colors to display the dominant risk for different values of l and have used vertical
lines to partition the ✓ values belonging to different values of l. These partitions are same for
the top two plots as they both involve p̂G but is different for p̂B in the bottom plot.

Figure 5 displays the risk plots for Spike and Slab prior based pdes p̂S [l]. For three dif-
ferent choices of l the risk plots were tracked the interval [0, t]. It was seen that the risk is
controlled below the benchmark value of �

2
/(2r) = 4.5 when l = t. In that case, the risk

function initially increases at a quadratic rate and peaks near � and thereafter decreases at a
rapid rate.
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FIG 3. In black dotted line we have the plot of p̂B and in gray we have plot of p̂G. The vertical lines

mark � and 2� while the horizontal line represents the bench mark �
2
/(2r). Here, �= 5, r = 0.1 and

⌘ = exp(��
2
/(2v)). The maximal risk of p̂G is 1.18 times the bench mark value. The risk of p̂B is

controlled below the bench mark value.

3.2. Effect of sparsity level on the structure of the Bi-grid prior. In the univariate
Bi-grid prior, the spacings between the support points increases linearly with increase in
�
2
n =�2v log(sn/n). So, as sparsity increases, i.e., sn/n decreases, the spacings increases.

The probability assignments corresponding to the non-origin points decrease exponentially
with decrease in sn/n. However, note that b in the definition of the Bi-Grid prior depends
entirely on r = vy/vx not on the sparsity levels. So, the cardinality of the inner zone will be
unchanged due to change in the sparsity levels and is still given by:

K = 1+ d2b�3/2e.

To see the qualitative difference, we provide the representation of the Bi-grid prior for two
different sparsity levels: (a) sn/n= ⌘n ! 0 (b) sn/n= ↵⌘n where ↵ is a positive constant.
Noting, that the Bi-grid prior is a product prior, we present the representation of the prior for
each co-ordinate. For case (a), the univariate Bi-grid prior is ⇡(a)

B = (1�⌘n)�0+2�1
⌘n(⌫

+
B +

⌫
�
B ) and for case (b), ⇡(b)

B = (1� ↵⌘n)�0 + 2�1
↵⌘n(⌫̃

+
B + ⌫̃

�
B ) where,

⌫
+
B = c

1X

k=1

ak�⌫k and ⌫̃
+
B = c̃

1X

k=1

ãk�⌫̃k

are related as:

log(ãk/ak) =

⇢
(k� 1)vb2 log↵ for k = 1, . . . ,K
{(K � 1)b2 + (k�K)}v log↵ for k >K .
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FIG 4. For r = 1, the top plot displays the dominant risk �(l,!) of p̂G in the y-axis as |✓|= �(↵l + !)
varies in the x-axis. The next two plots show the dominant risk of p̂G and p̂B respectively for r = 0.25.

For each plot, the benchmark minimax value (adjusted, as in (47)) of 1 is represented by the dotted

horizontal line. The vertical lines partition |✓| into intervals corresponding to the different values l

(based on the co-ordinate system for ✓ used in Section 3 of main paper; the dashed vertical lines

denotes the boundaries for differential spacings) and different colors are used to display the dominant

risk in these partitions. Here, �= 5 for all the 3 plots.

and log(c̃/c)! 1 as sn/n! 0. The support points satisfy the following relation with �̃k :=
(⌫̃k+1 � ⌫̃k) and �k := (⌫k+1 � ⌫k):

�̃2
k ��2

k =

⇢
�2vb2 log↵ for k = 1, . . . ,K � 1
�2v log↵ for k = 0 or k >K



8

FIG 5. From top to bottom we have the plots of the risk of p̂S [`] as |✓| varies over the interval [0, t]
for ` = �,0.75t, t respectively. Here, r = 1, � = 3 and t = 5�. The shaded rectangle in each plot

has base on the support of the prior [0, `] and has height equaling the minimax benchmark value of

�
2
/(2r) = 4.5.

Note that ↵< 1, ãk < ak and ⌫̃k > ⌫k. Thus, greater sparsity corresponds to more widely
spaced support points, each with reduced probability mass.

4. Additional numerical results.

4.1. Table 1. Table 1 shows the locations of the maxima of the pdes discussed in Sec-
tion 5.

4.2. Sensitivity of predictive performance . We conduct simulations to assess sensitivity
under small misspecifications of the sparsity level. To do this, we compare predictive per-
formance of the prdes when sparsity levels are not known but instead are estimated from
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Sparsity r Asymp H-Plugin C-Thresh Grid Bi-Grid SS

1 1.52 2.46 2.50 2.47 2.47 2.41

0.5 1.24 2.41 2.56 2.16 2.16 2.10

0.1 0.25 0.96 2.37 2.62 1.83 1.83 1.78

0.1 0.65 2.33 2.70 1.41 1.35 1.31

1 2.63 3.39 3.00 3.12 3.12 3.12

0.5 2.15 3.39 2.91 2.84 2.84 2.75

0.001 0.25 1.66 3.39 2.28 2.38 2.28 2.29

0.1 1.12 3.39 1.71 1.72 1.69 1.70

1 4.80 5.93 0.00 4.90 4.90 5.06

1E-10 0.5 3.92 5.93 4.41 4.35 4.35 4.36

0.25 3.03 5.93 3.45 4.39 3.90 3.57

0.1 2.05 5.92 2.52 3.05 2.54 2.57

TABLE 1
Numerical evaluation of the location of maxima of the risk plots over [�`, `] for the different

univariate predictive densities as the degree of sparsity (⌘) and predictive difficulty r varies. Here, we

have chosen `= 5�, where � is defined in (11). In ‘Asymp’ column we report the theoretically

obtained first order asymptotic maxima.

datasets with simulated variation. The departures of these estimated sparsity levels from the
‘ground truth’ provide the misspecifications whose effect we assess.

Estimated sparsities: We use the EbayesThresh package [2] to generate data and estimate
sparsity levels. A product sparse prior whose marginals are a mixture of an atom of prob-
ability at zero and the laplace prior with scale a = 0.5 is considered. The mixing weight is
estimated by maximizing the log-likelihood. Three different estimates ⌘̂med, ⌘̂bf , ⌘̂mix of the
sparsity level are then used:
(a) For point estimation [1] suggests using a threshold �̂med based on the posterior median
of the above prior. For known sparsity level ⌘n the ideal threshold in point estimation is
�Ideal =

p
2 log ⌘�1

n . So, we use ⌘̂med = exp(��̂
2
med/2) as an estimate of the unknown spar-

sity level.
(b) Derive the threshold choice �̂bf based on the Bayes factor as in [2] and use ⌘̂bf =
exp(��̂

2
bf/2) as an estimate of the unknown sparsity level.

(c) Use the probability corresponding to the non-origin support points in the estimated mix-
ture prior as an estimate for the `0 sparsity of the parametric space: ⌘̂mix = (2 + �(�̂bf))�1

where �(w) = g(w)/�(w)� 1 where g is the marginal density of the mixture prior.

Performance comparison. We study the KL risk of the prdes described in Section 5. We
consider prde in the following three regimes each of which had n= 10000:
(a) ⌘n = 0.1. Thus ✓ has 1000 non-zero values.
(b) ⌘n = 0.01. Thus, ✓ has 100 non-zero values.
(c) ⌘n = 0.001. Thus, ✓ has 10 non-zero values.
The noise variance was set to 1 in both cases.

We write p̂E[⌘] as shorthand for the estimators p̂E(y|x) for E 2 {H,T,G,B,S} and with
the sparsity ⌘ now shown explicitly. When the sparsity is estimated as described above, we
write p̂E[⌘̂e] for e 2 {med,bf,mix}.

When the sparsity ⌘n = sn/n is estimated, we evaluate the maximal average KL risk:
⇢M(p̂) := (1� ⌘n)⇢(0, p̂) + ⌘n sup✓ ⇢(✓, p̂) for p̂ = p̂E[⌘̂e]. When ⌘n = sn/n is known, the
maximum risks of p̂E[⌘n] were computed in Table 1 of the main paper (where they are re-
ported relative to the theoretical minimax risk n

�1
RN (⇥[sn])). In tables 2, 3 and 4, corre-
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TABLE 2
Numerical evaluation of the performance of the different prdes under unknown sparsity level. As r varies, the

maximal KL risk for 3 different sparsity estimation methods are reported as ratios to the maximal KL risk of

these prdes under known sparsity. Here, ⌘n = 0.100 and n= 10000.

Sparsity r H-Plugin C-Thresh Grid Bi-Grid SS

1 1.139 0.940 1.106 1.106 1.135

⌘̂med 0.5 1.182 0.957 1.128 1.128 1.125

0.25 1.213 0.936 1.088 1.112 1.131

0.1 1.240 0.886 1.114 1.158 1.098

1 1.127 0.942 1.104 1.104 1.118

⌘̂bf 0.5 1.167 0.958 1.121 1.121 1.111

0.25 1.196 0.943 1.083 1.115 1.121

0.1 1.221 0.887 1.104 1.145 1.097

1 1.008 1.207 0.885 0.885 0.899

⌘̂mix 0.5 0.897 1.158 0.909 0.909 0.910

0.25 0.824 1.198 0.880 0.890 0.934

0.1 0.766 1.264 0.896 0.906 0.939

TABLE 3
Numerical evaluation of the performance of the different prdes under unknown sparsity level. As r varies, the

maximal KL risk for 3 different sparsity estimation methods are reported as ratios to the maximal KL risk of

these prdes under known sparsity. Here, ⌘n = 0.010 and n= 10000.

Sparsity r H-Plugin C-Thresh Grid Bi-Grid SS

1 1.346 0.949 1.237 1.237 1.251

⌘̂med 0.5 1.355 0.987 1.280 1.280 1.249

0.25 1.363 0.967 1.249 1.259 1.229

0.1 1.371 0.989 1.240 1.217 1.198

1 1.345 0.941 1.231 1.231 1.251

⌘̂bf 0.5 1.354 0.982 1.269 1.269 1.244

0.25 1.362 0.966 1.258 1.260 1.230

0.1 1.370 0.985 1.239 1.222 1.188

1 0.911 1.111 0.947 0.947 0.940

⌘̂mix 0.5 0.905 1.102 0.957 0.957 0.947

0.25 0.901 1.117 0.944 0.961 0.963

0.1 0.897 1.110 0.957 0.960 0.990

sponding to sparsities ⌘n = 0.1,0.01 and 0.001, we report the ratios

⇢M(p̂E[⌘̂e])

⇢M(p̂E[⌘n])
.

for e 2 {med,bf,mix} and for E 2 {H,T,G,B,S}. These ratios reflect the change in the
maximum risk of the respective prdes when sparsity level is estimated compared to when it
was known.

We see that p̂B and p̂G perform similarly under misspecification of sparsity levels and
across all the studied regimes: their maximum risks are not too far from their respective
maximum risks under known sparsity. While the other prdes also do not have much inflated
maximum risk, recall that some of them have much higher comparative worst-case risk under
known sparsity. Thus, their maximum risks under misspecification are also much higher than
that of the grid and bi-grid priors. This is evident if tables 2-4 here are read along with table
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TABLE 4
Numerical evaluation of the performance of the different prdes under unknown sparsity level. As r varies, the

maximal KL risk for 3 different sparsity estimation methods are reported as ratios to the maximal KL risk of

these prdes under known sparsity. Here, ⌘n = 0.001 and n= 10000.

Sparsity r H-Plugin C-Thresh Grid Bi-Grid SS

1 1.359 0.978 1.267 1.267 1.286

⌘̂med 0.5 1.363 1.054 1.285 1.285 1.266

0.25 1.367 0.987 1.295 1.284 1.246

0.1 1.371 1.017 1.271 1.242 1.202

1 1.359 0.986 1.263 1.263 1.284

⌘̂bf 0.5 1.363 1.055 1.283 1.283 1.274

0.25 1.367 0.991 1.296 1.280 1.247

0.1 1.371 1.019 1.275 1.240 1.200

1 0.972 1.013 0.974 0.974 0.989

⌘̂mix 0.5 0.972 1.082 0.990 0.990 0.989

0.25 0.972 1.013 0.988 0.990 0.988

0.1 0.971 1.045 0.993 0.990 0.983

1 of the main paper. It may seem curious that p̂B and p̂G outperform versions with known ⌘n

for method e = mix: we interpret this a “finite-⌘” effect, especially as it diminshes as ⌘! 0.
In table 5, we report the average of the estimation error (⌘̂e�⌘n)/⌘n. Methods med and bf

show comparable negative bias while mix has positive bias. For med and bf, all prdes except
C-Thresh had higher maximum risks while their maximal risk is lower when the mix estimate
of sparsity levels is used. C-Thresh has comparatively higher risk at the origin than the other
prdes and so, unlike others it peformed better when sparsity levels were underestimated than
overestimated.

TABLE 5
Relative estimation errors of the sparsity level averaged over replications

⌘n med bf mix

0.1 -0.4770 -0.4504 1.0642

0.01 -0.7985 -0.7981 0.6248

0.001 -0.9000 -0.9000 0.2028

In summary, the estimated sparsity levels ⌘̂e can show significant departures both above
and below the targets ⌘n, thus providing reasonable ‘perturbations’, but the deterioration of
the maximum risks of the grid and bi-grid priors (among others) remains well controlled.
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