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ABSTRACT

We develop new perspectives on the roles of sparsity and shrinkage in predictive den-

sity estimation under Kullback-Leibler loss. Our results explain and extend some

recently observed information theoretic connections between predictive density esti-

mation and the well-studied normal mean estimation problem. We find new phe-

nomena in sparse minimax prediction which contrast with point estimation theory

results and are explained by the new notion of risk diversification. We generalize

these new uncertainty sharing ideas to address the nature of optimal shrinkage over

unconstrained parameter spaces. Our density estimates can be used to construct com-

petitively optimal probability forecasts and our results give some theoretical support

to log-optimality based forecasting techniques used in the fields of weather forecast-

ing, financial investments and sports betting. Motivational stories and examples from

the world of sports, stock markets and wind speed profiles are used to suggest the

scope of the theory developed in this thesis.
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CHAPTER 1

INTRODUCTION

We discuss the role of predictive distributions in forecasting problems. We describe

the traditional set-ups and their information theoretic implications as we gradually

narrow down to our high dimensional predictive framework. We provide examples and

illustrations of our model and its extensions.

This thesis aims to increase our current understanding of high dimensional probability

forecasting problems by incorporating their deep connections with high dimensionality

issues seen in point estimation theory. We would like to state in the very beginning

that our focus is on:

(a) prediction not estimation and

(b) predicting distributions (more specifically densities) not point-predictions.

As in statistical prediction analysis, here our objective is to choose a probability

distribution which will be good in predicting the behavior of future samples (Aitchison

& Dunsmore 1975). If the observed past data X and the unobserved future data Y

are generated from a joint density f(x,y), the objective is to estimate the future

conditional density of f(y |X = x), also referred to as the predictive density (Geisser

1971). For practical purposes, we usually need to forecast functionals of the predictive

density. Good predictive performances can be ensured by using functions of predictive

density estimates which are optimally chosen based on appropriate goodness of fit

measure.

1



CHAPTER 1. INTRODUCTION 2

1.1 Density Estimates in Prediction Analysis

A general framework for predictive density estimation outlined in the pioneering work

of Aitchison & Dunsmore (1975) and Geisser (1993) has been subsequently adapted

in the different fields of statistical decision theory, information theory, game theory,

econometrics, machine learning and mathematical finance. Here, we consider a flex-

ible, parametric predictive model which can accommodate most dependencies in the

data. Suppose we observe X with X1,X2, · · · ,Xm1 independently generated from a

parametric density f(θ,ai)(·) indexed by unknown parameters θ and known parame-

ters A = {ai : 1 ≤ i ≤ m1}. The future data Y = {Y1, · · · ,Ym2} are generated

from successive independent parametric densities {f(θ,bi)(·) : 1 ≤ i ≤ m2} with time-

invariant unknown parameters θ and known parameters B = {bi : 1 ≤ i ≤ m2}. In

such a predictive model the dependence between the past and the future is based on

the time-invariant parameters θ.

Generic Parametric Predictive Model: M

PASTRE OBSERVATIONS: Xi
indep.∼ f(θ, ai )(·) , i = 1, · · · , m1

FUTURE OBSERVATIONS: Yj
indep.∼ f( θ, bj )(·) , j = 1, · · · , m2.

If θ is fixed the true predictive density of Y would be f(θ,B)(·) =
∏m2

j=1 f(θ,bj )(·). We

would like to estimate it by density estimates p̂(.|X = x). A perspective in prediction

inference is to use the concept of predictive likelihoods (Hinkley 1979, Lauritzen 1974)

and its variants (Bjørnstad 1990), to infer about the future Y based on X, with θ

playing the role of a nuisance parameter. Most predictive likelihoods (Butler 1986)

are functions of the future conditional density and can be effectively evaluated based

on efficient predictive density estimates. In this context we would like to empha-

size that the statistical techniques discussed here are different from the widely used

Kernel based non-parametric density estimation techniques (Silverman 1986, Ferraty

& Vieu 2006, Chapter5). However since our model includes parametric densities of

any dimensions, we can incorporate non-parametric regression problems following the

techniques in Nussbaum (1996), Grama & Nussbaum (2002) and Efromovich (1999).



CHAPTER 1. INTRODUCTION 3

One aspect of predictive modeling is that it explicitly avoids the problem of

overfitting the data. In practice it is generally carried out through cross-validation

(Stone 1974). In our results on predictive density estimation (Chapter 3) we would see

similarities with the theory of cross-validation in regression models (Yang 2007). Also,

there are both Frequentist and Bayesian approaches to predictive density estimation

(Smith 1999) though the term predictive density may seem to be more associated with

Bayesian perspective. We would consider both the approaches and would introspect

the relation between their corresponding optimal estimators. To evaluate the perfor-

mance of density estimates we need a goodness of fit measures between densities.

Goodness of fit & Predictive Risk

Given any discriminatory measure L between two densities the loss between the true

predictive density f(θ,B) and its estimate p̂(·|X = x) can be evaluated at each para-

metric value θ

L
(
θ, p̂

(
·
∣∣x)
)
= L

(
f(θ,B)(·), p̂

(
·
∣∣X = x

) )

and averaging the loss over the past X, we have the can evaluate the predictive risk

of the strategy p̂ at θ as

ρL
(
θ, p̂

)
=

∫
f(θ,A)(x) × L

(
θ, p̂

(
·
∣∣x)
)
dx.

There are different choice for a goodness of fit measure like Total Variation, Chi-

squared, Hellinger, Kullback-Leibler, etc (Cha 2007). Any notion of loss on function-

als of the predictive density will depend on the choice of the goodness of fit measure

L. So, the choice of L will be based on the forecasting problem.

Some Examples of the Parametric Predictive Model M are presented next.

Consider a simple forecasting set-up where in the absence of any covariates we ob-

serve m1 i.i.d. past vectors {Xi : 1 ≤ i ≤ m1}. Each of these past vectors

Xi has co-ordinates independently generated from the same parametric distribution

but with different parameters. For example, we can consider Xi being i.i.d. from

a d–dimensional product Poisson or Bernoulli distribution with the associated d-

dimensional mean parameter being fixed but unknown. The objective is to predict
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the distribution of m2 future vectors {Yi : 1 ≤ i ≤ m2} which are generated from the

same product distribution as the past. Discrete predictive models of these kinds are

used for count or binary data. Next, we introduce the Gaussian Regression model.

Often approximate normalization transformations of the data are available and in-

ferences based on Gaussian predictive models can be extended to a wide range of

forecasting problems.

Homoscedastic Gaussian Regression Model: M.1

Past: X ∼ N(A θ, σ2
p I) and Future Y ∼ N(B θ, σ2

f I)

where σp and σf are known and represent the past and future standard deviations

respectively. The past and the future vectors can be of different lengths. A and B

are known design matrices with dimensions m1 × p and m2 × p respectively. X

and Y are of lengths m1 and m2 and related through linear transformation of the

p–dimensional latent parameter θ. If θ were known, then X and Y would have been

independent. Statistical analysis in M.1 depends on proper understanding of the

associated orthogonal model,

Orthogonal Gaussian Predictive Model: M.2

X ∼ N(θ, σ2
p I) and Y ∼ N(θ, σ2

f I)

the past X and the future vector Y are of equal length. X and Y can be n di-

mensional vectors related through the unknown n dimensional location parameter θ.

Here, in both the models M.1 and M.2 we are concerned with only one past and

one future observations. These one-sample models are theoretically tractable and

phenomena seen here can be replicated in multi-sample models through simulations.

A good attribute of M.2 is that multi-sample models of that kind can be reduced to

a one-sample model by using the corresponding sufficient statistics.

Predictive Difficulty of the problem: By r we will be denoting the ratio of the

past to future volatilities. So, r = σ2
f/σ

2
p can lie between 0 to ∞ and is known. If
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this ratio r decreases then predictive difficulty of the problem increases as we will be

predicting a less volatile future density based on comparatively noisy past observa-

tions. For the non-orthogonal model, the role of r is played by the eigen values of the

matrix (A′A)−B′B.

Sequential and Multi-sample Models: Next we describe a multiple sample model

where m1 realizations each of n–dimensions are observed and we would like to pre-

dict m2 future realizations which will be generated from the same distribution. The

locations may be shifted by a linear transformation on latent factor Θ. The errors Ep

and Ef are independent i.i.d ensembles. Usually we would also impose the additional

assumption of Gaussianity. An interesting related case would be if the error matrices

have i.i.d. rows from N(0,Σ). If the data matrices Sp and Sf are known then the

problem will be a fixed design problem. For random design problems, we generally

assume that the rows of Sp and Sf are generated independently from a fixed, known

n–dimensional distribution.

Multiple Regression Model: M.3

Xm1×n = Sp
m1×pΘp×n + Ep

m1×n

Ym2×n = Sf
m2×pΘp×n + Ef

m2×n

Sequential models can be built based on multi-sample models. Here, the observations

are sequentially ordered and at each step the objective is to estimate the predictive

density of the next observation based on the observed past. For example, the objec-

tive at the ith step is to estimate the predictive density fθ,ai for the ith observation

where ai is known based on observing {Xj
d
= f(θj ,aj) : j = 1, · · · , i} where {aj : j ≤ i}

are measurable with respect to the filtration F{i−}. The performance of any predic-

tive scheme is usually based on the cumulative error over a number of steps which

reduces to finding the optimal density estimate separately at each step. So, it would

involve repeated solving of a multi-sample problem. However, the information about

Θ also increases in each step and it may happen that two predictive density estimates

which differ a lot initially (when the sample size is small) have reasonably close cu-

mulative loss over a large number of steps. So, optimal estimators in multi-sample
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model does not necessarily produce efficient sequential strategies. Here, we mainly

study M.1,M.2 and probable extensions of their results to M.3 or to a sequential

framework.

Evaluation of Predictive Schemes is another important issue. Theoretically we

can calculate expressions of the predictive risk (at least for the predictive density es-

timate) at each parametric value θ. However, in practice θ is unknown. Developing

statistically consistent scoring rules for evaluating sequential predictive schemes is

an interesting and active area of research (Lai, Gross & Shen 2011, Lichtendahl &

Winkler 2007). As we mainly concentrate on non-sequential models, we will skip this

issue entirely. We will use a sort of “oracle” estimate by waiting and using (a lot)

of future data to construct a very consistent estimate θ̂f of the true θ. In our data

illustrations, the predictive schemes will be evaluated at the parametric value θ̂f . We

will use θ̂f only for evaluation purpose.

Forecasting with High-dimensional Data: Traditionally, much of parametric

statistics has been about fixed dimensional parametric models. In the context of our

model M, this would mean that θ ∈ R
d where d is fixed. Almost all the results

in predictive density estimation until the last decade are in this fixed dimensional

paradigm. These fixed dimensional results are usually large sample and distribution

independent (holds for a large class of parametric families which obey standard reg-

ularity conditions) sequential results (Aslan 2006).

However, due to the huge recent progress in data gathering and storing technolo-

gies, most modern data sets are quite massive and complex. These complicated data

sets need to be modeled by a large number (which may be unbounded) of inter-

acting parameters and the traditional fixed dimensional techniques are ineffective.

Recent work of Xu (2007), Ghosh, Mergel & Datta (2008) and Maruyama & Straw-

derman (2012) have explored estimation of predictive density in high dimensional

Gaussian probability spaces. This thesis builds on these ideas and will deal mainly

with high-dimensional Gaussian models. In the models that were described before,

the high-dimensional framework involves:

M.1 m1, m2 → ∞ and m1/m2 → c ∈ (0, 1) and p → ∞.
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M.2 n → ∞.

M.3 m1, m2, n, p → ∞ and m1/m2 → c ∈ (0, 1).

In some cases we will have further prior constraints on the model which will put

realistic and tractable restrictions on the parametric spaces. Afterwards, we describe

detailed illustrations of these models.

1.2 Prediction with Relative Entropy Loss

Here, we use the information theoretic measure of Kullback & Leibler (1951) as the

goodness of fit measure between the true and estimated distributions

L
(
θ, p̂

(
·
∣∣x)
)
=

∫
f(θ,B)(y) log

(
f(θ,B)(y)

p̂
(
y
∣∣x
)
)

dy .

Averaging over the past observations X, the predictive risk of the density estimate

p̂(· |X = x) at θ is given by

ρ
(
θ, p̂

)
=

∫∫
f(θ,A)(x) f(θ,B)(y) log

(
f(θ,B)(y)

p̂
(
y
∣∣x
)
)

dy dx . (1.1)

The relative entropy predictive risk ρ
(
θ, p̂

)
measures the exponential rate of diver-

gence of the joint likelihood ratio over a large number of independent trials (Larimore

1983). In classical fixed-dimensional parametric analysis, the minimal predictive risk

estimate would maximize the expected growth rate in repeated investment scenarios

(Cover & Thomas 1991, Chapter 6 and 15). Competitive optimal predictive schemes

(Bell & Cover 1980) for gambling, sports betting, portfolio selection, etc can be con-

structed from predictive density estimates with optimal Kullback-Leibler (KL) risk

properties. In data compression set-up L
(
θ, p̂

(
·
∣∣x)
)
reflects the excess average

code length that we need if we use the conditional density estimate p̂ instead of

the true density to construct a uniquely decodable code for the data Y given the

past x (McMillan 1956). The notion can be extended to a sequential framework
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where minimizing the predictive risk would result in the minimum description length

(Rissanen 1984, Barron, Rissanen & Yu 1998) based estimate of the true parametric

density (Liang & Barron 2005).

In statistical prediction analysis with this entropy loss, the interesting functionals

of predictive density estimates are:

(a) simultaneous Probability estimates of several prespecified events,

(b) predicting behavior of functions of linear transformations of the future Y , in par-

ticular the moments of log(c′Y ) where c is a fixed vector.

The modern data deluge has influenced a rapid evolution of these statistical meth-

ods towards simultaneous multi-parametric analyses (Donoho 2000) and traditional

decision making techniques based on fixed dimensional predictive densities needs ex-

tension to high-dimensional parametric models in the following applications:

Data compression: Coding of high-dimensional data (Liang & Barron 2004, Candès

2006, Guo, Shamai & Verdu 2005) needs construction of a decodable code for Y

given the value of X. If the high-dimensional parameter θ is known the optimal

expected length of such a code would have been based on the true density f(θ,B).

In universal data compression (Rissanen 1984), without any prior knowledge of

θ, a choice of predictive density p̂ (Y|x) will be used instead of the true density

to construct the code. The excess average code length in that case is given by:

Eθ [log2(1/p̂(Y|x))− log2(1/f(θ,B)(Y))] = L
(
θ, p̂ (.|x)

)
/ log 2 bits. (1.2)

We ignore the issue of discretization as the loss will be the limit redundancy

based on infinitesimally fine choice of discretizations (Csiszár 1973, Vajda 2002).

Now, if the parameter θ was generated from the distribution π then the minimal

excess average code length is given by the Bayes risk of the prior π on θ (Liang

2002). The integrated Bayes risk of the estimator p̂
(
·
∣∣x
)
with respect to the

prior π is given by:

B(π, p̂) =

∫
ρ(θ, p̂) π(θ) dθ.

The marginal density of the past is given by mπ(x) =
∫
f(θ,A)(x) π(θ) dθ and
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for any x with mπ(x) < ∞ the posterior density is given by The Bayes estimator

with respect to the prior π is given by π(θ|x) = f(θ,A)(x) π(θ){mπ(x)}−1. The

Bayes risk B(π) of a prior π is min p̂B(π, p̂) and the minimum is attained at the

Bayes predictive density. Under the KL loss and for any family {f(θ,.) : θ ∈ R
d}

of uniformly bounded (above) densities, the Bayes predictive density is given

by

p̂π(y|x) =
∫

f(θ,B)(y) π(θ|x) dθ for all x such that mπ(x) < ∞.

The formal proof and associated assumptions are stated in Chapter 2. Now,

if the prior π and the class of uniformly bounded densities f is such that

mπ(X) < ∞ almost surely, then the Bayes estimator also minimizes the mutual

conditional information Iπ(Θ;Y|X) between the unknown parameter θ and a

future observation Y given the past X = {X1, · · · ,Xm}. By definition, we have

Iπ(Θ;Y|X) = E

[
log

(
p(y, θ|x)

p(y|x) p(θ|x)

)]

where the expectation is over the true joint density

p(x,y, θ) = π(θ) f(θ,A)(x) f(θ,B)(y) and p(y, θ|x){p(θ|x)}−1 = p(x,y, θ){p(x, θ)}−1

is the ratio of the true conditional distributions and p(x, θ) = π(θ) f(θ,A)(x).

And so, the minimum of Iπ(Θ;Y|X) over the class of all possible conditional

densities p̂(y|x) will be attained at p̂π(y|x) and the minimum value is B(π).

Thus, minp̂B(π, p̂) equals the mutual conditional information Iπ(Θ;Y|X) be-

tween the unknown parameter θ and the future data Y given the past X. Mu-

tual information is associated with the notion of association between random

variables and zero conditional mutual information denotes conditional indepen-

dence. Again, based on the decomposition of

Iπ(Θ;Y|X) = Iπ(Θ;X,Y)− Iπ(Θ;X)
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it can be seen that minimizing the Bayes predictive risk B(π, p̂) would signify

extracting the maximum possible dependence of Y and Θ based on X. The in-

formation capacity of the channel C is given by the maximal mutual conditional

information maxπ∈M Iπ(Θ;Y|X) over an appropriate class of priors. Here, we

will evaluate C by explicitly calculating the maximal Bayes risk maxπ∈M B(π).

Sequential Investment with side information: Investment schemes based on high-

frequency trading need predictive strategies on financial instruments governed

by a large number of parameters (Fan, Lv & Qi 2011). The log-optimal predic-

tive strategies of Barron & Cover (1988) will depend on the high-dimensional

density estimates minimizing the predictive risk in Equation 1.1.

Sports Betting: Online betting portals have not only increased traffic but also

caused a massive transformation of the fixed-odds sports betting market (Buchdahl

2003). Betfair 1, one of the leading betting exchanges in U.K. matches 15

times as many daily transactions as the London Stock Exchange. These on-

line stochastic markets allow bets with the most lucrative odds to be placed

on the joint occurrences of several events (multiple bets). As historical data

can be accessed through portal-supplied application programming interface,

statistical techniques are being increasingly used in designing betting strate-

gies (Magee 2011) and multi-parametric models are required to estimate the

multiple-bets probabilities.

1.3 Some examples of the roles of Sparsity and

Shrinkage

The notion of shrinkage developed in Stein (1956) and the theory of sparse estimation

(Donoho, Johnstone, Hoch & Stern 1992, Donoho & Johnstone 1994b, Mallat 2009,

Elad 2010) are very helpful in constructing statistically optimal procedures in a wide

range of data problems. In the following examples, we demonstrate how incorporating

1http://sports.betfair.com/
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these two notions in probability forecasting problems can increase the efficiency of

prediction schemes.

1.3.1 Sports Betting, Proportional Gambling & Log-Optimality

We consider a typical betting scenario (shown in Table 1.1) based on a game whose

outcomes are completely determined by the individual performances X1, · · · , Xk of

the k players involved in the game. By X we represent the performance vector

and a gambler has the option to bet on m outcomes J1(X), J2(X), · · · , Jm(X) which

depends solely on X and have respective odds given by the vector o = {o1, · · · , om}.
For simplicity, we initially assume that the outcomes are mutually exclusive and

exhaustive. The gambler distributes his wealth over the m events such that bi fraction

is invested in the outcome Ji and so we have the following constraints on the bets:

bi ≥ 0 and

m∑

i=1

bi = 1.

So, at the end of the game the gambler will have multiplied his wealth by bioi if X is

such that the outcome Ji occurs. His wealth is given by

S(X) =
m∑

i=1

bioi I(Ji) (1.3)

where I(Ji) = 1 if Ji occurs and is 0 otherwise.

Assuming that the performance vector X are generated from a multivariate distri-

bution, each of the outcomes has a inherent unknown probability pi = P(Ji occurs)

for i = 1, . . . , m. Now, if we consider a repeated gambling scenario where the gambler

reinvests his wealth in succession on a sequence of n independent games. Also, if we

assume that each of the games involve the same k players and the performance vec-

tors X1,X2, · · · ,Xn from the n games are not only independent but also identically

distributed, then the gambler’s wealth after n races is given by Sn =
∏n

i=1 S(Xi). It
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Outcomes Probability Odds Bets

J1(X) p1 o 1 t1
. . . .
. . . .

Jm(X) pm om tm

Table 1.1: A sports betting scenario with the odds constrained to be ti ≥ 0 and∑m
i=1 ti = 1. The probabilities p = {p1, · · · , pm} are unknown and

∑m
i=1 pi = 1.

follows from Cover & Thomas (1991, Theorem 6.1.1) that as n → ∞ we have

Sn = 2nW (b,p)(1 + o (1)) where W (b, p) = E(log S(X)) =
m∑

i=1

pi log(bioi)

is the doubling rate of the gambler’s wealth. On maximizing this long term growth

rate over the varied choices of betting strategies b, it can be seen that the optimal

strategy is to allocate the bets proportional to the unknown probability vector p.

If the events are mutually exclusive then the optimal doubling rate of the

gambler’s wealth is W ⋆(p) =
∑m

i=1 pi log (oi/pi ) and is achieved by the pro-

portional gambling scheme b⋆ = p.

Lemma 1.3.1.

Proof. See Theorem 6.1.2 in Cover & Thomas (1991).

So, to optimize the long term growth rate of the gambler’s wealth it is important to

precisely estimate the unknown probabilities p of the betting events. In particular if

the odds are fair with respect to some distribution i.e.

n∑

i=1

o−1
i = 1 and qi = oi for i = 1, · · · , n



CHAPTER 1. INTRODUCTION 13

then the doubling rate is

W (b, p) = D(p||q)−D(p||b) (1.4)

where D denotes the KL loss between discrete probability distributions. Thus, the

doubling rate in this case is the difference between the distance of the bookie’s esti-

mate from the true distribution and the gambler’s estimate from the true distribution.

Also, note that as long as the performance vectors {Xi : 1 ≤ i ≤ n} are independent

these results carry over. So, here on, we drop the unrealistic assumption of invariance

of the players and their intrinsic capabilities and consider the situation where the

gambler’s bets repeatedly over independent games played by possibly different play-

ers. Next, we will be relaxing some of other assumptions we made in the beginning

as we move to a predictive set-up. For ease of demonstration we describe the results

through the example of horse racing.

Horse Race Example:

Suppose there are k horses running in a race. Usually, k is between 10 to 15. Some

of the possible events to bet on the race are:

• Win: Predict the winner.

• Exacta: Predict the top 2 in correct order.

• Trifecta: Predict the top 3 in correct order.

• Superfecta: Predict the top 4 in correct order

These outcomes are completely determined by all their individual finishing times. We

further assume that the finishing times follow a multivariate Gaussian distribution

and consider the set up where we observe only one k–dimensional observationX which

is generated from the normal density with mean at θ and covariance Σp. Based on X,

we would like to forecast the probability of the outcomes for future sample Y which

is also generated from the Gaussian distribution with same mean. Thus,

X ∼ N(θ,Σp) and Y ∼ N(θ,Σf ).
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In practice Σp and Σf are unknown and need to be estimated. However, as multi-

sample Gaussian models are reduced to a one-sample framework through the sufficient

statistics, we generally have Σf = rΣp where r is known. Here, we will also assume

that Σp is known. Maximizing the long term growth rate would imply maximizing

the individual growth rates for each of these games. Now, if we use the predictive

density estimate p̂ to forecast the future probabilities then for the fair odds case by

Equation 1.4 we have the growth rate as,

Gw(θ, p̂) = ρD(θ, q)− ρD(θ, p̂)

where ρD is the corresponding discrete predictive entropy risk. Thus, the maximum

growth rate over the class of C predictive strategies is given by

Gw(θ) = ρD(θ, q)−min
p̂∈C

ρD(θ, p̂).

We are interested in finding lower bounds on Growth rate as the unknown parameter

θ varies in the k–dimensional parametric spaces. For example, the worst case rate

min
θ∈Θ

Gw(θ) ≥ min
θ∈Θ

ρD(θ, q)−max
θ∈Θ

min
p̂∈C

ρD
(
θ, p̂

)
.

Similarly, guarantees on other attributes of the growth rate will be related with the

maximin value of the predictive risk – the maximum being on the set of possible

values that the unknown parameter can take and the minimum is over the class of

predictive strategies that we use.

Overlapping Events: Here, we discuss the scenario where the events are not mu-

tually exclusive. In case of horse betting there is a hierarchy among the Superfecta,

Trifecta, Exacta and Win bets. Based on a correct Superfecta bet, the successful Tri-

fecta, Exacta and Win bets are completely determined and similar properties hold as

we move higher up in the tree based on those events. Now, the wealth of the gambler

at the end of a horse race is still given by Equation 1.3. However, as the events now

can be overlapping the long-term or the expected growth rate is no longer the same,
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i.e.

W (b, p) = E(log S(X)) 6=
m∑

i=1

pi log(bioi).

A lower bound on this growth rate can be derived based on the fact that logS(X) ≥
∑

i log(bioi) I(Ji) and so

W (b, p) ≥
m∑

i=1

pi log(pioi)−
m∑

i=1

pi log(pi/bi).

With the odds being prefixed, maximizing the R.H.S. above over the class of betting

strategies with b ≥ 0 and 1′b = 1 will yield a lower bound on the maximum growth

rate

Gw(pi, oi) ≥
m∑

i=1

pi log(pioi)− min
b≥0,1′b=1

m∑

i=1

pi log(pi/bi)

If the bets of these overlapping events are set based on their corresponding probability

with respect to some distribution Q then we have the following lower bound on the

growth rate Gw(pi, oi) :

m∑

i=1

pi log
(
pioi
)
−

m∑

i=1

P (Ji) log

(
P (Ji)/Q(Ji)

)
−
( m∑

i=1

P (Ji)

)
log

( m∑

i=1

Q(Ji)

)
.

Now, if the betting events are such that the maximum number of overlaps in that set

is upper bounded by c (say) and both the true probability distribution P and the one

used for betting Q are lebesgue measurable with respective densities being p and q,

then by the following Lemma 1.3.2 we have,

Gw(pi, oi) ≥
m∑

i=1

pi log(pioi)− cD(p||q)− log(c)

m∑

i=1

P (Ji)

where D(p||q) =
∫
p(x) log{p(x)/q(x)} dx is the differential relative entropy between

P and Q. Thus, in the set-up of prediction games, where based on side-information
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we use predictive densities to construct our bets, a lower bound on the worst-case

long-term growth rate is given by

Gw(pi, oi) ≥
m∑

i=1

pi log(pioi)− c min
p̂

ρ
(
p, p̂
)
− log(c)

m∑

i=1

P (Ji)

and similarly as in the non-overlapping case, guarantees on the Growth rate will

involve the maximin value of the predictive entropy risk.

Now, for the proof of Lemma 1.3.2 consider the set-up with a countable collection

of measurable sets A = {Ai : i = 1, · · · , m} with m ≤ ∞ in R
k. The collection

is exhaustive if ∪m
i=1Ai = R

k. We can construct a mutually disjoint partition B =

{Bi : 1 ≤ i ≤ 2m} of the collection A where Bi = ∩m
j=1A

w[i,j]
j where w[i, j] is the

jth term in the binary expansion of i and for any set A0 = Ac and A1 = A. We

do not track null Bi in B and would ignore them through out. Let κ(Bi) denotes

the number of repetitions of the subset Bi in the collection A i.e κ(Bi) = card{j :

Bi ∩ Aj 6= φ and j = 1, · · · , m}. Note that κ(Bi) ∈ [1, m] and under finite overlaps

we can assume that sup2m

i=1 κ(Bi) = c < ∞ and we define a weight function on R
k

as w(x) =
∑2m

i=1 c
−1 κ(Bi) IBi

(x). Note that, w(x) ∈ (0, 1] acts as a tilt function for

the densities p(x) and q(x). Under this set-up, we have the following lemma which

provides a lower bound on the growth rate.

If the probability measure P and Q have densities p and q with respect to

Lebesgue measure, then for any countable collection of exhaustive measurable

sets A we have,

m∑

i=1

P (Ai) log
{
P (Ai)/Q(Ai)

}
≤ cD(p||q)

where D(p||q) =
∫
p(x) log{p(x)/q(x)} dx is the differential relative entropy

between P and Q.

Lemma 1.3.2.

Proof. If the collection consists of mutually disjoint sets then the proof follows from
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the data processing inequalities associated with quantization idea in information the-

ory. The function t log t is strictly convex if t > 0. So for any positive random vari-

able T and any sigma-finite measure, by Jensen’s inequality we have, Eµ(T log T ) ≥
Eµ(T ) logEµ(T ). For any measurable set A, with T (x) = p(x)/q(x) and measure

µ(x) = q(x)/Q(A) dx we have P (A) logP (A)/Q(A) ≤
∫
A
p(x) log{p(x)/q(x)} dx and

so the proof extends to mutually exclusive cases.

If the events are not mutually disjoints then we can construct its mutually disjoint

partition B = {Bi : 1 ≤ i ≤ 2m} as above and using the Log-Sum inequality (Cover

& Thomas 1991, Theorem 2.7.1) separately on each Ai we have,

m∑

i=1

P (Ai) log{P (Ai)/S(Ai)} ≤
2m∑

i=1

κ(Bi)P (Bi) log{P (Bi)/Q(Bi)}

and again using the above quantization argument we can show that the R.H.S. above

is less than c
∫
w(x)p(x) log{p(x)/q(x)} dx which we denote as cD(w.p||w.q). Now,

observe that

D(w.p||w.q)−D(p||q) =
∫ (

1− w(x)
)
p(x) log

{
q(x)/p(x)

}
dx

≤ log

[ ∫ (
1− w(x)

)
q(x) dx

]

by Jensen’s inequality and the result follows as
∫ (

1− w(x)
)
q(x) dx ≤ 1.

If the collection is not exhaustive we can restrict our densities to the corresponding

subsets of Rk. The above calculation can be easily generalized to incorporate over

other kinds of bets like show and place bets.

Sub-fair odds: Generally, the betting portals and the organizers take a cut of all

the bets. Under this circumstances we have
∑m

i=1 o
−1
i > 1 and proportional gambling

is sub-optimal. Different modifications of the proportional gambling schemes are

used in practice. The partial-Kelly strategies (Thorp 2000) bet only a fraction of the

money and leave the rest as cash. The Constant Relative Risk Aversion Strategies
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(Kadane 2011) are based on stable utility functions such as

U(f) =
1− f 1−β

β − 1
for β > 0.

Studying the efficiency of these strategies would involve generalizing the entropy

loss function over the class of α-divergences and more generally over the class of f -

divergences which is also known as Csiszar-divergences, Csiszar-Morimoto divergences

or Ali-Silvey distances (Cichocki & Amari 2010). Let p and q be two lebesgue mea-

surable densities then for a convex function f such that f(1) = 0, the f -divergence

of q from p is:

Df(p||q) =
∫

f
(
t(x)

)
q(x) dx where t(x) = p(x)/q(x).

Many common divergences, such as KL-divergence, Hellinger distance, and total vari-

ation distance, are special cases of f -divergence, coinciding with a particular choice of

f . Table 1.2 lists many of the common divergences between probability distributions

and the f function to which they correspond. In the class of α-divergences with α = 0

we have 2 times the Hellinger distance and our predictive risk corresponds to α = 1.

In this thesis we restrict ourselves to the entropy loss. However, the proof techniques

used can be extended to other loss functions. Particularly, the results in Chapter 3

can be extended to the class of α–divergences and phenomena described in Chapter 4

seem to hold for any unbounded α–divergences.

1.3.2 Role of Shrinkage

Above, in the context of sports betting we saw that it is essential to minimize the

predictive risk over the different choices of predictive density estimates. In the cases,

where no prior information about the multivariate parameter θ is available, we want

our density estimate p̂ to control ρ(θ, p̂) better than other estimates for all θ ∈ R
k.

As such we want to use admissible density estimates p̂ for which there does not exist
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Distribution f(t)

χ2 –Distance t2 − 1

Total variation Distance
∣∣t− 1

∣∣

α ∈ (−1, 1) 4(1− α2)−1
[
1− t (1+α)/2

]

α–Divergence α = −1 − log t
α = 1 t log t

Table 1.2: The class of f–divergences.

any other estimates q̂ such that

ρ(θ, q̂) ≤ ρ(θ, p̂) for all θ ∈ R
k

and strict inequality for at least one parameter value. Such an estimator will also

minimize the maximum predictive risk over the entire parametric space.

The notion of shrinkage is helpful in constructing such admissible decision rules.

We explain it in the simple orthogonal Gaussian Regression model M.2. The best

invariant density estimate here is the multivariate product Gaussian density centered

around X and with variance (σ2
f + σ2

p) · I. As we will be seeing in Chapter 2, the

best invariant density is the Bayes predictive density from the uniform prior and is

denoted by p̂U . It has constant predictive risk

ρ(θ, p̂U) =
k

2
log(1 + r−1) for all θ ∈ R

k.

Density estimates dominating p̂U can be constructed even within the Gaussian family

by moving either to a better location choice θ̂ or to a better estimate of scale ŝ or

both. The resultant estimates are of the form N(θ̂, ŝ · I). Shrinking the canonical
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location estimate X towards the overall mean provides good choices of θ̂ and using

proper scale estimates ŝ which are lower than σ2
f+σ2

p produces data-adaptive flattened

density estimates with better risk properties. These ideas can be extended to address

admissibility of non-gaussian estimates and also to other parametric model.

1.3.3 Prediction along a curve

Suppose we observe a series of observations X = {X(ti) : 1 ≤ i ≤ m1} each of which

is a noisy evaluation of an unknown function f (with domain being a subset of R)

at that point. The entire function and its domain remain invariant in the future and

noisy realizations Y sampled at equispaced {sj : 1 ≤ j ≤ m2} points will be observed

in the future. A point to note that the future and past sampling intervals are both

equispaced but can be different. Many objects of interest depend on prediction of the

behavior of the future sample Y and can be addressed by estimating a simultaneous

predictive density of the future vector Y at the time points {sj : 1 ≤ j ≤ m2} based

on the past vector X.

It follows from discussions later in Section 1.3.5, that in following set-up

PASTRE OBSERVATION: X(ti) = f(ti) + σ ǫ1,i, i = 1, . . . , m1

FUTURE OBSERVATION: Y (sj) = f(sj) + σ ǫ2,j , j = 1, . . . , m2.

the simultaneous predictive entropy risk of the predictive density estimate ĝ(Y|X)

R(m1,m2)(f, ĝ) =
1

m2

m2∑

l=1

EY,X|f

(
log

p
(
Y (sl)

∣∣f(sl)
)

ĝ
(
Y (sl)|X, Y [sl−])

)

is related to maximizing the growth rate in along this stationary curve. Here, Y [sl−]

denotes the vector of future observations before the point sl. As both m1 and m2

tend to infinity in a way such that m1/m2 = r ∈ (0,∞), the predictive risk converges

to the integrated likelihood ratio over the domain of the function

lim
(m1,m2)→∞

R(m1,m2)(f, ĝ) →
∫ 1

0

EX,Y|f log
{
p(Y|f(u))/ĝ(Y|X)

}
du.
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0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 0.66 0.72 0.78 0.84 0.90 0.96

Figure 1.1: Schematic diagram showing the prediction problem along a unknown sta-
tionary curve which is represented by the smooth gray line. The black dots represent
noisy observations sampled from the function at equispaced intervals and the dot-
ted blue line denotes a future realization from the curve. An object of interest can
be the event that the future blue line lies entire in the gray box. We usually need
simultaneous prediction of several such events.

This set up, demonstrated pictorially in Figure 1.1, also corresponds to predictive

density estimation problems in Non-parametric Regression models.

1.3.4 Role of Sparsity

Usually, the unknown function f of the curve prediction problem lies in a smooth class

of functions. Appropriate orthonormal transformations can translate the smoothness

of these function classes to sparsity of the basis coefficients. Suppose, for simplicity

that m2 is an integral multiple of m1 and there exist suitable orthonormal transfor-

mation {φi : 1 ≤ i ≤ m2} such that corresponding matrices ΦA and ΦB transform
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the prediction problem into

U = m−1
1 Φt

AX and V = m−1
2 Φt

BY.

The smoothness of the function class can be characterized by sparsity assumptions

on the transformed basis coefficients

θi =

∫ 1

0

f(t)φi(t) dt, i = 1, . . . , m2.

Under this transformation the curve prediction problem reduces to our orthogonal

Gaussian regression model M.2 where the transformed

Past: U |θ ∼ N
(
θ̃, m−1

1 I
)

and the future V |θ ∼ N
(
θ, m−1

2 I
)
and r = m1/m2

When m1 < m2, θ̃ is a sub-series of the m2 dimensional parameter θ indexed at

the corresponding m1 points. As m2 becomes large, depending on the smoothness of

the class of function, the high-dimensional parameter θ is generally constrained to

smaller subsets Θ of Rm2 . We can incorporate these restrictions on the parameter

space by using function spaces such as Besov and weak ℓp balls. Weak sparsity based

on ℓp balls of varying moments (denoted by the shape parameter p) model the decay

of the basis coefficients through power law by restricting the lth largest coefficient to

be lower than the radius C

|θ|(l) ≤ Cl−1/p, l = 1, 2, . . . , m2.

Studying the worst-case predictive risk over weak ℓp balls can be reduced to evaluating

the minimax risk in Model M.2 (also known as Gaussian sequence model) as the

unknown parameter space Θ varies over a wide class of ℓp balls with shape parameter

p and normalized mean radius ηm2,p both varying in (0,∞):

ℓp balls: Θm2,p(Cm2) =

{
m2∑

i=1

|θi|p ≤ Cm2

}
with mean radius ηm2,p = σ−pCm2/m2.
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Figure 1.2: Schematic diagram representing the different shapes of ℓp sparsity. In
green, skyblue, blue and black we have 2 dimensional ℓp spaces with moment p =
∞, 2, 1 and 0.5 respectively. The dotted red line shows exact (ℓ0) sparsity.

We can also impose exact or ℓ0 sparsity on our parameter space which upper bounds

the number of non-zero co-ordinates of the parameter θ. As such,

ℓ0 sparsity: Θ0(m2, s) =

{
θ ∈ R

m2 :

m2∑

i=1

I[θi 6= 0] ≤ s

}

can be used for sparse coding and for prediction in sparse networks. Figure 1.2 shows

the different notions of ℓp sparsity. As such the worst-case or the minimax predictive

risk for the smooth stationary curve prediction problem is equivalent to the minimax

predictive density estimation in M.2 under the varied ℓp sparsity restrictions on the

transformed parameter space Θ.

For a smooth function class F with any p ∈ (0,∞) and fixed ratio m1/m2 =

r ∈ (0, 1) and with ηm2,p → η as m2 → ∞ we have,

min
ĝ

max
f∈F

R(m1,m2)(f, ĝ) ∼
(
min
p̂

max
θ∈Θm2,p(η)

ρ(θ, p̂)

)
(1 + o (1)) as m2 → ∞.

Lemma 1.3.3.

Proof. The proof follows from minor modification of the proof of Theorem 2.1 in Xu

& Liang (2010).
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1.3.5 Growth rate in stock investments

Consider a daily trading scenario where we trade at n–predetermined time points

0 ≤ t1 < t2 · · · < tn in the day. The objective is to maximize the cumulative return

at the end of each successive day. Let us consider the simplest case where we trade

only on financial instruments associated with a single stock. Let the variable Xi

denote the differential of the logarithm of the stock price Si at time ti. So, Xi =

∇ logS(ti) = log Si/Si−1 for i = 0 · · · , n. Note, that the profit from any concerned

financial instrument based on that stock which expires or is exercised time ti is a

function of f(yi : 0 ≤ i ≤ n). We model these stock prices by linear combinations of

past fluctuations of other related instruments. Let ai be the fluctuations of the other

related instruments in appropriate scale (log transformed in case of stock prices) and

ai is adaptive to the filtration Fi i.e. there are measurable functions with respect to the

filtration produced by market knowledge before ti. We model xi = aTi θ+ǫi where ǫi is

white noise, θ reflects the market structure based on partial cross dependence and ai

may include lagged stock prices of related assets. Assuming that the market structure

θ is invariant in short term, the problem becomes that we observe X = Aθ + ǫ and

the future price Y = Bθ + ǫ where B are known regressors.

Some examples of different forms of f are:

• Pay-off for a Call Option with strike priceK bought at cost C and exercised after

time t is max{ST −K, 0} and hence the return is C−1e−rtmax{ST −K, 0}. And,
for a put option bought at price P with strike priceK is P−1e−rt max{K−ST , 0}
where r is the risk-free rate of interest.

• There are different kind of exotic options which may depend on the entire path

of the stock price like Bermuda options.

So, if li strategies executed at time i produces f [i, l](Fi) return then the return at the

end of the day will be

n∏

i=i

li∏

l=1

f [i, l](eY) = exp{W (θ)}(1 + o(1))
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where W (θ) = Eθ

[∑n
i=i

∑li
l=1 log f [i, l](Y)

]
where the expectation is over the true

density of Y. Maximizing the growth rate would involve maximizing W (θ) which

can be done by using Monte Carlo simulations. However, the true density of Y is

unknown as the parameter θ is unknown. So instead of the true density we can use

predictive density estimate p̂(Y|X) to optimize the growth rate W (p̂) over the set

of actions. The following lemma shows that difference between this pseudo growth

rate W (p̂) and the true growth rate W (θ) is less than the predictive entropy risk.

Thus, evaluation of the minimax predictive risk will provide guarantees on the most

conservative growth rate achieved by actions based on predictive density estimates.

For any θ and any predictive density estimate p̂(Y|X) we have

W (θ)−W (p̂) ≤ ρ(θ, p̂).

Lemma 1.3.4.

Proof. The result follows by adapting the proof of Theorem 15.4.1 in Cover & Thomas

(1991) for the predictive regime.

Reduction: If A has full rank then the above model (based on M.2) can be

further reduced to

X = Aθ + ǫ1

Y = Bθ + ǫ2
⇔ CX = Bθ + E1

Y = Bθ + ǫ2

where C = B(A′A)−1A′ and E1 = N(0,Σ) with Σ = C ′C. Usually, θ is high-

dimensional and it will be beneficial to incorporate the notions of shrinkage in these

models. Time variability can also be incorporated here through the location structure

θ. Sequential probability models θt+1
d
= p θt + (1 − p)F on the location structure

θt at time t with fixed but unknown probability p ∈ (0, 1) and known cdf F , corre-

spond to rapidly trend changing environments. In such a model, augmenting change

point analysis to the decision theoretic behavior of the relative entropy risk will yield

sequential log-optimal investment strategies with side information.
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1.4 Our contributions and layout of the thesis

Recently, decision theoretic parallels have been found between point estimation theory

and the predictive density estimation problem. Table 1.3 summaries the connections

across these two estimation theory regimes. Here, we build on these parallels and

provide new insights on the roles of sparsity and shrinkage in the predictive regime.

We develop the new notion of risk diversification to construct minimax optimal, sparse

density estimates. This new concept of risk diversification is also related to the nature

of optimal shrinkage in unrestricted parameter spaces.

Decision Theoretic Issues Point Estimation Predictive Density

Admissibility in
Unrestricted space

Shrinkage priors Stein (1974) Komaki (2001)
Strawderman (1971) George, Liang & Xu (2006)

Complete Class & Bayes Rules Brown & Hwang (1982) Brown, George & Xu (2008)

Minimaxity over &
Restricted space

Ellipsoids Pinsker (1980) Xu & Liang (2010)

Sparsity Constraints Donoho et al. (1992) Evaluated here

Table 1.3: Parallels between Point Estimation of the Normal mean under quadratic
loss and Predictive Density Estimation under KL loss

We then combine our information theoretic optimality results of the predictive

risk with the rich theory around log-utility maximization (Kelly 1956, Breiman 1961)

to produce log-optimal probability forecasting strategies for a wide range of predic-

tion problems. In spite of some its drawbacks (Samuelson 1971, Samuelson 1979) the

log-utility maximization philosophy is extremely popular and Kelly criterion based
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methods have become a part of the mainstream investment theory (Poundstone 2006,

MacLean, Thorp & Ziemba 2011). This thesis provides some theoretical support to

many of these methods. Figure 1.3 displays the main ideas contained in the thesis.

Next, in Chapter 2 we introduce the different classes of predictive densities and elab-

HIGH-DIMENSIONAL
POINT ESTIMATION

RISK DIVERSIFICATION

OPTIMAL
PREDICTIVE
DENSITY

ESTIMATES

INFORMATION THEORY:
LOG-UTILITY MAXIMIZATION

RELIABLE

PROBABILITY

RFORECASTS

Figure 1.3: Diagrammatic representation of the main ideas contained in the thesis.

orate on some of the basic calculations with the predictive entropy loss. In Chapter

3, we describe the role of shrinkage in the class of all Gaussian density estimates.

Here, we construct data-adaptive, linear predictive density estimates which are ad-

missible in the unrestricted parametric space. Chapter 4 is about prediction under

sparsity restriction. We introduce the role of risk diversification to explain why we

need to move outside the Gaussian family to construct minimax optimal estimates.
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CHAPTER 2

TYPES OF PREDICTIVE DENSITY

ESTIMATES

We build the decision-theoretic foundation for the predictive regime by discussing four

natural sub-classes of predictive density estimates and their corresponding risk calcu-

lations. We describe how the KL risk of these predictive density estimates can be

expressed in terms of the quadratic risk of their corresponding location estimates.

We consider the Gaussian sequence model M.2 described in Chapter 1 where we

observe only one n–dimensional past observation vector X|θ ∼ N(θ, I) and the future

observation Y|θ ∼ N(θ, rI). If θ were known and fixed then X and Y would

have been independent. Our risk calculations will depend on the future to the past

variability r. As r is known, a natural class of density estimates will be densities

in the same parametric class as the future density. They are called plug-in density

estimates as they are constructed by replacing the unknown location parameter θ by

estimates θ̂ (X) in the parametric form φ(Y| θ, r) of the true density. By φ(·|θ, r)
we denote multivariate Gaussian density with mean θ and variance r · I. In bold we

represent vectors and the dimension of the multivariate Gaussian density is equal to

the dimension of θ. Thus, φ(·| θ, r) will denote a univariate normal with center at θ

and variance r.

35
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2.1 The class of Plug-in densities

It is the class of all n–variate Gaussian densities with variance matrix rI and centered

around location estimates θ̂,

P =

{
φ
(
·
∣∣ θ̂, r

)
where, θ̂ is any location estimate

}
.

Noting that the true and estimated log-likelihoods are

log φ
(
Y
∣∣θ, r

)
= −n

2
log(2πr)− ‖Y − θ‖2

2r

log φ
(
Y
∣∣ θ̂, r

)
= −n

2
log(2πr)− ‖Y − θ̂‖2

2r

we have the risk of the plug-in estimator φ
(
y
∣∣ θ̂(X), r

)
is given by:

ρ

(
θ, φ

(
·
∣∣ θ̂, r

))
= Eθ

[
log

(
φ
(
Y
∣∣ θ, r

)

φ
(
Y
∣∣ θ̂, r

)
)]

= Eθ

(
−‖Y − θ‖2

2r
+

‖Y − θ̂(X)‖2
2r

)

where the expectation is over φ
(
X
∣∣ θ̂, r

)
× φ

(
Y
∣∣ θ̂, r

)
– the joint density of (X,Y)

under the true location θ. Expanding the second term we get that the risk equals

Eθ

(
− ‖Y − θ‖2

2r
+

‖Y − θ‖2 + ‖θ̂ (X)− θ‖2 + 2 (Y − θ)′ ( θ̂ (X)− θ)

2r

)
.

The cross-product term above vanishes due to time-independence and we have

ρ

(
θ, φ

(
·
∣∣ θ̂, r

))
=

Eθ‖θ̂(X)− θ‖2
2r

.

Thus, the plug-in KL predictive risk is the quadratic location risk discounted by the

future variability, and so the risk properties of plug-in density estimates follow directly

from point estimation theory. Plug-in densities are also called estimative densities

and the plug-in predictive risk will sometimes be also denoted by rE(θ, θ̂).

Next, we would like to extend the class of density estimates outside the parametric



CHAPTER 2. TYPES OF PREDICTIVE DENSITY ESTIMATES 37

class of the true future density. We consider the class of Linear predictive densities

which are product Gaussian density estimates with varying scale parameters but their

location and scale parameters are related.

2.2 The class of Linear predictive densities

This class consists of Bayes density estimates based on conjugate product normal

priors
∏n

i=1 φ( . |0, li) where li, i = 1, 2, . . . , n are the non-negative prior variances.

They are referred to as “Linear” predictive densities because by Diaconis & Ylvisaker

(1979) they are analogous to linear diagonal point estimates in the quadratic error

setting.

We exhibit the calculation for the univariate case. As the normal prior N(0, l) is

conjugate, the posterior is also normal. Setting α = (1 + l−1)−1, we have

π(θ | x) ∝ φ(x− θ | 0, 1) × φ(θ | 0, l) ∝ φ(θ |αx, α) ∼ N(αx, α)

The corresponding predictive density is a convolution of Gaussians

p̂ l(y|x) =
∫

φ(y − θ | 0, r)φ(θ− αx | 0, α) dθ

and so is also Gaussian: p̂ l(y|x) ∼ N(αx, r + α).

And given the past x, its loss is given by:

L
(
θ, p̂ l ( . |X = x)

)
= E θ log φ(Y − θ | 0, r)− E θ logφ(Y − αx | 0, r + α)

= −1

2

(
log(2πr) +

E θ(Y − θ)2

r

)
+

1

2

(
log
(
2π(r + α)

)
+

E θ (Y − αx)2

r + α

)

=
1

2
log
(
1 +

α

r

)
+

E θ (Y − αx)2

2 (r + α)
− 1

2

and by Bias-Variance decomposition, we have, E θ (Y − αx)2 = (θ − αx)2 + r.

To evaluate the risk we take expectation over the past X and again by Bias-Variance
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decomposition E θ (Y − αX)2 = (1− α)2 θ2 + α2 + r. Hence the risk is

ρ
(
θ, p̂ l

)
=

1

2
log
(
1 +

α

r

)
+

(1− α)2θ2 − α(1− α)

2 (r + α)

=
1

2
log
(
1 +

α

r

)
+

(1− α)2

2 (r + α)
(θ2 − l).

Figure 2.1 shows the predictive risk of different linear density estimates p̂l as the

ρ(θ, ·)

0
1

2
3

4

0 1 2 3

θ −→

p̂ l=0

p̂ l=1

p̂ l=∞

Figure 2.1: The plot depicts the quadratic nature of the risk of linear univariate
predictive densities. Here, we have r = 1 and the risk θ2/2 of the zero estimator is
plotted in blue. The dotted gray line at log 2 shows the risk of p̂U and the green line
portrays the risk of the linear estimator with unit prior variance.

parameter varies along the positive orthant. Also, as l → ∞, α → 1, we get the
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uniform prior Bayes Predictive Density (p̂U). It is the best invariant density as well as

minimax (Liang & Barron 2004) in the unrestricted parametric space (will be referred

as ‘canonical minimax estimator’). Thus:

p̂U
(
y |X = x

)
= N(x, 1 + r) and ρ(θ, p̂U) =

1

2
log
(
1 + r−1

)
.

Again, as l → 0, α → 0 and we get the zero density φ( · | 0, r) with θ2/(2r) as its

risk.

Returning to the multivariate case, the risk of the class of Linear predictive densities

L =

{ n∏

i=1

φ
(
. |αiX [i], (αi + r)

)
: αi = (1 + l−1

i )−1, li ≥ 0, i = 1, . . . , n

}

is quadratic in the parameter θ and is given by

ρ
(
θ, p̂L

)
=

1

2

n∑

i=1

log
(
1 +

αi

r

)
+

n∑

i=1

(1− αi)
2

2 (r + αi)
(θ2i − li).

Now, we further extend the class P and L to the class of all product Gaussian

density estimates with equal co-ordinate wise variance.

2.3 The class of Gaussian Predictive densities

The class of of all n–dimensional Gaussian distributions with positive definite (p.d.)

covariances is given by

Gn =

{
g : Rn → R

+ such that g = N(µ,Σ) where µ ∈ R
n and Σ p.d.

}
.

By Gn[p] we denote the sub-class of all n–dimensional product Gaussian densities

Gn[p] =

{
g[µn, Dn] : µn ∈ R

n & Dn is any n× n p.d. diagonal matrix

}
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where g[µn, Dn] is a normal density with mean µn and diagonal covariance σ2
fDn. We

consider a further sub-family Gn[1] of Gn[p]. Gn[1] contains Gaussian densities with

only one data-adaptive scale estimate. So, it includes density estimates of the form

N(θ̂ (X), ĉ (X) rI) with data adaptive mean θ̂ (X) and variance r ĉ (X)I which makes

it a non-linear estimate. Thus

Gn[1] =

{
g
[
θ̂, ĉ

]
= φ

(
·
∣∣ θ̂, ĉ r

)
where θ̂ & ĉ are any location and scale estimate

}
.

Note that, θ̂ is a n–dimensional vector whereas ĉ is a scalar which is used in specifying

n–variate product predictive densities. Conditioned on X = x the loss is given by,

L

(
θ, g
[
θ̂, ĉ

](
· |X = x

))
= Eθ log

(
φ
(
Y
∣∣θ, r

)

φ
(
Y| θ̂ (x), ĉ (x)r

)
)

=
n

2
log ĉ (x)− Eθ‖Y − θ‖2

2r
+

Eθ‖Y − θ̂ (x)‖2
2 ĉ (x) r

.

Now, Eθ‖Y−θ‖2 = nr. And, similarly as in the case of linear density estimates, by

Bias-variance decomposition Eθ‖Y − θ̂ (x)‖2 = ‖θ̂ (x)− θ‖2 + nr. So, we have

L

(
θ, g
[
θ̂, ĉ

](
· |X = x

))
=

n

2

[
log ĉ (x) +

1

ĉ (x)
− 1

]
+

‖θ̂ (x)− θ‖2
2 ĉ (x) r

.

The KL predictive loss decomposes into two parts. One of them is independent of the

parameter and only involves the scale estimate while the other contains the adjusted

quadratic loss. For any fixed θ̂ (x) and known θ, the KL loss can be minimized over

ĉ (x). The minimum value is attained at c opt = 1+(nr)−1 ‖θ̂ (x)−θ‖2 yielding a loss

of (n log ĉ opt)/2. Note that, c opt ≥ 1. It signifies that among the Gaussian densities

centered at θ̂ the one closest to N(θ, rI) in KL loss has variance greater than r and

is flattened proportional to the distance between θ and θ̂. Figure 2.2 provides a

pictorial illustration of this phenomenon.

If θ is unknown, an estimate ĉ opt can be constructed based on the quadratic risk

estimates of the location estimator θ̂. We will elaborately describe it in the next

chapter.
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θ θ1

Figure 2.2: Pictorial depiction of the decomposition of the entropy loss. In yellow
we represent the true univariate N(θ, 1) density. In dotted lines are representative
densities from G around a fixed location θ1. The one in gray is optimally flattened
among all Gaussian densities centered at θ1 and is closest to N(θ, 1) in terms of the
KL loss. Figure drawn to scale with θ = 0, θ1 = 3, c opt = 10.

Integrating the loss over the past X , we find the risk ρ
(
θ, g
[
θ̂, ĉ

])
is given by,

n

2

[{
Eθ(log ĉ(X)) + Eθ

(
1

ĉ (X)

)
− 1

}
+

1

nr
Eθ

(
‖θ̂ (X)− θ‖2

ĉ (X)

)]
.

In chapter 3, we will see that in high dimensions this KL predictive risk can also be

decomposed into convenient parts which can be subsequently optimized and we can

exactly characterize the asymptotic predictive risk of estimates in G.
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2.4 The class of Bayes predictive densities

Next, we have the class of all Bayes predictive densities (B). Given a prior π(θ) in

R
n the Bayes predictive density is given by:

p̂π
(
Y|X = x

)
=

∫
φ(Y| θ, r) π(θ|x) dθ where π(θ|x) = φ(x| θ, 1) π(θ)

mπ(x)

is the posterior distribution and the marginal mπ(x) =

∫
φ(x| θ, 1) π(θ) dθ.

The integrated Bayes risk of a density estimate p̂
(
y
∣∣x
)
with respect to a prior π is

B(π, p̂) =
∫
ρ(θ, p̂) π(θ) dθ. The Bayes risk B(π) of a prior π is minp̂B(π, p̂) and the

minimum is attained by the Bayes predictive density.

As the true density φ(·|θ, r) in M.2 is bounded above by cn = (2πr)−n/2, we can

restrict the action set An comprising of all densities in R
n to the set of all cn bounded

densities

A(n, cn) =

{
p : Rn → R such that

∫

Rn

p (y) dy = 1 and p ∈ [0, cn]

}
.

For any p ∈ An but not in A(n, cn) there exists pb ∈ A(n, cn) that dominates

p in the sense L(θ, p b) ≤ L(θ, p) for all θ ∈ R
n.

Lemma 2.4.1.

Details of the proof can be found in Brown et al. (2008, Lemma2). For any positive

density p ∈ An but not in A(n, cn) the general idea for constructing a better estimate

pb ∈ A(n, cn) is to truncate p on the set Sp = {y ∈ R
n : p(y) > cn} and to lift it on

Sc
p, i.e.

pb(y) =

{
{
∫
Sc
p
p(y) dy}−1 · {1− cnVol(Sp)} · p(y) if y ∈ Sc

p

cn if y ∈ Sp

.

As the KL loss for estimators in A(n, cn) is always defined (can be infinite though),



CHAPTER 2. TYPES OF PREDICTIVE DENSITY ESTIMATES 43

they are mathematically more convenient for risk calculations than estimator in An \
A(n, cn). In the light of Lemma 2.4.1, with out any loss of generality we restrict

ourselves to estimators in A(n, cn) only. Next we show that the Bayes predictive

density defined in equation (4.2) actually minimizes the integrated Bayes risk for any

prior π in collection P(Rn) of all probability measures on R
n.

For any prior π ∈ P(Rn) if B(π, p̂π) < ∞ then we have

B(π, p̂π) ≤ B(π, p̂) for any p̂ ∈ An.

Lemma 2.4.2.

Proof. Note that, here we have σ2
f = r and σ2

p = 1. Now, as the true density φ(·|θ, σ2
f)

is bounded above, the marginal density mπ(x) < ∞ almost surely for all x ∈ R
n.

Thus, p̂π is defined almost everywhere and by Lemma 2.4.1, with out loss of generality

we can assume that p̂ ∈ A(n, cn). The difference in the integrated Bayes risk between

any estimator p̂ and the Bayes estimator is,

B(π, p̂)− B(π, p̂π ) =

∫∫∫
φ(x|θ, σ2

p)φ(y|θ, σ2
f) π(θ) log

p̂π (y|x)
p̂ (y|x) dθ dy dx

as we can interchange the order of integrals by Fubini’s theorem. Also,mπ(x) p̂π(y|x) =∫
φ(x|θ, σ2

p)φ(y|θ, σ2
f) π(θ) dθ , so we have,

B(π, p̂)−B(π, p̂π) =

∫∫
mπ(x) p̂π(y|x) log

p̂π(y|x)
p̂(y|x) dy dx

which is the KL divergence between the densities mπ(x)× p̂π(y|x) and mπ(x)× p̂(y|x)
and so it always non-negative. This completes the proof.

B is a complete class of procedures i.e. given any density estimate p̂ there exists

a Bayes density estimate which is at least as good as p̂ (Brown et al. 2008). Also

members in B which are based on priors with sufficient growth and asymptotic flatness

conditions are admissible. B is also a very wide class of procedures. However, P is

not contained in B. Also, L consists of Bayes predictive densities with respect to
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A

G

B

L

P

θ̂

ŝ

Figure 2.3: Schematic diagram of the different classes of predictive density estimates.
The representation is for univariate predictive density estimates with their corre-
sponding location estimates represented along the abscissa and scale estimate along
the ordinate. The blue line represents the class of Plugin estimates (P) which have
fixed scale. The red lines represent linear estimates (L) where the location and scale
estimates are related in a linear fashion by a single parameter. P and L intersects
at a point which is the zero density estimate. The violet circular body is the class
G which contains both L and P and the green ellipsoidal body denotes the class B
whcih contains L but not P.
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normal priors, so L ⊂ B and L∩P is the singleton set {φ( · | 0, r)}. Figure 2.3 shows

these classes in the action space A of all possible densities in R
n. The true future

density lies in P but its location parameter θ is unknown. In absence of any prior

knowledge about θ, we would like to characterize and compare the predictive risk of

representative members (efficient in each class in the sense of asymptotic admissibility

in that class) from each these four classes as the true density varies over P.

As B is a very wide class of procedures it is extremely difficult to explicitly quantify

the risk for each of its member. However, there exist parallels between the risk calcu-

lations in the predictive regime and point estimation theory (George et al. 2006). The

risks of Bayes predictive densities will follow from the parallels by using known eval-

uation of the quadratic risk of the corresponding posterior mean. Next, we describe

these connections through a path of experiments.

2.4.1 Relations with Point Estimation: Connecting Equa-

tions and path of experiments

The Kullback-Leibler (KL) predictive risk is connected to risk calculations in point

estimation (PE) theory via the semi-futuristic random variable W = vw (X + r−1Y )

where vw = (1 + r−1)−1. W would have been the UMVUE for the unknown location

parameter θ if the future Y were also known along with the past X . For simplicity,

in this section we restrict ourselves to the univariate version of model M.2 and the

connections described here can be easily extended to multivariate orthogonal Gaussian

models.

The connections between the predictive and point estimation theory center around

the parallel to the Tweedie’s formula (Efron 2011, Brown 1971, Robbins 1956) which

gives a closed from expression of the Bayes estimate θ̂π corresponding to prior π for

the location θ estimation problem under quadratic loss

θ̂π

(
X
)
= X +∇ logmπ(X, 1) (2.1)

where mπ(Z, v) =
∫
φ(Z | θ, v) π(θ) dθ denote the marginal distribution of a Gaussian

random variable Z with variance v and with prior distribution π on the location
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parameter θ. Bayes predictive densities for KL loss in M.2 is analogously related to

the best invariant density estimate p̂U:

p̂π
(
Y
∣∣X = x

)
=
{
mπ

(
Wx, vw

)
m−1

π

(
x, 1
)}

× p̂U
(
Y
∣∣X = x

)
(2.2)

where Wx = vw (x + r−1Y ). As such, the Bayes risk in these two regimes are also

related. By Brown et al. (2008, Theorem 1) the predictive risk of any prior π in the

univariate model M.2 with σ2
p = 1 is given by mπ(z; 1) < ∞ for all z ∈ R we have,

ρ(θ, p̂π) =
1

2

∫ 1

vw

v−2 q(θ, θ̂π, v) dv (2.3)

where q(θ, θ̂π, v) denotes the quadratic risk E (θ,v)‖ θ̂π − θ‖2 based on the univariate

model M.2 with σ2
p = v and σ2

f = rσ2
p .

Through the connecting equations the Kullback-Leibler risk can be viewed as an

weighted aggregation of the square error risk. As the variance of Z varies from 1 to

vw = (1 + r−1)−1 it marks the gradual assimilation of the information in future Y

to the existing information about θ in X through a path of memoryless experiments

conducted separately for α ∈ [0, 1]. It is pictorially demonstrated in Figure 2.4. At

each stage α along the path we observe (X, Y [α] ) where Y [α] is a Gaussian random

variable around the true unknown location θ and with variability r · α−2. Along the

path, the information about the unknown location θ percolates through the sufficient

statistics {Z[α] : α ∈ [0, 1]} where Z[α] is the UMVUE, of θ based on observing

(X, Y [α]). As α increases in [0, 1], v decreases from 1 to vw and we have,

Z[α] =
X [α] + α2/r Y [α]

1 + α2/r
where α = r

1/2(v−1 − 1)
1/2 ∈ [0, 1] and (2.4)

θ̂vπ = Z[α] + v∇ logmπ(Z[α], v) (2.5)

As shown before in this chapter, the plug-in risk ρvE(θ, θ̂) equals q(θ, θ̂π, v)/(2v) and we

see that ρ(θ, p̂π) is equal to
∫ 1

vw
v−1ρvE(θ, θ̂π) dv which implies that the predictive KL

risk is a linearly weighted (according to precision) accumulation of the corresponding

plug-in risk. Using the connecting equation 2.3 most of the calculations involving risks
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0.
0

0.
1

0.
2

0.
3

0.
4

θ

→ p(X|θ, 1)

→ p(Yα|θ, rα−2)

Figure 2.4: Path of Experiments:- In red we have the true density of the observed
random variable X around the unknown location θ. In different shades of gray (dark
to light) we have respectively the density of Yα for α equal 0.10, 0.20, 0.33, 0.50,
0.67 and 1.00. Hence the corresponding v equal 1.00, 0.98, 0.95, 0.89, 0.82 and 0.67.
When, α = 1, Yα corresponds to the true future density around θ with known future
variability r = 2.

of different Bayes predictive densities would follow easily by using known evaluation

of the quadratic risk of the corresponding posterior mean.

Sometimes calculations from definition will cater new knowledge about the pre-

dictive regime (eg. Chapter 4, Section 4.4). However these connecting equations

along with the path of memoryless experiments are pivotal to our understanding in

the predictive regime.

Later on, we will be seeing that some of the popular shrinkage priors are actually

scale invariant in the sense that the prior π on the n–dimensional space has the
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property:

π
(
c · θ

)
∝ π(θ) for all θ ∈ R

n and c ∈ R.

In point estimation the harmonic prior πH(θ) ∝ ||θ||−(n−2) in Stein (1981) is admis-

sible and dominates the best invariant estimator. πH is spherically symmetric and

so possesses the above scale invariance property. By Komaki (2001, Theorem) the

Bayes predictive density estimate based on the harmonic prior πH dominates p̂U and

is given by:

p̂H(y|x) = v−(n−2)/2
w Γp

(
v−1/2
w w

){
Γp(||x||)

}−1
p̂U(y|x) where w = vw(x + r−1y),

Γp(u) = u−(p−2)

∫ u2/2

0

vd/2−2 exp(−v) dv, vw = (1 + r−1)−1

and p̂U(y|x) = {2π(1 + r)}−n/2 exp

(
− ||y − x||2

2(1 + r)

)
.

p̂H is a non-linear, non-gaussian, improved minimax estimator. It is admissible

(Brown et al. 2008) and so it is important to understand the direction of shrinkage

produced by this non-gaussian density estimate. Just by reformatting Equation 2.3,

a simplified expression of the predictive risk of a scale invariant prior is attained in

the following lemma.

For any π satisfying

π
(
c · θ

)
∝ π(θ) for all θ ∈ R

n and c ∈ R,

the predictive risk of the corresponding Bayes predictive density estimate p̂π

in the orthogonal Gaussian predictive model M.2 with σp = 1 and σ2
f = r is

given by

ρ(θ, p̂π) =
1

2

∫ 1

vw

v−1 · q
(
θ/

√
v, θ̂π, 1

)
dv where vw = (1 + r−1)−1.

Lemma 2.4.3.
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Lemma 2.4.3 will be used in Chapter 3 to compare the nature of shrinkage produced

by p̂H with those produced by of data-adaptive linear predictive densities.

Akin to the connecting equations, the information-theoretic relation between mu-

tual information and minimum mean square error can be explicitly expressed in in-

dependent Gaussian channels (Guo et al. 2005). In the succeeding chapters, through

the connecting equations, inferences in the predictive regime will be inter weaved with

well understood notions from Point Estimation theory.
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CHAPTER 3

WITHIN–FAMILY PREDICTIVE RISK:

OPTIMAL FLATTENING &

SHRINKAGE

The within-family prediction error is the minimal risk among estimates in the class G of

all Gaussian densities. We produce asymptotically sharp upper and lower bounds on the

within-family prediction errors for various subfamilies of G. We exhibit instances where

the within-family error can be attained by data-adaptive linear density estimators.

Also, in some special cases, the optimal risk can be expressed in terms of the mean

square error of the associated location estimator and the nature of shrinkage can be

determined based on only point estimation theory results.

Here, for the Homoscedastic Gaussian Predictive Model

M.1 X ∼ N(A θ, σ2
p I) and Y ∼ N(B θ, σ2

f I)

described in Chapter 1, we discuss efficient estimators in the class Gn of all n–

dimensional Gaussian distributions with positive definite (p.d.) covariances as the

52
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dimension increases, i.e.,

G =

{
g : Rn → R

+ such that g = N(µ,Σ) where µ ∈ R
n and Σ p.d.

}
.

For any class C we define the predictive risk of the class as

ρC(θ) = inf
p̂∈C

ρ(θ, p̂).

As the true parametric density is also Gaussian, ρG(θ) represents the within-family

predictive risk. Under mild regularity conditions, in the sub-family where the co-

variance structure is represented by a single data dependent parameter Σ̂ = d̂ · I,
the Kullback-Leiber risk has a tractable decomposition which can be subsequently

minimized to yield optimally flattened predictive density estimates. We also evaluate

the predictive risk of the sub-family G[p] which contains all product Gaussian densi-

ties. In Chapter 4 we will also make inferences on G under sparsity restrictions in the

parameter space. As in point estimation, risk calculations in M.1 would intrinsically

depend on risk calculations in the orthogonal model:

Orthogonal Gaussian Predictive Model

M.2 X ∼ N(θ, σ2
p I) and Y ∼ N(θ, σ2

f I)

where X and Y are both n – dimensional vectors. Most of our calculations will be in

high-dimensions (which means n → ∞ in the orthogonal model) though dimension

independent bound will also be provided. As n → ∞, M.2 represents the Gaussian

sequence model (Nussbaum 1996) and has been widely studied in the function estima-

tion framework (Johnstone 2012). Estimation in M.1 can be linked with the decision

theoretic results in M.2 through the procedure outlined in Donoho, Johnstone &

Montanari (2011).
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Our Contributions

Efficacy of predictive density estimates has been a subject of considerable interest

in predictive inference. (Aitchison 1975, Aslan 2006, Komaki 1996, Hartigan 1998)

determined asymptotically optimal (admissible) Bayes predictive density estimates in

fixed dimensional parametric family whereas minimax optimality in restricted param-

eter spaces has been discussed in (Fourdrinier, Marchand, Righi & Strawderman 2011)

and (Kubokawa, ric Marchand, Strawderman & Turcotte 2013). Recently, (George

et al. 2006, Brown et al. 2008, Ghosh et al. 2008) extended the admissibility results to

high dimensional Gaussian models. However, the optimal estimates are not necessar-

ily Gaussian and using them in high-dimensional problems would involve computa-

tionally intensive methods. Here, we find optimal predictive density estimates within

the Gaussian family and also compute their predictive risk. It is computationally eas-

ier to construct predictive attributes based on our optimal Gaussian predictive density

estimates and the optimal Gaussian predictive risk assures guaranteed performances

of our strategies.

Minimizing the Gaussian predictive risk involves simultaneous estimation of the

location and scale parameters. The issue of joint estimation of location and scale

(and to a degree the shape) has not been addressed before in one sample Gaussian

models. However, separate estimation of location (Tibshirani 2011) and covariance

(Friedman, Hastie & Tibshirani 2008) are well-studied topics in constrained Gaus-

sian estimation. Also, as reviewed in (George, Liang & Xu 2012) decision theoretic

parallels exist between point estimation theory under quadratic loss and predictive

density estimation under Kullback-leibler loss in high-dimensional Gaussian models.

Here, our results demonstrate that some of these decision theoretic parallels (in the

class G) can be explained by second moment based concentration properties on the

quadratic loss of location point estimators in high dimensions. The moment based

approach used here for estimating the scale parameter bears resemblance to concepts

seen elsewhere in prediction theory, particularly in the the theory of cross validation

(Yang 2007) and covariance penalties for model selection (Efron 2004, Ye 1998) .
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3.1 Description of the main results

We describe optimality characterized in terms of asymptotic admissibility and through

oracle inequalities of density estimates in class G as the parameter space is unrestricted

over Rn. As dimension n increases the role of shrinkage becomes important. In order

to describe the results, we need to introduce the following notations.

Notation and Preliminaries

As some of our results are dimension dependent, henceforth we refrain from using

bold representation for vectors and denote the dimension in the subscript. Given

any fixed sequence θ∞ we represent the first n values by the n–dimensional vector θn

whereas θ(n) denotes the nth value, i.e θn+1 = (θn, θ(n+ 1)). By Gn[p] we denote the

class of all n–dimensional product Gaussian densities

Gn[p] =

{
g[µn, Dn] : µn ∈ R

n & Dn is any n× n p.d. diagonal matrix

}

where g[µn, Dn] is a normal density with mean µn and diagonal covariance σ2
fDn. We

represent the minimal Gaussian predictive risk by ρG(θn) := inf p̂∈Gn
ρ(θn, p̂).

Our shrinkage results will mostly refer to the sub-family Gn[1] of Gn[p]. Gn[1]

contains Gaussian densities with only one data-adaptive scale estimate

Gn[1] =

{
g[µn, c] : µn ∈ R

n and c ∈ R
+

}
.

where g[θ̂n, c] denotes a normal density with mean µn and covariance c σ2
f I. A typical

density estimate in Gn[1] is represented as g[θ̂n, ĉ (n)] where θ̂n is a location estimate

and ĉ(n) is the scale estimate based on observing an n–dimensional past observation

Xn. For any fixed location estimate θ̂n, the optimal risk of density estimates in Gn[1]

centered around θ̂n is given by

ρ0(θn, θ̂n) = inf
ĉ(Xn)∈R+

ρ(θn, g[θ̂n, ĉ(Xn)]).
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The quadratic risk of the location estimate is denoted by

q(θn, θ̂n) = Eθn‖θ̂ (Xn)− θn‖2

where the expectation is over the observed past Xn. The notation used here for

representing the quadratic risk is a bit different than that used in Chapter 2 and

Chapter 4. Here we have dropped of the symbol v representing the variability of the

point estimation problem in q(θn, θ̂n, v) –the notation for quadratic risk used in the

other chapters. It should be noted that here q(θn, θ̂n) means that the noise variance

is always σ2
p.

Later, we show that if the value of q(θn, θ̂n) were known, then the optimal choice

for scale is

IFθn(θ̂n) = 1 + n−1r−1q(θn, θ̂n)

which will be called as the Ideal Flattening coefficient for θ̂n at θn. Here, given

a location estimate θ̂n we construct suitable estimates ĉ(n) of the scale such that

asymptotically when n → ∞ the density estimate g[θ̂n, ĉ(n)] is optimally flattened in

the sense that ρ(θn, g[θ̂n, ĉ(n)])− ρ0(θn, θ̂n) ≤ O(1). However, for proving optimality

of the flattening coefficient we need the following mild regularity conditions on the

location estimate θ̂n:

q(θn, θ̂n) ≤ O(n). (3.1)

Varθn ( ‖ θ̂n − θn ‖2 ) ≤ O(n) (3.2)

and the existence of a suitable estimate U[θ̂](Xn) for the quadratic risk of θ̂n at θn

with the following properties:

∣∣∣Eθn

(
Ûn

)
− q(θn, θ̂n)

∣∣∣ ≤ O(n1/2 ). (3.3)

Varθn
(
Ûn

)
≤ O (n). (3.4)

Varθn

{(
1 + (nr)−1Ûn

)−1
}

≤ O (n−1). (3.5)
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These properties are fairly mild and in Section 2 we show that most popular point

estimators obey these above conditions. We call these conditions Reasonable Asymp-

totic Square Loss (RASL) properties and the set of point estimators in the sequence

model (where the action set is R∞) which satisfies these conditions is denoted by A.

Also, we denote the ratio of the future to past variances by r := σ2
f/σ

2
p. Our results

will depend on r. For sequences, the symbol an ∼ bn means an = bn(1 + o (1)) and

an ≈ bn means an/bn ∈ (k1, k2) where k1 and k2 are constants.

Results

We present the results under σ2
p = 1 and σ2

f = r which will assumed throughout

the rest of the chapter. The results can be easily modified for general σp though.

We show that in high dimensions, the minimum predictive entropy risk of Gaussian

density estimates around reasonable location estimate θ̂n can be expressed in terms of

the corresponding quadratic risk of θ̂n. The minimum predictive risk can be attained

by optimally flattening the normal density estimate around θ̂n. The choice of the

optimal flattening coefficient is not unique. An asymptotically efficient choice based

on a reasonable estimate U [θ̂n](Xn) of the quadratic risk of θ̂n can be made.

For any estimator θ̂ in A we have

∣∣∣∣ρ0(θn, θ̂n)−
n

2
log
(
1 + (nr)−1 · q(θn, θ̂n)

) ∣∣∣∣ ≤ O
(
1
)

as n → ∞. (3.6)

And if ĉ (Xn) = 1 + (nr)−1U [ θ̂ ](Xn) is based on a suitable estimate Ûn of

the quadratic risk as defined in Equations (3.3)–(3.5) then

ρ(θn, g[θ̂n, ĉ(n)])− ρ0(θn, θ̂n) ≤ O (1). (3.7)

Theorem 3.1.1.

By g[θ̂n] we will represent density estimates of the form g[θ̂n, ĉ(n)] which are based

on scale estimates ĉ(n) = 1 + (nr)−1Ûn involving suitable quadratic risk estimate Û .
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By the above theorem and under the aforementioned regularity conditions g[θ̂n] will

be an asymptotically optimal choice among all Gaussian density estimates centered

around θ̂n. Based on the asymptotic relations between ρ0(θn, ·) and the Mean Square

Error (MSE) q(θn, ·), we can characterize the predictive risk of g[ θ̂n] easily by plugging

in standard oracle inequalities from point estimation theory. We check that RASL

conditions defined in Equations (3.1)–(3.5) hold for the James-Stein estimator (Stein

1981)

θ̂ JS
n = Xn

(
1− n− 2

‖Xn‖2
)

and its positive part estimator θ̂ JS+. For the James-Stein estimator we determine

the deviations from the optimal risk in terms of dimension dependent bounds.

For any dimension n ≥ 10 and for any θn ∈ R
n we have,

ρ
(
θn, g[θ̂

JS
n ]
)
− ρ0

(
θn, θ̂

JS
n

)
≤ 2−1

(
a1/2n b1/2n r−3/2 +(an+ bn+ ln) r

−2+ an r
−3
)

where the constants an, bn, ln are independent of the parameter but depend

on the dimensions n and are given by

an = 3
(
1− (n− 2)−1

)−2
, bn = 4(2 + an + k2(n)),

ln = 3(1− 2/n)−2, k2(n) = max{e(n), f(n)} with

en =
√
3

4∏

i=1

(1− (2i+ 1)/n)}−1/2 and fn = (1− (log n/n)1/2)−2.

Also, ρ
(
θn, g[θ̂

JS
n ]
)
can be approximated by using the following bound

∣∣∣∣ρ
(
θn, g[θ̂

JS
n ]
)
− n log IFθn(θ̂n)

2

∣∣∣∣ ≤
(
a
1/2
n b

1/2
n r−3/2 + (an + bn) r

−2 + an r
−3
)

2
.

Theorem 3.1.2.

These bounds hold for any value of r ∈ (0,∞). As the ratio of the future to past vari-

ances r decreases, we need to estimate the future observations based on increasingly
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noisy past observations and so, the difficulty of the density estimation problem also

increases. So, as expected when r decreases the bounds also increases. These bounds

can be made dimension independent.

In particular, for all dimension n ≥ 20, for any θn ∈ R
n and for any fixed value of

r ∈ (0,∞), we have,

ρ
(
θn, g[θ̂

JS
n ]
)
− ρ0

(
θn, θ̂

JS
n

)
≤ 5.3 r−3/2 + 19.6 r−2 + 1.7r−3. (3.8)

In point estimation theory, there exist sharp oracle bounds on the quadratic risk

q(θn, θ̂
JS
n ) of the James-Stein estimator θ̂ JS(Johnstone 2012, Chapter 2) which along

with Theorem 3.1.2 produce the following oracle bound on the predictive risk of

shrinkage predictive density estimates. Assuming that the value ||θn||2 is known, the

risk of the ideal linear predictive density estimate is given by

IL (θn) =
n

2
log

(
1 + r−1 an

1 + an

)
where an = ||θn||2/n. (3.9)

The difference in the risk of g[θ̂ JS
n ] and the optimal oracle linear risk is

ρ
(
θn, g[θ̂

JS
n ]
)
− IL (θn) ≤ 0.1 r−1 + 5.3 r−3/2 + 18.1 r−2 + 1.7r−3. (3.10)

and the following

B(||θn||, n, r) =
n

2
log
{
1+r−1 ||θn||2(n+||θn||2)−1

}
+0.1 r−1+5.3 r−3/2+18.1 r−2+1.7r−3

(3.11)

upperbounds the predictive risk ρ
(
θn, g[θ̂

JS
n ]
)
. Figure 3.2 and Figure 3.1 show these

bounds for different values of r and with dimension n being 20 and 1000 respectively.

From the figures, it is evident that the upperbound B(||θn||, n, r) is not very good for

low dimensions but becomes better as n increases. Figure 3.3 shows that even in low

dimensions the risk of g[θ̂ JS
n ] is close to the ideal linear risk IL(θn).
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Figure 3.1: The plots show the average ideal linear oracle risk IL(θn)/n (in black), the

average predictive risk of g[θ̂JSn ] (numericaly evaluated and in blue) and the upper-
bound B(||θn||, n, r) (described in Equation 3.11) as the signal intensity ||θn|| varies
along the abscissa. From the top-left, in anti-clockwise order, the plots correspond to
r = 5, 1.5, 1, 0.5, 0.3 and 0.1. Here, dimension n = 1000.
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Figure 3.2: The plots show the average ideal linear oracle risk IL(θn)/n (in black), the

average predictive risk of g[θ̂JSn ] (numericaly evaluated and in blue) and the upper-
bound B(||θn||, n, r) (described in Equation 3.11) as the signal intensity ||θn|| varies
along the abscissa. From the top-left, in anti-clockwise order, the plots correspond to
r = 5, 1.5, 1, 0.5, 0.3 and 0.1. Here, dimension n = 20.
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Figure 3.3: The plots show the difference between the average ideal linear oracle risk
IL(θn)/n (in black) and the average predictive risk of g[θ̂JSn ] (numericaly evaluated
and in blue) as the signal intensity ||θn|| varies along the abscissa. From the top-left,
in anti-clockwise order the plots correspond to r = 5, 1.5, 1, 0.5, 0.3 and 0.1. Here,
dimension n = 10.
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Comparing these bounds to the oracle bound of (Xu & Zhou 2011) which is derived

based on an empirical Bayes perspective

ρ
(
θn, g[θ̂

JS
n ]
)
− IL (θn) ≤ 2 r−1 + 5 r−2 + 4r−3, (3.12)

the particular features of our moment based approach can be seen. As our oracle

inequality is a by-product of the optimal Gaussian risk, for most values of r the

bound in the Inequality 3.10 is coarser than that in Inequality 3.12. However, when

r = 0.1, the RHS in the Inequality 3.10 is 3830 and is better than the bound (4520)

in the latter. Thus, the moment based approach can be quite informative. The

bounds derived on the predictive risk are sharp enough to derive decision-theoretic

optimality. We can produce unrestricted improved minimax predictive densities which

asymptotically behaves like ideally shrunk linear density estimates (as defined later).

The following lemma shows the asymptotic improvement in the predictive risk over

the best invariant predictive density g[Xn, 1 + r] (Liang & Barron 2004).

If ||θn||2 → ∞ as n → ∞, then we have

[ a ] ρ
(
θn, g[Xn, 1 + r]

)
= 2−1 n log

(
1 + r−1

)
.

[ b ] ρ
(
θn, g[θ̂

JS
n , r]

)
∼ (2r)−1 n an (1 + an)

−1 where an = n−1 ||θn||2.
[ c ] ρ

(
θn, g[θ̂

JS
n , 1 + r]

)
∼ 2−1 n

{
log(1 + r−1)− (1 + an)

−1(1 + r)−1
}
.

[ d ] ρ
(
θn, g[θ̂

JS
n ]

)
∼ 2−1 n log

{
1 + r−1 an (1 + an)

−1
}
.

Lemma 3.1.3.

The improvement in predictive risk due to efficient choice of location is reflected by the

risk of g[θ̂ JS, 1+r] where as the effect of the optimal choice of scale after choosing an

appropriate location estimate can be followed by evaluating the asymptotic predictive

risk of g[θ̂ JS]. The following lemma extends Theorem 3.1.1 to convex combinations

of location estimates.
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For any countable collection Λ of estimators θ̂[λ] in A and their convex

collection θ̂w =
∑

λ∈Λ wλ θ̂[λ] with
∑

λ∈Λ wλ = 1, we have

ρ0(θn, θ̂
w
n )− n

2

∑

λ∈Λ
wλ log

(
1 + (nr)−1 · q

(
θn, θ̂n[λ]

))
≤ O

(
1
)

as n → ∞.

And, the predictive density estimate
∑

λ∈Λ wλ g
[
θ̂n[λ]

])
is asymptotically op-

timal in the sense

ρ

(
θn,
∑

λ∈Λ
wλ g

[
θ̂n[λ]

])
− ρ0

(
θn, θ̂

w
n

)
≤ O

(
1
)

as n → ∞. (3.13)

Lemma 3.1.4.

It should be noted that the RASL regularity conditions on the location point estimates

do not necessarily extend to any convex collections. However, the predictive risk still

concentrates and the optimal predictive risk ρ0 can be determined based on the above

lemma.

3.1.1 Organization of this chapter

Next we present some properties of the KL risk of density estimates in the class G[1].
We report the asymptotic decomposition of the optimal KL risk under regularity

conditions. After a formal summary of the RASL regularity conditions, we narrate

the notion of optimal flattening, its relation with shrinkage and their decision theoretic

implications. We end with a discussion on the applicability our approach in the wider

classes G[1] and G of density estimates.

3.2 Optimal flattening and predictive risk in G[1]
Hereon we will assume that σ2

p = 1 and σ2
f = r. The general predictive KL risk will

not be affected by this restriction. However, the density estimates are usually based

on statistics equivariant to the scale transformation and needs multiplication by σp.
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Heuristic Idea: In the high dimensions the quadratic loss of a reasonable point

estimator will concentrate around its risk And, so the KL risk of the corresponding

Gaussian predictive density partitions into two parts involving (i) quadratic risk on

the location parameter adjusted by the expected scale (ii) logarithm of the expected

scale. As such, the risk ρ
(
θn, g[θ̂n, ĉn]

)
of the normal predictive density estimate

g[θ̂n, ĉn] is given by

n

2

[{
E θn(log ĉ(Xn)) + E θn

(
1

ĉ (Xn)

)
− 1

}
+

1

nr
E θn

(
‖θ̂ (Xn)− θn‖2

ĉ (Xn)

)]
.

In high dimensions, due to concentration of measure we expect

• Eθn log
(
ĉn
)
∼ logEθn ĉn

• Eθn

(
ĉ−1
n

)
∼
(
Eθn ĉn

)−1

• E θn

(
‖θ̂ (Xn)− θn‖2 · ĉ−1 (Xn)

)
∼
(
E θn ĉ

−1 (Xn)
)−1

q(θn, θ̂n)

which will lead to

ρ
(
θn, g[θ̂n, ĉn]

)
∼ n

2

{
logEθn ĉn +

1 + (nr)−1q(θn, θ̂n)

Eθn ĉn
− 1

}
+O(1) as n → ∞.

This asymptotic decomposition of the predictive risk can be explicitly validated

through the RASL properties. Because of this decomposition for any fixed point

estimate θ̂n at each parametric value θn we can minimize the above asymptotic value

of ρ(θn, g[θ̂n, . ]) over the scalar quantity Eθn ĉn. The minimum asymptotic value is

given by

ρ
(
θn, g[θ̂n]

)
∼ n/2 · log

(
1 + (nr)−1q(θn, θ̂n)

)

and the optimal value is attained when

Eθn( ĉ
opt (Xn) ) = 1 + (nr)−1 q(θn, θ̂n) = IFθn(θ̂n)
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which is the ideal flattening coefficient. However, IFθn(θ̂n) is unknown. But, it

depends only on the parametric value θn. Thus a choice would be ĉ opt (Xn) =

1 + (nr)−1U [θ̂n](Xn), where U [θ̂n](Xn) (to be abbreviated as Ûn) is reasonable (i.e

with reasonable bias and concentration properties) estimate of the quadratic risk of

θ̂n. With very high probability such an optimal choice of ĉn will be greater than 1

reflecting a flattening of scale of the estimated predictive density (with respect to the

true future variability). Intuitively, we are performing an appropriate flattening of

the density based on empirical estimates of the quadratic loss. The optimal density

g[θ̂n] levels out with increasing inaccuracy in the location estimate θ̂n.

One of the popular Frequentist notion (which is better than plug-in density esti-

mates) of constructing predictive densities in this parametric model is to use Gaussian

density estimate around an efficient location θ̂n and variance r+ V̂ar(θ̂n). Estimates

of these kind are natural extensions of confidence sets. The optimal density estimate

g[θ̂] is quite similar except with a larger variance r+ q̂ (θn, θ̂n). And unless the bias of

θn is negligible compared to its variance the above mention general notion produces

sub-optimal density estimates. Next through the RASL conditions we will quantify

some statistical regularities in the behavior of quadratic loss in high dimensions.

3.2.1 RASL Properties of a Location Point Estimate

In high dimensions, for any fixed location parameter θn and its estimate θ̂n we expect

the quadratic loss ‖ θ̂n−θn‖22 to be concentrated around its expected value (quadratic

risk) Eθn‖ θ̂n − θn‖22 and it would be reflected by its variance. We will also rule out

very bad point estimators by neglecting those with too high risk as we do not want

them for prediction purposes. Apart from these we also assume the existence of a

statistic which estimates the quadratic risk within reasonable bias. These properties

of point estimators are referred to as Reasonable Asymptotic Square Loss properties

and the corresponding location estimates as RASL estimates.

As dimension n → ∞, for any fixed parametric value θn the location point estimate

θ̂(Xn) is such that its quadratic loss has the following properties.
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P1. Reasonable Risk:

Eθn‖ θ̂n − θn ‖2 ≤ O(n).

The canonical minimax point estimator Xn which is also the UMVUE (under

square loss) in this case acts as the benchmark in weeding out the bad point

estimators. For any parameter value θn, Xn has constant risk n. So, it is

appropriate for our purpose to restrict ourselves to point estimators with risk

of the O(n).

P2. Concentration property of Quadratic loss:

Varθn ( ‖ θ̂n − θn ‖2 ) ≤ O(n).

In high dimensions the estimator θ̂n is such that its loss has variability less

than O(n). Again comparing with Xn, we see Varθn ( ‖Xn − θn ‖2 ) = 2n as

‖Xn − θn ‖2 is distributed as a central χ2 random variable with n degrees of

freedom.

P2 implies concentration of the loss function and would in turn also impose

some concentration properties on well-behaved functions of the loss. As such,

using Lemma A.1, we have

P2.a Varθn





(
1+

‖θ̂n − θn‖2
nr

)−1


 ≤ O(n−1)

following directly from P2. It is an important condition and will be used in our

derivations.

P3. Reasonable Estimate of Quadratic Risk:

There exists an estimator U [ θ̂n ](Xn) (will be abbreviated as Ûn) of the quadratic
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risk of θ̂n satisfying the following:

P3.1.
∣∣∣Eθn

(
Ûn

)
− Eθn ‖θ̂n − θn‖2

∣∣∣ ≤ O(n1/2 ).

P3.2. Varθn
(
Ûn

)
≤ O(n).

P3.3. Varθn





(
1 +

Ûn

nr

)−1


 ≤ O(n−1).

P3.1 implies existence of a statistic which estimates the quadratic risk by not

making significant bias. Bias exceeding O(
√
n) is considered significant here and

the order is associated with the O(n−1) asymptotic statements we would like to

make. P3.1 and P3.2 are analogous to P2 and P2.a respectively. They imply

that the asymptotic concentration properties associated with the quadratic loss

also holds for its estimator Ûn. If Ûn is positive then P3.2 follows directly from

P3.1 by Lemma A.1.

3.2.2 Validating the RASL properties

Given a location point estimator and its corresponding reasonable quadratic risk

estimate the RASL conditions can be checked at least by simulations. However,

existence of a ‘reasonable’ risk estimator (as defined in P3) is essential. For most

widely used point estimates, we can construct risk estimates satisfying the three

conditions in P3 though the procedures can sometime get quite complicated.

If θ̂n is the posterior mean – generalized Bayes estimate with respect to prior π,

then by Tweedie’s formula (Robbins 1956, Brown 1971) we have explicit expression



CHAPTER 3. WITHIN–FAMILY PREDICTIVE RISK 69

of an unbiased estimate of its risk as,

Û π
n = n−

[
‖∇ logmπ(Xn)‖2 − 2

∇2mπ(Xn)

mπ(Xn)

]
where ∇f

∆
=

n∑

i=1

Di f (3.14)

∇2mπ(Xn) =
n∑

i=1

D2
i mπ(Xn) and mπ(xn) =

∫
φn(xn|θn, 1)π(θn) dθn. (3.15)

Û π
n is a natural candidate for a ‘reasonable estimate of the quadratic loss’ though

P3.2 and P3.3 are also to be checked separately. In particular, for P3.3 to hold Û π
n

may need some modification by introducing some bias.

For spherically symmetric estimators, we can get candidates for ‘reasonable’ risk

estimates by using Stein’s unbiased (quadratic) risk estimates (SURE) or their mod-

ifications (like positive part, etc) (Stein 1974, Stein 1981). As mentioned before, here

too we needed to introduce some bias to the the SURE estimate as the unbiased one

does not has property P3.3.

These RASL conditions are quite mild and usually holds for reasonable point

estimates and can be checked by Monte Carlo simulations for arbitrary point esti-

mates. Next, we check these conditions analytically for the following popular point

estimators:

θ̂JS : James Stein estimator

θ̂JS+ : Positive-part James Stein estimator

θ̂H : Posterior mean of the harmonic prior πH(θn) ∝ ||θn||−(n−2).

All these 3 point estimators are linear estimates of the form s(Xn)Xn where s(Xn)

is a data-dependent shrinkage term. They are better than the canonical minimax

estimator Xn. While θ̂H is admissible, θ̂JS and θ̂JS+ are both inadmissible. As such

both θ̂JS+ and θ̂H dominates θ̂JS. However, in high dimensions, they behave similarly

and have near ideal linear risk properties. We will construct reasonable risk estimates

for each of these estimators. While verifying the RASL conditions for the JS estimator

we would also compute the bound explicity for each n. It will be needed afterwards

in Theorem 3.1.2. Since, the estimators are spherically symmetric it will be more
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informative to derive bounds depending on ‖θn‖2. Hence forth in this section, by an

we denote ‖θn‖2/n. A convenient fact about this spherically symmetric estimators

is that the n-dimensional parameter θn can be substituted by (||θn||, 0, . . . , 0) while

checking the asymptotic behavior of square loss. As these estimators are not Lipchitz

functions of the normal random variable X , we can not directly use well-established

Gaussian concentration inequalities (Dembo & Zeitouni 1993, Ledoux 2001).

James Stein Location Estimator

The James-Stein estimator and its unbiased risk estimate is given by:

θ̂ JS
n = Xn

(
1− n− 2

‖Xn‖2
)

, and U( θ̂ JS
n ) =

(
n− (n− 2)2

‖Xn‖2
)
.

RASL property P1. holds as the JS is better than the canonical estimator Xn. As

such a good upper bound on its risk is also known

Eθn‖ θ̂ JS − θn ‖2 ≤ 2 +
(1− 2/n) an

(1− 2/n) + an
.

Varθn

(
||θ̂JSn − θn||2

)
≤ 4

[
2n+ (n− 2)4n−3k1(n) + nk2(n)

]
.

Lemma 3.2.1.

Proof. We decompose ||θ̂ JS
n − θn||2 into 3 parts as

||θ̂ JS
n − θn||2 = ‖Xn − θn‖2 + (n− 2)2‖Xn‖−2 + 2(n− 2)Mn

where Mn = 〈Xn − θn, Xn‖Xn‖−2〉. Then we use the naive inequality that for any

three random variables Zi, i = 1, 2, 3

Var

( 3∑

i=1

Zi

)
≤

3∑

j=0

Var

( 3∑

i=1

(−1)I{j=i}Zi

)
= 4

3∑

i=1

Var(Zi)
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to get the following bound on Varθn
(
||θ̂ JS

n − θn||2
)

≤ 4

{
Varθn

(
‖Xn − θn‖2

)
+ Varθn

(
n− 2

‖Xn‖2
)
+ 4 (n− 2)4Varθn

(
Mn

)}
.

Now ‖Xn − θn‖2 has a central chi-square distribution with n degrees of freedom and

hence its variance is 2n. The bounds on the other quantities follow from Lemma 3.2.2

and Lemma 3.5.1.

For n ≥ 10 we have Varθn(Mn) ≤ n−1k2(n) where

k2(n) = max{h(n), k(n)} where en =

√
3∏4

i=1(1− (2i+ 1)/n)}1/2

and fn =
1

(1− (log n/n)1/2)2
.

Lemma 3.2.2.

Proof. The variance of Mn is same as the variance of 〈θn, Xn〉‖Xn‖−2 whose distri-

bution is spherically symmetric in θn as it can be written as sum of two spherically

symmetric terms Hn = 〈θn, Xn − θn〉||Xn||−2 and Jn = ‖θn‖2||Xn||−2, . So, with out

loss of generality we can assume that θn = (θ, 0, . . . , 0) where θ = ‖θn‖. We also

divide the proof into two cases depending on the magnitude of θ.

When θ ≤ √
n we have, Varθn(Mn) ≤ 2(Varθn(Hn) + Varθn(Jn)) with the later

being less than n−1 by Lemma 3.5.3. And, the former is bounded above by E(H2
n).

Now, with Z
d
= N(0, 1) and W

d
= χ2

n−1(0) and V = (Z + θ)2 +W it can be rewritten

as

E
(
θ2Z2V −2

)
≤

√
θ4EZ4EV −4 ≤

√
3θ4E(W −4) ≤

{
3θ4∏4

i=1(n− 2i− 1)

}1/2

which is less than n−1
√
3
∏4

i=1(1− (2i+ 1)/n)−1/2.
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When θ > n, we first recall that Mn
d
= (θ + Z)/W and so

E(M2
n) ≤ E

{
V −2

I{|θ+Z|≤1}
}
+ E

{
(θ + Z)−2

I{|θ+Z|>1}}

≤ E{V −2}+ 2

∫ ∞

1

x−2φ(x− θ) dx

≤ [(n− 3)(n− 5)]−1 + Φ̃(
√

logn) +
{
θ −

√
log n

}−2

≤ [(n− 3)(n− 5)]−1 + n−1(log n)−1 + n−1(1− (logn/n)1/2)−2

Hence the result follows.

Though it is very tempting but we can not use the unbiased risk estimate U( θ̂ JS
n )

as the estimate can be negative and violates P3.3.

For any fixed n and r, E0

[{
1 + (nr)−1U( θ̂ JS

n )
}−1]

does not exist.

Lemma 3.2.3.

We will instead use Û+
n the positive part of U( θ̂ JS

n ) and the scale estimate ĉJS+n =

1 + (nr)−1Û+
n . RASL condition P3.1 can be easily checked as

Varθn(Û
+
n ) ≤ Varθn(U( θ̂ JS

n ) ) = (n− 2)4Varθn( ‖Xn‖−2) = O(n)

by Lemma 3.5.1 and P3.2 follows from Lemma 3.5.3. As such, an exact dimension

dependent bound can also be derived.

For any fixed n ≥ 3 we have

|Biasθn(ĉ
JS+
n )| ≤ k3(n)n

−1/2 where k3(n) =

√
2 + 5n−1/2

1− 2/n
.

Lemma 3.2.4.
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Proof. Noting that Biasθn(ĉ
JS+
n ) = n−1/2

Eθn(Û
−
n ) and

n
∣∣Eθn(Û

−
n )
∣∣ ≤ Eθn

[(
n

Y
− 1

)
· I{Y ≤ n}

]

where Y follows Chi-square with degree n and non-centrality parameter ||θn||2. We

know that Y
d
= χ2

n+2N where N
d
= Poisson(||θn||2/2) and the above expectation can

be written as

E||θn||2

(
E

[(
n

Yn+2N
− 1

)
· I{Yn+2N ≤ n}

∣∣∣∣N
])

≤ E

[(
n

Yn
− 1

)
· I{Yn ≤ n}

]

where Yn+2N is a central chi-square random variable with (n+2N) degrees of freedom

and the second inequality follows as for any N ≥ 0, (n/Yn+2N − 1) · I{Yn+2N ≤ n} is

stochastically dominated by N = 0. Now,

E

[(
n

Y
− 1

)
· I{Y ≤ n}N

]
=

∫ n

0

n− y

y

yn/2−1e−y/2

2n/2Γ(n/2)
dy ≤ E|Wn − n|

n− 2

where Wn ∼ Gamma(n/2− 1, 1/2) and so

E|Wn − n| ≤ 1 + E(Wn − n)2 ≤ 1 + 4 + V ar(Wn) = 5 +
√
2n

where the second inequality follows by Bias-Variance decomposition. Thus, we get

our result.

James-Stein Positive-Part Location Estimator

We consider the positive part of the JS estimator and a reasonable estimate of its

loss as

θ̂ JS+
n = Xn

(
1− n− 2

‖Xn‖2
)

+

and U
(
θ̂ JS+
n

)
=

(
n− (n− 2)2

‖Xn‖2
)

+

.

There exists unbiased estimator of the quadratic risk of θ̂ JS+
n (Johnstone 2012, Ex-

ercise 2.13). We use a biased estimator here mainly to highlight the fact that even
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biased estimators will work.

P1. follows from the fact that θ̂ JS+
n is better than θ̂ JSn(Johnstone 2012, Exercise

2.8).

For checking P2, define Cn to be the event {Xn : θ̂ JS+(Xn) 6= 0} = {Xn : θ̂ JS+
n =

θ̂ JS
n }. And the idea is to relate the variance of the loss in JS+ case with the case of

JS estimator.

Varθn
(
‖θ̂ JS+

n − θn‖2
)
= E‖θ̂ JS+

n − θn‖4 − E
2‖θ̂ JS+

n − θ‖2

= E
{
‖θ̂ JS

n − θn‖4ICn

}
− E

2
{
‖θ̂ JS

n − θn‖2ICn

}
+ ||θn||4P (Cc

n)− ||θn||4P 2(Cc
n)

= Varθn
(
‖θ̂ JS

n − θn‖2
∣∣Cn

)
· Pθn(Cn) + ||θn||4Pθn(Cn)Pθn(C

c
n)

≤ Varθn
(
‖θ̂ JS

n − θn‖2
)
+ ||θn||4Pθn(C

c
n)

as Varθn
(
‖θ̂ JS

n − θn‖2
)
≥ Eθn

(
Varθn

(
‖θ̂ JS

n − θn‖2
∣∣Cn

))

We know that Varθn
(
‖θ̂ JS

n − θn‖2
)
is O(n) and lemma A.5 shows ||θn||4Pθn(C

c
n) ≤

O(n). So, we have the desired bound.

Condition P.3.1 We will condition on the event Cn again and express P.3.1 in

terms of the James-Stein estimator

EθnU(θ̂ JS+
n )− q(θn, θ̂

JS+
n ) = Eθn

{(
U(θ̂ JS

n )− ‖θ̂ JS
n − θn‖2

)
ICn

}
− ‖θn‖2P

(
Cc

n

)
.

When θn = 0 then the R.H.S for large n reduces to,

In = E

{(
n− n2

Yn
−
(
1− n

Yn

)2

Yn

)
ICn

}
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where Yn is an central chi-squared random variable with n degrees of freedom. Now,

we decompose In into

In = I1n + 2I2n where

I1n = E {(n− Yn) ICn
} and I2n = E

{
(n− n2/Yn) ICn

}

We standardize Yn as Zn = (Yn − n)/
√
2n. We can use concentration inequalities on

Zn and have, [need to make rigorous]

I1n ≤
√
2n ·EZ+ as n → ∞

I2n =
√
n · E

{(
Zn

Zn/
√
n + 1

)
ICn

}
≤

√
nE|Zn| →

√
nE|Z|

as on Cn, Zn ≥ 0. Thus In ≤ O(
√
n).

Condition P3.2 By Lemma A.8 we have

Varθn(U( θ̂ JS+
n ) ) ≤ Varθn(U( θ̂ JS

n ) ) = O(n).

Condition P.3.3 Follows from Lemma A.1

Harmonic Prior Bayes Location Estimator

The mean of the posterior density in model M.2 based on the harmonic prior πH is

given by

θ̂H(Xn) = Xn +
∇mH(Xn)

mH(Xn)
where mH(xn) =

∫
||θn||2−pφ(xn|θn, 1)dθn.
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Based on Xu (2007, Lemma 3, Page 17) we have closed form expressions of the

following quantities associated with the harmonic prior:

If n is even: mH(xn) = ||xn||2−n


1− e−||xn||2/2

n/2−2∑

k=0

(||xn||2/2)k
k!


 ,

∇mH(xn) = xn(2− n)||xn||−n
[
1− e−||xn||2/2

]
,

∇2mH(xn) = −n(n− 2)||xn||−ne−||xn||2/2 (||xn||2/2)n/2
(n/2)!

.

If n is odd: mH(xn) = ||xn||2−n


2Φ(||xn||)− 1−

√
2/πe−||xn||2/2

(n−1)/2−2∑

k=0

||xn||2k+1

(2k + 1)!!


 ,

∇mH(xn) = xn(2− n)||xn||−n

[
2Φ(||xn||)− 1−

√
2

π
e−||xn||2/2||xn||

]
,

∇2mH(xn) = 2(2− n)||xn||−(n−3)φ(||xn||).

Using Equation 3.14, an unbiased estimate of the quadratic risk of θ̂H is given by

ÛH(xn) = n− ||∇mH(xn)||2
m2

H(xn)
+ 2

∇2mH(xn)

mH(xn)
.

The RASL conditions conditions can be checked by using the positive part of ÛH as

a suitable estimate of the quadratic risk of θ̂H .

3.2.3 Determining ρ0 for RASL point estimators

In this section, we will show that in high dimension with very high precision we can

express ρ0(θ̂n) – the minimum Predictive Entropy risk of the class of Gaussian density

estimates around location θ̂n in terms of the Mean Square estimation error of θn by

θ̂n. We initially prove bounds on the error rates which holds for all dimensions but are

dimension dependent. Then, we would show that in high dimensions those bounds

are asymptotically sharp.
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Lower Bound on ρ0(θn, θ̂ n):

Next, we produce a lower bound on the prediction error. The bound ultimately will

be a function of θn though it depends on the form of θ̂n. It involves expectation of

a quantity which usually is neither a parameter nor a statistic and hence can not be

computed in closed form.

For any dimension n, any parameter value θn and any location point estimate

θ̂ (Xn), we have

ρ0(θn, θ̂n) ≥
1

2
Eθn

{
log
(
1 + r−1 · n−1 · ‖ θ̂n − θn‖2

)}
.

Lemma 3.2.5.

Proof. For any fixed n, the risk of the predictive density qn which is a n-dimensional

product normal with with data adaptive mean θ̂ (Xn) and data and parameter de-

pendent variance ĉ (θn, Xn) r (for all co-ordinates) is given by 2ρ(θn, qn)

= n

{
Eθn(log ĉ (θn, Xn)) + Eθn

(
1

ĉ (θn, Xn)

)
− 1

}
+

1

r
Eθn

(
||θ̂ (Xn)− θn||2

ĉ (θn, Xn)

)

= nEθn

{
log ĉ (θn, Xn) +

1 + (nr)−1|| θ̂ (Xn)− θn||2
ĉ (θn, Xn)

− 1

}
.

For any fixed value of θn and for each xn,

log ĉ (θn, xn) + ĉ−1(θn, xn){1 + (nr)−1|| θ̂(xn)− θn||2} − 1

is minimized at ĉ opt (θn, xn) = 1 + (nr)−1||θ̂(xn) − θn||2 and the minimum value is

given by log(1 + (nr)−1 ‖ θ̂(xn)− θn‖2 ). Hence, the result follows.

Though ĉ opt (θn, Xn) is the best possible flattening coefficient, it depends on the

parameter and can not be used in practice. As such, ĉ opt (θn, Xn) is the ideal flattening

coefficient. In high dimensions due to statistical regularity we expect ĉ opt (θn, Xn) to
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be very close to its expected value

Eθn{ĉ opt (θn, Xn)} = 1 + (nr)−1
Eθn‖θ̂n − θn‖2

which can be viewed as the (near) Ideal Flattening coefficient and is referred to as

IFθn(θ̂n) = 1 + n−1r−1q(θn, θ̂n). Here flattening coefficients are usually called scale

and it should be noted that the corresponding variance needs to be multiplied by r.

From Lemma 3.2.5 we can derive a worse but more tractable bound

ρ0(θn, θ̂n) ≥ 2−1
Eθn

{
log
(
‖ θ̂n − θn‖2/(nr)

)}
. (3.16)

Upper Bound for ρ0(θn, θ̂n):

We now produce an upper bound on the risk of any Gaussian density estimate.

Henceforth, SD would mean Standard Deviation and by Bias of the scale estimate

ĉn we would mean the expected deviation from the near ideal flattening coefficient

IFθn(θ̂n). With scales estimators based on the statistic U [θ̂n](Xn) and of the form

ĉ (Xn) = (1 + n−1U [θ̂n](Xn)) we have Biasθn(cn) = (nr)−1
[
EθnU [θ̂n](Xn)− q(θn, θ̂n)

]
.

For any fixed dimension n, parameter value θn, location point estimate θ̂(Xn)

and any scale estimate ĉ (Xn) > 0 almost surely and of the form ĉ (Xn) =

1 + (nr)−1U [θ̂n](Xn), we have

ρ
(
θn, g[θ̂n, ĉn]

)
− n

2
· log

(
IFθn(θ̂n)

)
≤ n

2
·
[
Aθn

(
θ̂n, ĉn

)
+Bθn

(
θ̂n, ĉn

)]

where Aθn

(
θ̂n, ĉn

)
= IFθn

(
θ̂n
) {

Eθn(ĉn)
}−1

SDθn(ĉn)SDθn(ĉ
−1
n )

where + r−1SDθn

(‖θ̂n − θn‖2
n

)
SDθn

(
ĉ −1
n

)
and

where Bθn

(
θ̂n, ĉn

)
= Bias 2θn

(
ĉn
) {

IFθn(θ̂n)
}−1 {

Eθn(ĉn)
}−1

.

Lemma 3.2.6.
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Proof. The risk of the normal predictive density estimate g[θ̂n , ĉn ] is given by 2ρ(θn, ĝn)

= n

{
Eθn(log ĉ(Xn)) + Eθn

(
1

ĉ(Xn)

)
− 1

}
+ Eθn

(
|| θ̂ (Xn)− θn||2

r ĉ(Xn)

)
.

Now, we replace Eθn(ĉ
−1
n ) by E

−1
θn
ĉn and Eθn

(
||θ̂n − θn||2 × ĉ −1

n

)
by Eθn ||θ̂n − θn||2 ×

E
−1
θn
ĉn in the above expression to get ρ̃(θn, ĝn)

=
1

2

[
n

{
Eθn( log ĉ (Xn) ) +

1

Eθn( ĉ (Xn) )
− 1

}
+

1

r

(
Eθn ||θ̂ (Xn)− θn||2

Eθn( ĉ (Xn) )

)]

=
n

2
Eθn( log ĉ (Xn) ) +

n

2

{
1 + (nr)−1

Eθn‖θ̂ (Xn)− θn‖2
Eθn( ĉ (Xn) )

− 1

}

=
n

2
Eθn( log ĉ (Xn) )−

n

2

Biasθn
(
ĉ (Xn)

)

Eθn( ĉ (Xn) )

(3.17)

and the distortion caused thereby (n/2)−1(ρ(θn, ĝn)− ρ̃(θn, ĝn)) equals

Eθn

(
1 + (nr)−1||θ̂ (Xn)− θn||2

ĉ (Xn)

)
− 1 + (nr)−1

Eθ||θ̂ (Xn)− θn||2
Eθn( ĉ (Xn) )

. (3.18)

Next we will show that (n/2)−1|r(θn, ĝn)− r̃(θn, ĝn)| ≤ Aθn(θ̂n, ĉn). Before that, note

that if Ûn is unbiased then the second term in Equation 3.17 vanishes and we have

the result stated in Corollary 3.2.7.

Now, note that 2n−1 r̃(θn, ĝn) equals

log IFθn(θ̂n) + Eθn

[
log

(
1 +

ĉ (Xn)− IFθn(θ̂n)

IFθn(θ̂n)

)]
− Biasθn

(
ĉ (Xn)

)

Eθn( ĉ (Xn) )

and using the inequality log(1 + x) ≤ x for all x > −1 on the second term on the
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right hand side it follows that

2n−1 r̃(θn, ĝn) ≤ log IFθn(θ̂n) +
Biasθn

(
ĉ (Xn)

)

IFθn(θ̂n)
− Biasθn

(
ĉ (Xn)

)

Eθn( ĉ (Xn) )

= log IFθn(θ̂n) +
Bias2θn

(
ĉ (Xn)

)

IFθn(θ̂n)Eθn( ĉ (Xn) )
= Bn.

Now, we write 2n−1{r(θn, ĝn)− r̃(θn, ĝn)} = Hθn(θ̂n, ĉn) + Jθn(θ̂n, ĉn) where,

Hθn(θ̂n, ĉn) = IFθn

(
θ̂n
){

Eθn

(
1

ĉn

)
− 1

Eθĉn

}
and

Jθn(θ̂n, ĉn) = (nr)−1 · Eθn

[
||θ̂n − θn||2

{
1

ĉn
− Eθn

(
1

ĉn

)}]
.

Note that the second term in Hθn(θ̂n, ĉn) can be rewritten as,

Eθn

(
1

ĉn

)
− 1

Eθn ĉn
=

−1

Eθ ĉn
· Eθn

[(
ĉn − Eθn ĉn

)(
1

ĉn
− Eθn

(
1

ĉn

))]

which by Cauchy-Schwartz (C-S) inequality has lower absolute value than

(Eθn ĉn)
−1

{
Varθn(ĉn)× Varθn

(
ĉ −1
n

)}1/2

.

Thus, |Hθn(θ̂n, ĉn)| ≤ IFθn

(
θ̂n
)
Eθn ĉn)

−1SDθn(ĉn)× SDθn

(
ĉ −1
n

)
.

Again, rewriting Jθn(θ̂n, ĉn) as,

Jθn(θ̂n, ĉn) = (nr)−1
Eθn

[{
||θ̂n − θn||2 − Eθn ||θ̂n − θn||2

}{
ĉ −1
n − Eθn

(
ĉ −1
n

)}]

and applying C-S inequality we get

|Jθn(θ̂n, ĉn)| ≤ (nr)−1SDθn

(
‖θ̂n − θn‖2

)
· SDθ

(
ĉ −1
n

)
.

So (n/2)−1 |r(θn, ĝn) − r̃(θn, ĝn)| ≤ |Hθn(θ̂n, ĉn)| + |Jθn(θ̂n, ĉn)| ≤ Aθn(θ̂n, ĉn) and we

have our desired result.
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If Ûn is an unbiased estimate of the parameter q(θn, θ̂n) and ĉn = 1 +

(nr)−1Ûn > 0 almost surely, then we have,

ρ0(θn, θ̂n) ≤ ρ(θn, g[θ̂n , ĉn]) ≤
1

2
Eθn

{
log
(
1 + (nr)−1Ûn

)}
+ Aθn(θ̂n, ĉn)/2.

Corollary 3.2.7.

The corollary follows from the above Lemma. The upper bound derived here involves

expectation of a statistic along with a distortion term Aθn(θ̂n, ĉn) which will be neg-

ligible under the RASL conditions. Ignoring it for the time being we can say that an

upper bound is produced when ||θ̂n − θn||2 in the lower bound of Lemma 3.2.6 can

be replaced by a good statistic. Lemma 3.2.6 has an upper bound based on IFθn(θ̂n)

and next we show that the lower bound and the upper bound are fairly close.

For any point estimate θ̂n and location parameter θn ∈ R
n we have,

ρ0(θn, θ̂n)) ≥ 2−1 log IFθn

(
θ̂n
)
− Lθn(θ̂n)/2 where,

Lθn(θ̂n) =
(
nr
)−1 · SDθn

(
‖θ̂n − θn‖2

)
· SDθn

{(
1 + (nr)−1 ‖θ̂n − θn‖2

)−1}

Lemma 3.2.8.

Proof. From Lemma 3.2.5 we have

log IFθn

(
θ̂n
)
− 2ρ0(θn, θ̂n) ≤ log IFθn

(
θ̂n
)
− Eθn

{
log
(
1 + (nr)−1‖ θ̂n − θn‖2

)}

= Eθn

{
log

(
1− l̄(θn, θ̂n)

nr + ‖ θ̂n − θn ‖2

)}

where l̄(θn, θ̂n) = ‖ θ̂n−θn ‖2−q(θn, θ̂n)and using Jensen’s inequality and log(1+x) ≤ x
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consecutively, the difference becomes

≤ −Eθn

(
l̄(θn, θ̂n)

nr + ‖ θ̂n − θn ‖2

)

= −Eθn

[
l̄(θn, θ̂n) ·

{
1

nr + ‖ θ̂n − θn ‖2
− Eθn

(
1

nr + ‖ θ̂n − θn ‖2

)}]

and by applying C-S inequality the magnitude of the said difference is

≤ SDθn(‖ θ̂n − θn ‖2)× SDθn

{
(nr + ‖ θ̂n − θn ‖2)−1

}
= Lθn(θ̂n).

This completes the proof.

Under the conditions of Lemma 3.2.6 we have

[i.] 0 ≤ ρ
(
θn, g[θ̂n, ĉn ]

)
− ρ0(θn, θ̂n) ≤ 2−1

{
Lθn(θ̂n) + [A +B]θn(θ̂n, ĉn)

}

[ii.]
∣∣ρ0(θn, θ̂n)− 2−1 log IFθn(θ̂n)

∣∣ ≤ 2−1max
{
Lθn(θ̂n), [A+B]θn(θ̂n, ĉn)

}
.

Corollary 3.2.9.

The corollary follows directly by combining the above lemma with Lemma 3.2.6.

It bounds the deviation of the predictive risk from a continuous, increasing function

of the MSE . The RASL conditions ensure the existence of at least one candidate

for the statistic Ûn such that c(Xn) > 0 almost surely (follows from RASL condition

P3.3) and each of the associated terms Aθn(θ̂n, ĉn), Bθn(θ̂n, ĉn) and Lθn(θ̂n) is of the

order of O(n−1). Hence, Theorem 3.1.1 follows.

Proof of Theorem 3.1.1. Note that under the RASL conditions we have Aθn(θ̂n, ĉn), Bn

and Lθn(θ̂n) to be of the order of O(n−1). Also, note that the fact that c > 0 almost

surely is taken care in the the RASL property P3.3.
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3.2.4 Violation of RASL conditions

Based on the lower bound of 3.2.5 and concentrating around the expectation by using

Chebyshev’s inequality we have for any a in (0, 1)

ρ0(θn, θ̂n) ≥
1

2
log

(
1 +

(1− a) q(θn, θ̂n)

nr

){
1− a2Varθn(||θ̂n − θn||2)

q2(θn, θ̂n)

}
.

So if P1 of the RASL condition is violated i.e for some θ′n ∈ R
n we have q(θ′n, θ̂n) >

O(n) then if P2 holds or we have Varθ′n(||θ̂n − θ′n||2) < q(θ′n, θ̂n) then ρ0(θ
′
n, θ̂n) >

1/2 log(1 + r−1) which is the minimax risk of the best invariant density estimate and

so the class of density estimates in G[1] centered around θ̂ does not have any minimax

estimator. Thus, we can exclude bad point estimators in most conditions (also see

Equation 3.16).

Among the cases where RASL conditions does not hold the only exciting case is

when P2 is violated but P1 holds. In those cases the asymptotic predictive entropy

risk can not be characterized in closed form. A example of a point estimator of this

kind is:

δn(i) =

{
δ1(X1) if i = 1

Xi if i = 2, · · · , n

where the univariate point estimator δ1 is given by

δ1(x) =

{
n1/2 (2 logn)−1/2 x if x < (2 logn)1/2

x if x ≥ (2 logn)1/2

3.3 Decision Theoretic implications of optimal flat-

tening

The asymptotic relation between the predictive risk and the mean square risk will

help us in deriving oracle inequalities on the predictive risk of gn. The bounds will be

sharp enough to discuss asymptotic optimality in the class G. We would first relate
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the class G with the other decision-theoretic classes of predictive densities. Then, we

would compare the predictive risk of the respective classes in unrestricted parametric

spaces.

In the above context, we consider the following 6 predictive estimates:

• p̂L : As an representative of the class of all Linear predictive density estimates

(L) we choose the predictive density g[Xn, 1 + r]. It is the Bayes predictive

density with respect to the uniform prior, has constant risk and is inadmissible

in L. It is the best invariant predictive strategy and is also minimax among all

procedures(Liang & Barron 2004).

• p̂E : We choose the James-Stein positive part plug-in predictive density estimate

g[θ̂ JS+
n , r] as a representative of P. Though the positive part James-Stein

estimator is inadmissible as a point estimate, it is difficult to find estimators

that have significant improvements over it. And, for all practical purposes the

JS+ estimator can be considered as a ‘nearly’ admissible point estimate. In

that respect we can consider

p̂E = g[θ̂ JS+, r] where θ̂ JS+
n = Xn

(
1− (n− 2)

‖Xn‖2
)

+

as an efficient representative from the class of Plug-in predictive densities (P).

The subscript stands for the class of estimative (plug-in) distributions.

• p̂H : We consider the Bayes predictive density estimate from the harmonic prior

πH as a representative of the class of all Bayes predictive density estimates (B).
It is an admissible rule. As such, it also dominates p̂L(Komaki 2001, Ghosh

et al. 2008).

• Next, we consider 3 member of G which we will use to compare the risk of the

predictive densities from the above 3 classes.
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– g[θ̂ JS+, 1+ r]: A non-linear, fixed variance predictive density estimator

around the JS+ estimator. It is uniformly better than p̂L. It is also denoted

by gM .

– g[θ̂ JS+]: The optimal member in G(θ̂ JS+) which we will use to compare

with p̂E and p̂L.

– g[θ̂ H]: The optimal member in G(θ̂ H). We would like to compare its

performance with p̂H . Also, g[θ̂ H ] is asymptotically inadmissible among

the procedures in G.

In Table 3.1 we evaluate the predictive performance of each of these density estimates

on a data set.

Oracle inequalities and Implications

Lemma 3.1.3 describes the predictive risk of density estimates center around θ̂ JS .

Proof of Lemma 3.1.3. The results follows from Theorem 3.1.1 and by using Propo-

sition 2.6 and Exercise 2.8 of (Johnstone 2012)

The lemma will not be useful in very very low signal-to-noise ratio. It can be used

effectively when an > O(n−1). Note that, we can partition the improvement in the

asymptotic prediction error over p̂L in two parts.

• We first shrink the location estimate while keeping the scale unperturbed and

move to a better estimate g[θ̂ JS+, 1 + r]. The improvement is denoted by d1n.

• Next, we optimize the scale keeping the location fixed and arrive at g[θ̂ JS+].

The improvement at this stage is denoted by d2n.

And, based on the above lemma we have,

d1n ∼ 1

2
αn and d2n ∼ 1

2
log(1− αn)

−1 where αn = {(1 + an)(1 + r)}−1.
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As αn < 1, d1n, d
2
n as well as d2n − d1n are all positive and increasing in αn. It means

we are actually making more improvement by adapting the scale than that we got by

shifting location and their difference is also decreasing in both an and r.

Prediction error for shrinkage estimators

By shrinkage point estimators we define estimators of the form s(Xn)Xn where s(Xn)

is an almost everywhere differentiable function. If ||θn||2 were known, then spherically

symmetric shrinkage estimators of the form s(an)Xn where an = ||θn||2/n and s(an) ≤
1 would be efficient. Let S denotes the class of normal predictive densities based on

ideal point location estimators. Such an estimate satisfies the RASL condition P2 and

so Lemma 3.2.8 can be used to calculate an optimal lower bound on the predictive

risk of the family of density estimators based on S – the class of all shrinkage point

estimators conditioned on an.

Note that by Bias-Variance decomposition the quadratic risk of the ideal point

estimator s(an)Xn is given by

Eθn

(
‖sn Xn − θn‖2

)
= s2n n + s̄2n||θn||2 where s̄n = 1− sn and sn = s(an).

Based on Lemma 3.5.3 we have Lθn(θ̂n) ≤ (nr)−2
Varθn(‖θ̂n − θn‖2) and for an esti-

mator in S we have,

Varθn
(
‖sn Xn − θn‖2

)
= Varθn(s

2
n||Xn − θn||2 + 2 sn s̄n〈Xn − θn, θn〉)

≤ 2
[
s4n Varθn

(
‖Xn − θn‖2

)
+ 4 s2n s̄

2
nVarθn(〈Xn − θn, θn〉)

]

= 2n s2n [ s
2
n + 4 s̄2n an ]

which is obviously less than O(n) if s̄2n an = O(1). Otherwise,

ρ0(θn, s(an)Xn) ≥ 2−1
Eθn log(||snXn − θn||2/(nr))

≥ Eθn log |s̄n||θn|| − snχn|/(
√
nr) → ∞ as n → ∞

and thus the optimal error in S is attained at IL(θn) as defined in Equation (3.9).
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Dimension independent bounds

For any location point estimator θ̂n which obeys the RASL conditions, the difference

between the predictive risk of its associated optimally-flattened gaussian density esti-

mate g[θ̂n] and the ideal linear predictive risk can be upper bounded by dimension-free

quantities. These dimension-less bounds can be constructed by substituting explicit

bounds (independent of n, θn and θ̂n) of the following 3 quantities in Corollary 3.2.9:

Lθn(θ̂n), Aθn(θ̂n, ĉn) and Bθn(θ̂n, ĉn).

Now note that by construction we have E(ĉ−1
n ) ≤ 1 and the ideal flattening coeffi-

cient IFθn(θ̂
JS
n ) ≤ (1 + r−1). Also, from Lemma 3.5.3 it follows that SDθn(c

−1
n ) ≤

(nr)−1 SDθn(Û). So, we get

nAθn(θ̂n, ĉn)
}
≤ r−2 n−1IFθn(θ̂

JS
n )Varθn(Û)

+ r−3/2 n−1 SDθn(||θ̂n − θn||2/n) SDθn(Û)

nBθn(θ̂n, ĉn)
}
≤ r−2 n−1 Bias2(Ûn),

nLθn(θ̂n) ≤ r−2 n−1
Varθn(||θ̂n − θn||2).

In the previous section for the JS estimator, we established upper bounds in terms

of n and an for each of the terms in the RHS of the above bounds. With those, we

from crude upper bounds which depends on n only and then maximizing them over

dimension n ≥ 20 produced the upper bound displayed in Equation 3.10.

Nature of shrinkage

The plug-in estimate p̂E performs better than p̂L and g[θ̂ JS+, 1 + r] when an is close

to 0 but gets dominated with increasing values of an. And, g[θ̂ JS+] is asymptoti-

cally better than p̂E throughout. The relationship between g[θ̂ H ] and p̂H can not be

expressed explicitly. By Lemma 2.4.3 we can express the risk of p̂H as:

ρ(θn, p̂H) =
1

2

∫ 1

(1+r−1)−1

v−1q( θn/v, θ̂
H ) dv (3.19)
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where θ̂H denotes the posterior mean of the Harmonic prior. Equation 3.19 can be

used to numerically evaluate the risk of p̂H as the risk of θ̂H has closed form. The

fact that these estimators are spherically symmetric will also help. We also get the

following crude bound

C inf
βn∈A(θn)

q( θn/v, θ̂
H ) ≤ ρ(θn, p̂H) ≤ C sup

βn∈A(θn)

q( θn/v, θ̂
H )

where A(θn) =
{
βn = k θn : 1 ≤ k ≤

√
1 + r−1

}
and C = log(1 + r−1)/2.

Minimaxity over Unrestricted Spaces

For any dimension n, p̂L is a minimax estimator. However, in dimensions greater than

2, p̂L is inadmissible and so there exists improved minimax estimators. p̂H is an im-

proved minimax estimator than p̂L for n ≥ 3. g[θ̂ JS+] is also an asymptotic minimax

estimator and with huge improvements over p̂L which can also be explicitly quanti-

fied. Using Theorem 3.1.1, asymptotically minimax predictive density estimates can

be constructed around minimax location estimates.

3.3.1 An illustration with a Dataset

We consider the Baseball data that was used to show the advantage of shrinking

location estimates in Efron & Morris (1977). The data set consists of 18 players (so,

n = 18 which is not so high dimensions) with exactly 45 at-bats on a particular date

during the 1970 season. The objective is to predict the performance of the players on

the remainder of the season .

The number of hits (H) and the number of at-bats (N) over two portions of the

season were

Hji
ind.∼ Binomial(Nji, pi), j = 1, 2; i = 1, . . . , n.

Where j = 1 denotes past data and j = 2 represents the unknown future. As

the variance of the Binomial model depends of the mean parameter pi, a variance

stabilization transformation (Brown 2008) is conducted (which goes through as Nij
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are quite large). The transformation

Xji = arcsin

(
Hji + 1/4

Nji + 1/2

)1/2

(3.20)

reduces the binomial model to the normal model

Xji ∼ N(θi, σ
2
ji) where θi = arcsin

√
pi , σ

2
ij =

(
4Nji

)−1
(3.21)

and X.i independent for 1 ≤ i ≤ n. With the past P = X1. and the future F = X2.

we have the following predictive set-up :

F |θn ∼ N
(
θn, vyIn

)
; P |θn ∼ N(θn, vxIn). (3.22)

We want joint predictive densities of the future performances of players in this stan-

dardized model. We use a very naive evaluation strategy by considering the entire

season’s batting average as the true parametric value. In the entire season the play-

ers ended up playing around 400 games on the average. So, evaluating the predictive

densities at θ0i = arcsin
(
pfulli

)1/2
where pfulli are the batting averages from the entire

season will not be terrible. Evaluation procedures with guarantees may be developed

in a sequential set-up (Lai et al. 2011). While using shrinkage on the location esti-

mators we shrink towards the grand average. We evaluate the 6 different predictive

strategies of Section 3.3 for different values of the future to past variability. The value

of r will be close to 0.1 when we consider prediction on the entire remaining half of

the season.

We find that for most choices of r, p̂H is the best one among the 6 estimators

considered. However, the losses for g[θ̂ H ] and g[θ̂ JS+] are similar to that of p̂H and

always very close to the minimal loss. Also, d2n − d1n (as discussed in Section 3.3)

is decreasing in r. The JS+ plug-in estimator p̂E behaves well when r is large and

horribly for small values.
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r p̂P p̂L g[θ̂ JS+] g[θ̂ H ] p̂H

0.1 22.963 19.451 11.435 11.465 11.456

0.2 11.482 14.174 7.418 7.432 7.395

0.5 4.593 8.326 3.717 3.758 3.622

1 2.296 5.067 2.047 2.086 1.957

2 1.148 2.868 1.081 1.092 1.023

5 0.459 1.250 0.448 0.454 0.421

10 0.23 0.645 0.227 0.231 0.244

Table 3.1: Predictive loss for the different predictive density estimates as r varies.

3.4 Predictive risk of density estimates in G[p]
A typical member in the class G[p] of all product Gaussian predictive densities

is represented by g[θ̂n, D̂n] =
∏n

i=1N(θ̂(i), d̂(i) σ2
f ). Generalizing the argument in

Lemma 3.2.5 we see that a lower bound on the minimum predictive risk ρ p (θn, θ̂n) of

all density estimates in Gn[p] that have mean θ̂n, is given by

ρ p (θn, θ̂n) ≥
1

2

n∑

i=1

E θ(i)

{
log
(
1 + r−1 (θ̂(i)− θ(i))2

)}
. (3.23)

The predictive risk of the estimate g[θ̂n, D̂n] is given by

2ρ(θn, g[θ̂n, D̂n]) =
n∑

i=1

E θn log(d̂(i)) + E θn

n∑

i=1

{
1 + (θ̂(i)− θ(i))2)− d̂(i)

d̂(i)

}
. (3.24)

It is not necessarily true that

ρ p (θn, θ̂n) = min
D̂n∈Rn

+

ρ(θn, g[θ̂n, D̂n])
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asymptotically equals the lower bound given in Equation (3.23). In the previous

section we saw that under sufficient regularity conditions these bounds matches. The

ideas there can be extended to block-wise estimators and to non-orthogonal models

by using the concept of Mallow’s unbiased risk estimates. In the ℓ0 sparse predictive

space as the degree of sparsity tends to zero, i.e., s/n → 0 as n → ∞, the lower

bound given in Equation (3.23) is significantly greater than the minimax predictive

risk of the class G[p]. And so, procedure used in the previous section can not be used

for finding the asymptotic minimax predictive Gaussian risk over sparse parameter

spaces. In the following chapter in Section 4.7.2 we calculate the minimax predictive

risk over G[p].

3.5 Appendix

Yn is sequence of random variables such that Yn
d
= χ2

n(λn) for a non-negative

and increasing sequence {λn : n ≥ 1} then for n ≥ 5 we have

Var
(
Y −1
n

)
≤ k1(n) · n−3 where k1(n) = 3 (1− 2/n)−2(1− 4/n)−1.

Lemma 3.5.1.

Proof. We observe that Yn being a non-central chi-square random variable can be

written as convolution of central Chi-square and Poisson random variables

Yn
d
= χ2

n+2N where Nn
d
= Poisson(λn/2).

Decomposing the variance by conditioning on the Poisson random variable we have,

Var
(
Y −1
n

)
= Varλn

(
E
(
Y −1
n |Nn

))
+ Eλn

(
Var

(
Y −1
n |Nn

))

= Varλn

(
1

n + 2Nn − 2

)
+ Eλn

(
2

(n + 2Nn − 2)2(n + 2Nn − 4)

)

which follows from moments of central chi-square (gamma) distribution and asNn ≥ 0
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the second term on the R.H.S is ≤ 2(n− 2)−2(n− 4)−1 and by Lemma 3.5.3 we have

(n− 2)2Varλn

(
1

n+ 2Nn − 2

)
= Varλn

(
1

1 + 2Nn/(n− 2)

)

≤
{
1 + 2E(Nn)/(n− 2)

}−4
Var

(
2Nn

n− 2

)

=
4 λn (n− 2)2

(n− 2 + 2λn)4
≤ 1

2(n− 2)
.

Thus, Var (Y −1
n ) ≤ 3 (n− 2)−2(n− 4)−1.

If Yn
d
= χ2

n(λn) and λn is an increasing sequence then

λ2
n P (Yn ≤ n− 2) ≤ O(n)

Lemma 3.5.2.

Proof. Holds trivially for λn ≤ O(
√
n). So we will prove for all other sequences i.e

sequence where λn/
√
n is not bounded. Note that P (Yn ≤ n− 2) ≤ P (Yn ≤ n). And

as Yn is a non-central chi-square we have

Yn
d
= Vn+2N where N

d
= Poisson(λn) and Vn

d
= χ2

n(0)

Now, for any fixed n and N we have,

P (Vn+2N ≤ n) ≤ 2P (Vm+2N ≤ m) for all m ≥ n such that m− n is large.

Because P (Vm+2N ≤ m|Vn+2N ≤ n) ≤ P (χ2
m−n(0) ≤ m− n) ≤ 1/2. So,

lim
n→∞

P (Yn ≤ n) = lim
n→∞

Eλn

{
P

(
Vn+2N ≤ n

∣∣∣∣N
)}

≤ 2 lim
n→∞

Eλn

{
lim
n→∞

P

(
Vn+2N ≤ n

∣∣∣∣N
)}

= 2 lim
n→∞

Eλn

{
Φ

( −2N√
2n+ 4N

)}
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as we can do a normal approximation to the sequence of central chi-square random

variables. Next, we interchange the integrals (by Fubini’s as integrand is positive)

and then use bounded convergence theorem to have,

lim
n→∞

P (Yn ≤ n) ≤ 2 lim
n→∞

∫
φ(z)Pλn

(
2N√

2n+ 4N
≤ z

)
dz

= 2

∫
φ(z) lim

n→∞
Pλn

(
2N√

2n+ 4N
≤ z

)
dz

Now for all large n, λn is large (as λn increasing and λn/
√
n is not a bounded se-

quence). So each large n, we can separately do a normal approximation to the Poisson

random variable N .

Consider the case first when λn > O(n). In this case the following naive bound will

work:

Pλn

(
2N√

2n+ 4N
≤ z

)
≤ Pλn

(√
N√
n

≤ z

)
∼ Φ̃

(
λn − nz2√

λn

)
.

We will use this bound for all z such that z2 ≤ tn where tn equals n−1(λn −
√
λn

√
4 log λn + 2 logn). Also note that,

λ2
nΦ̃

(
λn − nz2√

λn

)
≤ O(n) for all z2 ≤ tn and Φ̃(tn) = O(nλ−2

n ).

And so, it follows that λ2
n limn→∞ P (Yn ≤ n) ≤ O(n).

For any non-negative random variable Y

Var
{
(1 + Y )−1

}
≤ {1 + E(Y )}−4

Var
(
Y
)
.

Lemma 3.5.3.

Proof. As Y is non-negative we have

(
1

1 + Y
− 1

1 + E(Y )

)2

=
(Y − E(Y ))2

(1 + Y )2(1 + EY )2
≤ (Y − E(Y ))2

(1 + EY )2
.
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Now, taking expectation on both sides and using Bias-Variance decomposition we get

Var

(
1

1 + Y

)
+

(
E

(
1

1 + Y

)
− 1

1 + E(Y )

)2

≤ {1 + E(Y )}−4
Var(Y ).

This completes the proof.

For any random variable X we have Var(X+) ≤ Var(X).

Lemma 3.5.4.

Proof. With the decomposition of X = X+ −X− we have

Var(X) = E(X2)− E2(X)

= E(X2
+) + E(X2

−)− E2(X+)− E2(X−) + 2E(X+) E(X−)

= Var(X+) + Var(X−) + 2E(X+)E(X−)

and we get the stated result as all the terms in R.H.S. are non-negative.
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CHAPTER 4

PREDICTION UNDER EXACT

SPARSITY & RISK DIVERSIFICATION

We construct minimax optimal predictive densities over ℓ0 sparsity constrained high-

dimensional parametric spaces. We find that minimax optimal strategies lie outside the

Gaussian family but can be constructed with threshold predictive density estimates.

Under high sparsity, explicit expressions of the first order minimax risk along with

its exact constant, asymptotically least favorable priors and optimal predictive density

estimates are derived.

Sometimes, high-dimensional problems are aided with additional information about

the parameter. It helps in effective estimation of the true parameter in an otherwise

huge and intractable space. However, the statistical estimates need to adapted in

accordance to these prior constraints. Here, we consider sparsity restriction on the

parametric space. The notion of sparsity is innate to modeling problems involving a

highly interactive system (usually represented by large number of interacting param-

eters) which is dominated by only few significant effects. Sparse modeling has been

successfully employed in scientific, economic as well as engineering applications to an

extent that it is one of the most popular choices for modeling high dimensional data

sets. The homoscedastic Gaussian Model

99
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High Dimensional Gaussian Predictive Model

M.1 X ∼ N(A θ, σ2
p I) and Y ∼ N(B θ, σ2

f I)

along with the restriction that θ is sparse with few non-zero coefficients is a widely

used. In biological modeling sparse models are used to decode significant gene net-

works from high dimensional gene-expressions data (Tibshirani, Hastie, Narasimhan

& Chu 2002, Tibshirani 2011). In signal processing, sparse signals and codes arise from

a wide range of applications (eg. image reconstruction, speech segmentation, etc) giv-

ing rise to the sub-field of Compressed Sensing (Donoho 2006, Candès 2006, Candès,

Romberg & Tao 2006, Lustig, Donoho & Pauly 2007), where as, while modeling finan-

cial transactions sparsity impositions dictate few active positions and controls trans-

action costs (Brodie, Daubechies, De Mol, Giannone & Loris 2009, Fan et al. 2011).

We impose an ℓ0 constraint on the parameter space:

Θ(n, s) =

{
θ ∈ R

n :
n∑

i=1

I[θi 6= 0] ≤ s

}
. (4.1)

The predictive model M.1 with ℓ0 constraint on the location structure can be used

for sparse coding and for prediction in sparse networks. Here, the minimax risk cal-

culations will be based on the orthogonal Gaussian model which is the basic building

block of complex sparse models. Like sparse point estimation (Zhang 2010, Raskutti,

Wainwright & Yu 2011), constrained predictive density estimation in M.1 would in-

trinsically depend on risk calculations in the orthogonal model:

Predictive Gaussian Sequence Model

M.2 X ∼ N(θ, σ2
p I) and Y ∼ N(θ, σ2

f I)

where X and Y are both n–dimensional vectors. If θ were known, then X and Y

would have been independent. M.2 is known as the homoscedastic Gaussian se-

quence model (Nussbaum 1996) and has been widely studied in the function estima-

tion framework (Johnstone 2012). Optimal estimation in M.1 can be linked with the
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minimax decision theoretic results in M.2 through the procedure outlined in Donoho,

Johnstone & Montanari (2011).

Sparse Gaussian predictive density estimation has the attributes of a sparse predic-

tion problem adapted to the peculiarities of the entropy loss function. Point prediction

analyses of dense signals in M.1 (Leeb 2009, Dicker 2012, Huber & Leeb 2012) relate

the worst-case performance with the spectral distribution of the predictors. Here,

we concentrate on the orthogonal model. We address some of the unresolved issues

associated with the role of sparsity in prediction theory. Next, we describe in more

detail the minimax predictive density estimation problem in the sparse orthogonal

model M.2.

4.1 Introduction and main result

In order to help the reader to better understand the context and nature of the predic-

tive problem, we provide a brief review of the literature around the predictive density

estimation problem. Aitchison (1975), Murray (1977) and Ng (1980) showed that

in most parametric models there exist Bayes predictive density estimates which are

decision theoretically better than the maximum likelihood plug-in estimate. As the

name suggests, a plug-in or estimative density estimate f(θ̂, B) belongs to the same

parametric family of the true density and has the point estimate θ̂ plugged in the

place of the unknown parameter. Given a prior π over Rn the Bayes predictive density

in M (along with some mild conditions) minimizes the integrated Bayes risk and is

given by

p̂π

(
y|X = x

)
=

∫
f(θ,B)(y) π(θ|x) dθ (4.2)

where the posterior distribution

π(θ |x) = {mπ(x)}−1 f(θ,A)(x) π(θ) and mπ(x) =

∫
f(θ,A)(x) π(θ) dθ (4.3)
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is the marginal distribution. An important issue in predictive inference has always

been to compare the performance of the class E of point estimation (PE) based plug-in

density estimates (Barndorff-Nielsen & Cox 1996) with that of the optimal predictive

density estimate. In fixed dimensional parametric spaces, large sample attributes of

the predictive risk of efficient plug-in and Bayes density estimates have been studied

by Komaki (1996) and Hartigan (1998). These results are independent of specific

distributional attributes of f (Aslan 2006) and reflect the predictive nature of the

problem through the relative inefficiency of the maximum likelihood plug-in density

estimates.

Recently, the predictive density estimation problem has been studied in high di-

mensional parametric spaces (Komaki 2004, George et al. 2006, Ghosh et al. 2008, Xu

& Zhou 2011). Decision theoretic parallels between predictive density estimation

under Kullback-Leibler loss and point estimation under quadratic loss have been

explored in M.2 (George et al. 2012). Fundamental techniques and results in uncon-

strained Gaussian point estimation theory (Stein 1974, Strawderman 1971, Brown

1971, Brown & Hwang 1982) can be extended to produce optimal predictive den-

sity estimates (Komaki 2001, Brown et al. 2008, Fourdrinier et al. 2011). The Bayes

predictive density from the uniform prior p̂U is the best invariant as well as a mini-

max density estimate in the unconstrained parametric space. Its risk properties are

similar to those of the canonical minimax point estimate X. Both regimes exhibit in-

admissibility of the best invariant estimates in their respective domains and improved

minimax estimators are constructed.

Another important subclass of density estimates are Linear estimates (L) which
are Bayes rules based on the conjugate product normal priors. The resultant density

estimates p̂L[α ] =
∏n

i=1N(αiXi, αi+σ2
f), with αi ∈ [0, 1], are still Gaussian but has

larger variance than the future density fθ,σ2
f
(y). We choose the name ‘linear’ because

the conjugate prior implies linearity of the posterior mean in X . It should be noted

that for linear estimates, shrinkage of the location estimate X is related to flattening

of the variance and E ∩ L consists only the zero density estimate.

Xu & Liang (2010) showed that the class L is minimax optimal if the parameter

space is restricted to ellipsoids with certain growth conditions. Here, we evaluate the
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minimax risk over the ℓ0 sparse parameter space Θ(n, s) in the asymptotic framework

{n → ∞ and s/n → 0}. Sparse point estimation has been extensively studied in

this asymptotic set-up by (Donoho & Johnstone 1994a, Donoho & Johnstone 1994b,

Donoho et al. 1992, Foster & George 1994) and the results are the building blocks

for popular sparse estimation methods (Zhang 2005, Candes & Tao 2007, Donoho,

Maleki & Montanari 2011). It is natural to look for parallels in the predictive density

regime.

4.1.1 Our contributions:

Instead of parallels, we found contrasting results for sparse estimation in the two

regimes. The asymptotic minimax predictive risk reflects the nature of the predictive

density estimation problem through the ratio r of the future to the past volatilities

r = σ2
f/σ

2
p. As r decreases, we need to estimate the future observations based on

increasingly noisy past observations and so, the difficulty of the density estimation

problem also increases. Unlike point estimation, sharp decision theoretic rates in the

predictive density problem should depend on r. This dependence was not emphasized

in the admissibility results in the unrestricted space.

In our ℓ0 sparse prediction framework, as the proportion of non-zero signals goes

to zero, we find that the order of the minimax rate does not depend on r. So, ex-

act determination of the constants of the minimax risk is important here. Optimal

minimax estimators can be constructed by incorporating the predictive nature of the

problem through the notion of diversification of the future risk. Under sparsity con-

straints efficiency of the prediction schemes depend on careful coupling of the sparsity

adjustment and the risk diversification mechanisms. The risk diversification notion

can also be extended (though not done here) to dense unrestricted parametric spaces

where future uncertainty can be effectively shared by optimally flattening probability

densities based on the quadratic risk estimate of their corresponding location point

estimator.

Here we also evaluate the minimax risk over the wide class G of all product Gaus-

sian density estimates p̂G[ θ̂, d̂ ] =
∏n

i=1N(θ̂i, d̂i). G contains both L and E and would
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represent the infamily error rate of the sparse Gaussian predictive density estimation

problem. We prove that the sub-class G is sub-optimal rand provide asymptotic

miximax strategies as well as the sub-optimality rates of the sub-classes E ,L and G.

4.1.2 Description of the main results

Notations and Preliminaries

To proceed further we need some notation. The action space An contains all possible

densities in R
n. The n-dimensional minimax risk of the prediction problem is given

by

R(n, s, r) = min
p̂∈An

max
θ∈Θ(n,s)

ρ (θ, p̂).

We compute the limiting behavior of R(n, s, r) in the asymptotic framework F =

{n → ∞, s/n → 0}. The minimax risk over the sub-class of Plugin (E) density

estimates is represented by

R(n, s, r, E) = min
θ̂

max
θ∈Θ(n,s)

ρ (θ, p̂E[θ̂]) where p̂E[θ̂] = N(θ̂, σ2
f In).

Similarly, the minimax risk over the sub-classes of Linear (L) and Gaussian den-

sity estimates (G) will be denoted by R(n, s, r,L) and R(n, s, r,G) respectively. The

maximum Bayes risk over the class of priors M(n) on R
n is denoted by

B(r,M(n)) = max
π∈M(n)

min
p̂

B(π, p̂).

As defined in Chapter 1 this maximin value is also the information capacity. A prior

maximizing this Bayes risk is said to be a least favorable prior for the prediction

problem. We evaluate the supremum Bayes risk of the following class of priors

M(n, s) =

{
π :

n∑

i=1

Pπ(θi 6= 0) ≤ s

}
.
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Univariate Prediction Problem

In high dimensions, due to concentration of measure, the decision theoretic results in

our multivariate set up F will intrinsically depend on the properties of the coordinate-

wise univariate risk. The least favorable priors as well as the minimax density es-

timates will be product densities. So, computing the multivariate risk in the n–

dimensional, s–sparse orthogonal Gaussian Model M.2(n, s, σp, σf ) would involve

studying the corresponding univariate model M.2(1, η, σp, σf ) in which we relax the

sparsity constraint to restriction on the univariate prior space

m(η) = {π ∈ P(R) : π(θ 6= 0) ≤ η}

where P(R) is the collection of all probability measures in R. The maximin value

supπ∈m(η) inf p̂B(π, p̂) of this univariate prediction game is given by the maximal Bayes

risk β(η, r) := supπ∈m(η) B(π). The minimax risk for this univariate prediction prob-

lem is given by

ρM(η, r) := inf
p̂

sup
π∈m(η)

B(π, p̂). (4.4)

The minimax risk and the maximal Bayes risk over univariate sub-collection m of

priors of m(η) are respectively denoted by ρM (η, r,m) and β(η, r,m). When the

maximal Bayes risk (maximin) equals to the minimax risk, it is referred as the Bayes-

Minimax risk for the prediction problem.

As in our asymptotic framework F the proportion of non-zero signals s/n goes

to zero, the univariate risk calculation will be in the asymptotic regime η → 0. The

difference between the multivariate and univariate cases is notationally demonstrated

through the bold representation of multivariate vectors. The other non-standard

notations used are φ(|θ, r) for the multivariate normal density with center θ and

covariance rI while Φ̃ = 1 − Φ with Φ being the standard normal distribution. For

sequences, the symbol an ∼ bn means an = bn(1 + o (1)) and an ≍ bn means an/bn ∈
(c1, c2) where c1 and c2 are constants.
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Results

Consider the following symmetric univariate prior 3–point prior

π[η, r, 3] = (1− η) · δ0 +
1

2
η · δνη +

1

2
η · δ−νη

where νη is the positive root of the quadratic equation

v−1
w ν2 + 2 v−

1/2
w ν a = λ2

e

with vw = (1 + r−1)−1, a = max(
√
log vwλ2

e, 1) and λ2
e = 2σ2

p log{(1 − η) η−1} is

close to the universal threshold (when η = n−1) seen previously in PE (Donoho &

Johnstone 1994a). As η → 0, the solution νη → λf = v
−1/2
w λe.

Also, consider the discrete cluster prior π[η, r,CL] with 1− η probability at 0 and

sharing the remaining mass among a cluster of support points. The non-zero support

points start from ± νη and span out symmetrically on either side in a geometric

progression with common ratio (1 + 2r) up to the universal threshold:

π[η, r,CL] = (1− η) · δ0 +
η

2Kη

Kη∑

i=1

{
δµi

+ δ−µi

}
where (4.5)

Kη = max
{
i : (1 + 2r) i−1 νη ≤ λe + a

}
, (4.6)

µi = (1 + 2 r)i−1 νη, i = 1, 2, . . . , Kη. (4.7)

For any fixed r ∈ (0,∞) as η → 0 we have

K(r) = lim
η→0

Kη =

⌊
log(1 + r−1)

2 log(1 + 2r)

⌋
.

We will use the Bayes predictive density p̂ (·|x; π[η, r,CL]) derived from the cluster

prior π[η, r,CL] to construct threshold estimates. Consider the following univariate

threshold estimate which uses the best invariant density estimate p̂ (·|x; πU) from the
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uniform prior above the threshold λe and p̂ (·|x; π[η, r,CL]) below the threshold

p̂[η,T,CL,U](y|x) =
{

p̂ (y|x; π[η, r,CL]) if |x| ≤ λe

p̂ (y|x; πU) if |x| ≥ λe

. (4.8)

The estimator p̂[η,T,CL,U] attains the univariate minimax risk as η → 0.

For any fixed r ∈ (0,∞) as η → 0 in the univariate prediction problem we

have

ρM(η, r) = β(η, r) =
η vw λ2

e

2r

(
1 + o (1)

)
.

Also, π[η, r, 3] is an asymptotically least favorable prior and p̂[η,T,CL,U] is

an asymptotically minimax optimal estimate.

Theorem 4.1.1.

Based on the univariate version, we can construct a multivariate, co-ordinate wise

rule

p̂[n, s,T,CL,U](y|x) =
n∏

i=1

p̂ [s/n,T,CL,U](yi|xi)

which will be asymptotically minimax optimal in the high dimensional regime F .

Also the product discrete distribution

π[n, s, r, 3](θ) =
n∏

i=1

π[s/n, r, 3](θi)

based on the 3–point prior will be asymptotically least favorable. The following

theorem, which is our main result, describes the minimaxity results for the predictive

density estimation problem with ℓ0 sparsity constraints in Model M.2.
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As n → ∞, if s → ∞ but s/n → 0 then for any fixed r ∈ (0,∞] we have:

a. The minimax risk R(n, s, r) ∼ (1 + r)−1 s log(n/s).

b. π[n, s, r, 3] is an asymptotically least favorable prior distribution, i.e.

B(π[n, s, r, 3]) ∼ sup
π∈P(Θ(n,s))

inf
p̂∈An

B(π, p̂)

where P
(
Θ(n, s)

)
is the collection of all probability measures over

Θ(n, s).

c. The predictive density estimate p̂[n, s,T,CL,U] is minimax optimal, i.e.

max
θ∈Θ(n,s)

ρ
(
θ, p̂ [n, s,T,CL,U ]

)
∼ R (n, s, r).

Theorem 4.1.2.

We compute the multivariate minimax risk over the different sub-classes of predictive

density estimates. As an immediate corollary of the above theorem it follows that

the class of plug-in estimators E is sub-optimal. The plug-in sup-optimality ratio

R(n, s, r, E)/R(n, s, r) asymptotically equals 1 + r−1 (see Lemma 4.7.1). As in point

estimation, the class of linear estimates L performs very poorly.

For any fixed r ∈ (0,∞) and for all sequences sn such that sn → ∞ and

sn/n → 0 as n → ∞, we have

lim inf
n→∞

R(n, sn, r,L)
R(n, sn, r)

= ∞ .

Lemma 4.1.3.

We also find that the performance of the wider class of all Gaussian density estimates

is no better than that of plug-in estimates.
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Under the condition of Theorem 4.1.2 we have

R
(
n, s, r,G

)
∼ R

(
n, s, r, E

)
.

Lemma 4.1.4.

If the parametric space Θ(n, s) does not have any sparser representation with respect

to the group of orthogonal transformations then the sub-optimality of the class G̃
comprising of all Gaussian densities N(θ, Σ̂ ) including non-diagonal covariances is

1 + r−1.

Now, p̂ [n, s,T,CL,U] is not derived from a prior and we would like to construct

a prior for which asymptotic minimaxity in Theorem 4.1.2 holds. Consider another

symmetric univariate prior π[η, r, INF] whose support consists of the origin and in-

finite number of equidistant clusters each containing 2Kη points (defined before in

equation [4.5] ) in the same spatial alignment as for π[η, r,CL]. As η → 0, the clusters

centers are separated by λe and, as they move away from zero they have geometri-

cally decaying probability with η being the common ratio. However, within clusters

all support points are not equally likely any more. They have geometrically decaying

probability with common ratio log η−1.

π[η, r, INF] = (1− η) · δ0 +
1− η

2

∞∑

j=0

ηj+1

Kη∑

i=1

qi
[
δµij

+ δ−µij

]
where,

µij = j λe + (1 + 2r)i−1 νη , i = 1, . . . , Kη and j = 1, . . . ,∞;

qi = (log η−1)−i for i = 2, . . . , Kη and q1 = 1− 1− (log η−1)−Kη

log η−1 − 1
.

Based on π[η, r, INF] we can construct a multivariate prior

π[n, s, r, INF](θ) =
n∏

i=1

π[s/n, r, INF](θi)
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in R
n which will not only be least favorable but also yield a minimax optimal density

estimate. As π[n, s, r, INF] is a proper prior it is admissible. Though its support is not

confined to Θ(n, s) it concentrates on it asymptotically. It represents an equilibrium

solution for the sparse minimax prediction problem.

Under the conditions of Theorem 4.1.2 for any fixed r ∈ (0,∞], the proper

prior distribution π[n, s, r, INF] is an asymptotically least favorable and its

corresponding Bayes predictive density is asymptotically minimax optimal.

Theorem 4.1.5.

These results reflect the predictive nature of the problem. The cluster prior π[η, r,CL]

in the minimax estimate p̂[η,T,CL,U](y|x) diversifies the predictive risk over the con-

strained parametric space. The risk diversification notion is essential to construction

of optimal estimates and can be extended to other different forms of asymptotically

minimax predictive density estimates. This mechanism of uncertainty sharing in pres-

ence of sparsity has not been previously described in minimax decision theory. To

rigorously interpret the results, we need the risk equations in George et al. (2006)

which connect the Bayes predictive risk and with the square error of the posterior

mean (see Section 2.4.1). Next, we provide an heuristic explanation of the implica-

tions of the results by an asymptotic (as η → 0) risk analysis of univariate threshold

estimators.

New Phenomena in Estimation Theory

To adjust for high sparsity we use threshold based non-linear estimates t̂[λ, S] with

the threshold cut off at λ, the best invariant estimate p̂(·|x; πU) above the threshold

and estimate/scheme S below the threshold. We found that for such an estimate

the threshold choice is dictated by the level of sparsity η and can not be lower than

λe.
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For any fixed r ∈ (0,∞), scheme S and u ∈ [0, 1), we have

lim
η→0

supπ∈m(η) B
(
π, t̂ [u λe, S]

)

ρM(η, r)
= ∞.

Lemma 4.1.6.

However, unlike PE, here the non-zero support point of the least favorable prior is

not at λe but at λf . So, the univariate asymptotic maximal Bayes risk β(η, r) ∼
(2 r)−1η λ2

f is lower than the corresponding maximal quadratic Bayes risk βq(η, r) =

η λ2
e after adjustment by 2r. Because of the threshold choice, the univariate threshold

risk ρ(θ, t̂[λe, ·]) is bounded when |θ| ≥ λe. So, we need to restrict the predictive

univariate risk in the region {θ ∈ (−λe, λe)} below the minimax risk. For that pur-

pose, unlike PE we can not just use the zero estimator φ(·|0, σ2
f) below the threshold

because then ρ(θ, t̂[λe, 0]) exceeds η−1 ρM(η, r) (given by equation [4.4]) in the re-

gion V = {θ : |θ| ∈ [λf , λe]}. It leads to inefficiency of the optimal plug-in density

estimates.

Instead using the Bayes density estimate from π[η, r, 3] the risk can be controlled

in the neighborhood around λf but exceeds β(η, r) as θ moves further away. The uni-

variate threshold estimate t̂[λe, π[η, r, 3]] represents an unshared threshold prediction

scheme. To control the risk through out we need to share the predictive risk for θ

between λf and λe. The cluster prior serves the purpose by using a prior with prob-

ability 1− η at 0 (which controls the risk at 0) and distributing the remaining mass

η equally among a finite chain of points covering V . We also find that discreteness

of the sharing scheme is important and continuous uniform sharing scheme will not

work here. Also, the number of support points in the sharing scheme is proportional

to r−1 reflecting the increasing difficulty of the prediction problem. Table 4.1 shows

the number of support points in the cluster prior as r varies. In Figure [4.1], we

have a schematic description of the asymptotic (η → 0) behavior of ρ(θ, t̂[λe, S]) for

different type of schemes in S.
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Bounded risk

Plug−in Scheme

Unshared Prediction

Diversified Prediction

0

θ2/2r

λf λe

θ −→

η−1 ρM (η, r)

ρ (θ, · )

Figure 4.1: Schematic diagram of KL-risk functions for different Predictive
Schemes. As the true parameter θ varies, the univariate asymptotic predictive risk
limη→0 ρ(θ, t̂[λe, S]) is represented on the ordinate. The blue box between λf and
λe represents a support point of the cluster prior (representative of shared predictive
schemes) which is not in the support of π[η, r, 3] or other unshared predictive schemes.

4.1.3 Organization of this Chapter

The proof of the results along with their implications are developed first in an overview

fashion in Section 4.2 and Section 4.3 which may suffice for a first reading. Along

with the general proof strategies it contains the proof of Theorem 4.1.1. Part of

the proof of Theorem 4.1.2 extends over to Section 4.6. Technical proofs of all the

statements in Section 4.3 are presented in Section 4.4 and Section 4.5 with some of

the lemmas pushed to the Appendix to improve flow and readability. Theorem 4.1.5,

r 0.1073 0.1235 0.1465 0.1826 0.2485 0.4196 > 0.4196
Kη 7 6 5 4 3 2 1

Table 4.1: Number (Kη) of positive support points in the cluster prior π[η, r,CL] as
r varies.



CHAPTER 4. EXACT SPARSITY & RISK DIVERSIFICATION 113

Lemma 4.1.3, Lemma 4.1.4 and Lemma 4.1.6 are proved in Section 4.7. The proofs

involving direct risk calculations with the KL loss may be of independent interest and

use in information theory.

4.2 Proof Overview

Hereon we will assume that σ2
p = 1 and σ2

f = r. The general predictive KL risk

as well as the ℓ0 constraints on the parametric space will not be affected by this

restriction. However, the density estimates are usually based on statistics equivariant

to the scale transformation and needs multiplication by σp. The proofs as well as

the interpretation which will be mostly done on the reduced univariate model are

presented for the case σ2
p = 1 and σ2

f = r. While extending the results to the

multivariate set-up we will appropriately modify the estimators for general σp and σf .

Proper interpretation of the predictive results will involve comparison with quadratic

risk of point estimation in model M.2(1, η, r). Next, we describe the connections for

the univariate version.

4.2.1 Bayes-Minimax Method

We will explicitly solve for the equilibrium of the univariate minimax problem in

M.2(1, η, r). Using the minimax theorem here, we see that over the class m(η) the

maximal univariate Bayes risk β(η, r) = sup{B(π) : π ∈ m(η)} is always less than

the minimax risk ρM(η, r). So, if we can produce:

1. a lower bound on β(η, r) by considering the Bayes risk of a particular prior π0

(say);

2. an upper bound on the minimax risk ρM(η, r) by considering the maxθ ρ(θ, p̂0)

for a particular estimator p̂0;

3. such that the lower bound and upper bound matches asymptotically as η → 0;

we can conclude that β(π0) is the supremum Bayes risk as well as the minimax risk

and π0 is asymptotically least favorable and p̂0 is a minimax strategy for the univariate
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predictive density estimation problem.

Once we have found the equilibrium for the univariate game, we extend the solu-

tion to the multivariate regime by following the general strategy outlined in Johnstone

(2012, Section 4.11). Considering the class of exchangeable priors me we can reduce

the n–dimensional multivariate problem as repeated (n times) independent playing of

the univariate minimax game and using the minimax theorem 4.8.3 we can show that

R(n, s, r) would be less than nβ(s/n, r) (see Lemma 4.6.1). As detailed in Section 4.6,

we can actually show that R(n, s, r) ∼ nβ(s/n, r) would follow from concentration

properties of the multivariate least favorable prior π[n, s, r, 3]. Following this scheme,

we now calculate the asymptotic univariate minimax risk.

The rest of this chapter is divided into 3 parts. We discuss univariate minimax

optimality in the first and then extend those univariate rules to co-ordinate wise mul-

tivariate minimax strategies in the second. The last sub-chapter contains discussions

on the extensions of these exact sparsity (ℓ0) results to approximate (weak) sparsity

(ℓp balls).



PART A: UNIVARIATE MINIMAX RISK

UNDER HIGH ℓ0 SPARSITY

4.3 The univariate asymptotic set-up

Here onward we would further restrict our univariate parametric space to the non-

negative orthant. The corresponding prior space would be m
+(η) = {π(θ) : π(0) ≥

1 − η}. It would simplify exposition and the results easily generalizes over m(η) by

symmetrization.

To produce a lower bound on the maximal Bayes risk, we consider the class of all

2–point priors in m
+(η). We will see that the 2–point version of the prior π[η, r, 3]

will attain the maximal Bayes risk where

π[η, r, 2] =

{
0 with prob 1− η

νη with prob η

and νη is the positive root of the quadratic equation

1

2
v−1
w ν2 + v−

1/2
w ν a = log

{
(1− η) η−1

}
(4.9)

where vw = (1 + r−1)−1 is the variance of the semi-futuristic random variable W and

115
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a = (2 log λf)
1/2 and λ2

f = 2 vw log{(1− η) η−1}.
To provide a detailed description of the univariate asymptotic regime we describe

some fundamental quantities (functions of the sparsity level η) associated with our

asymptotic calculations:

Universal Threshold: λe =
(
2 log{(1− η) η−1}

)1/2
] is the universal threshold for point

estimation of θ based on the past X only Donoho & Johnstone (1994a). The subscript

‘e’ emphasizes its estimative purpose. Later on, we will see that λe is also the optimal

threshold in the predictive regime.

Ideal Predictive Threshold: λf = (2vw log(1− η) η−1)1/2 ] is the universal threshold

needed to devise minimax optimal threshold point estimate of θ based on observing

the random variable W i.e both the past X and the complete future Y (which is

equivalent to observing Yα with α = 1). The subscript f reflects its dependence on

the future data.

Vantage Point: νη – the positive root of Equation [4.9] is the non-zero support

point of the asymptotically least favorable 2–point prior in point estimation of θ

under quadratic loss and noise variability vw (compared with Johnstone (2012, Equa-

tion (8.36))) which again corresponds to location point estimation based on W . νη

will be pivotal to our calculations. νη marks the beginning of the Vulnerable Zone

which spans from [νη, λf ]. The calculation of the predictive risk on either side on νη

displays the sparsity adjustments and uncertainty sharing dynamics.

Resolution Parameter, a = (2 log λf)
1/2: As η → 0, we need to compute the asymp-

totic predictive risk as the true parameter θ moves along the non-negative axis. In

the asymptotic regime, we can exactly quantify the risk except at a few transition

points. However, the discontinuity of our analysis will only be limited to O (a)–

neighborhood around the transition points. In our calculations, a will generally arise

an overshoot/undershoot parameter, e.g. Equation [4.9]. As in PE, a is of the order

of (log log η−1)1/2 and the risk can be accurately approximated in a resolution coarser

than a.

Now, note that Equation [4.9] reduces to (v
−1/2
w ν + a)2 = λ2

e + a2 and so

νη =
(
λ2
f + vw a2

)1/2 − v
1/2
w a ≥ λf − av

1/2
w .
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0 νη

λf λe

1− η

η

Figure 4.2: The figure shows the support and probability allocation of the sparse
2–point prior π[η, r, 2] along with the universal threshold λe and the ideal predictive
threshold λf . The abscissa is graduated in a units and is drawn according to the scale
with η = e−1000 and r = 0.2.
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Thus νη ∈ (λf − a, λf). So as η → 0, λf is quite close to the vantage point νη (in

a–coarser resolution). Also, note that the ratio λf : λe equals v
1/2
w : 1. Thus, as

the future variability r decreases, the distance between λf and λe increases. Also as

η → 0, the threshold behaves as λe ∼ (2 log η−1)1/2. Attributes in the asymptotic

regime are pictorially represented in Figure 4.2.

π[η, r, 2] is a sparse prior in the sense that repeated sampling from the prior would

yield with a sparse signal as η → 0. We will see that π[η, r, 2] will be an asymptotically

least favorable distribution for θ. To get a fair understanding of our strategies in the

predictive regime we formulate the predictive density estimation problem as a two-

person game between the Nature and a statistician.

4.3.1 Predictive Two-Player Game and Equilibrium Strate-

gies

In this predictive game, Nature chooses a probability distribution π(θ) from m
+(η)

for the location parameter θ. Then, a particular sample point θ0 is generated from

π(θ) and based on the signal θ0 realizations X and Y contaminated with white noise

would be produced: X = θ0+ ǫ1 and Y = θ0+ r1/2ǫ2 where ǫ1 and ǫ2 are independent.

The statistician sees only X and he knows about the sparsity restrictions and the

data generation scheme. He has to come up with a density estimate for Y . It is to

be noted that under sufficient concentration properties the complicated sparse high

dimensional minimax prediction problem is equivalent to repeated playing of this

simple 2–player game with fixed strategies (from both) over independent trials.

As η → 0, a minimax strategy of this predictive game is given by the positive

version p̂[η,T,CL+,U] of p̂[η,T,CL,U] where

p̂[η,T,CL+,U](y|x) =
{

p̂ (y|x; π[η, r,CL+]) if X ≤ λe

p̂ (y|x; πU) if X > λe

and the π[η, r,CL+] is a sparse discrete prior (cardinality of the support set equals

(Kη+2) with Kη defined in Equation [4.10]) with (1−η) probability at 0 and sharing

the remaining mass on a cluster of (Kη + 1) support points. The non-zero support
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points approximately lies between λf and λe. The (Kη + 1) non-zero support points

start from µ0 = νη with νη given by the Equation [4.9] and span out in a geometric

progression

µi = (1 + 2r)iµ0, i = 1, 2, . . . , Kη and Kη = max
{
i : (1 + 2r)iµ0 ≤ λe + a

}
.

As η → 0, a first order approximation to the cardinality would be

Kη ∼
⌊

log(λe/λf)

log(1 + 2r)

⌋
=

⌊
log(1 + r−1)

2 log(1 + 2r)

⌋
. (4.10)

The subscript in Kη would be dropped for simplicity. The non-zero support points

are equally probable and in that way the cluster prior

π[η, r,CL+] = (1− η) · δ0 +
η

K + 1

K∑

i=0

δµi
(θ)

is a probability distribution in m
+(η) which is midway between the least favorable

prior in PE based on X and W = UMVUE(X, Y ) respectively. The intermediation is

marked by equal sharing of probability among the finite support points laid between

λf and λe. A schematic representation of this mass allocation is presented in Fig-

ure [4.3]. The alignment of (spacing between) the support points is also intrinsic to

the nature of the predictive problem and will be discussed later (in Section 4.5). Note

that as η → 0, π[η, r,CL+] is a sparse prior and π[η, r,CL+] = π[η, r, 2] if r > 0.42.

As η → 0, π[η, r, 2] is an asymptotically least favorable prior for the univariate

predictive game and p̂[η,T,CL+,U](y|x) is a minimax estimator with the

optimal asymptotic risk of (2r)−1 η λ2
f .

Theorem 4.3.1.
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0 νη µ1 µ2

λf λe

1− η

η/3η/3η/3

Figure 4.3: The figure shows the support and probability allocation of the Clus-
ter prior π[η, r, |Cl+] along with the universal threshold λe and the ideal predictive
threshold λf . Here with r = 2, we have 3 equally likely non-zero support points at
µ0 = νη, µ1 and µ2 which constitute a geometric progression with common ratio 1.4.
The abscissa is graduated in a units and is drawn to the scale of η = e−1000.
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4.3.2 Proof of Theorems 4.1.1 and 4.3.1

As our set-up is symmetric it is enough to prove Theorem 4.3.1. We will use the the

Bayes-Minimax strategy described before. So, we would calculate a lower bound on

the Bayes risk of π[η, r, 2] (see Lemma 4.3.2) and will produce a matching upper bound

on the maximal risk of p̂T [η,T,CL
+,U] (see Theorem 4.3.4). To interpret the result

in terms of predictive game note that the statistician’s choice for a density estimate

of Y will involve information about θ0 stored in X as well as the Gaussianity of the

noise distribution. And, as the parametric form of the true future density is known

an effective density estimate will depend on efficient estimation of θ0 which in turn

depends only on the sufficient statistics. In particular if X and Y were both observed

an optimal point estimate of θ0 based on the sufficient statistics W would produce

an optimal density estimate (we will choose the plug-in version). So, for Nature, who

aims to set the most difficult predictive set-up, the goal is essentially setting up the

most difficult point estimation case for θ0 based on the fact that X and Y are both

observed. She apprehends that the statistician may produce a near accurate point

prediction Ŷ of Y based on X . So, the worst possible prior distribution involve point

estimation of θ0 based on observing (X, Yα)
∣∣
α=1

. Let us denote a typical 2–point prior

in m
+(η) with its only non-zero support point at ν by

π2pt[η, ν](θ) =

{
0 with prob 1− η

ν with prob η

Note that the sparse two point prior π[η, r, 2] = π2pt[η, νη].

B(π[η, r, 2]) ≥ η
λ2
f

2r
(1 + o(1)) as η → 0

Lemma 4.3.2.

Here, we provide an intuitive (and a bit non-rigorous) proof of the Lemma by

using the connections with point estimation (PE) theory. We avoid the intricacies

of overshoot term and present asymptotic arguments in the resolution higher than
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the O (a). In Section 4.4 we have rigorous technical proofs of the exact asymptotic

behavior of the predictive risk of any 2–point priors in m
+. For those detailed calcu-

lation, the connecting equations can not help much as we still need to dig into the

asymptotic subtleties of the PE regime. Lemma 4.3.2 and the other 2–point priors

results will follow directly from those calculations.

Proof. To compute the predictive Bayes risk of π[η, r, 2], we will use the Connecting

equation [2.3] and known properties of the quadratic risk of θ̂
[
π2pt[η, ν]

]
– the posterior

mean of the 2–point prior π2pt[η, ν].

From PE theory Johnstone (2012, Section 8.4) as η → 0, the asymptotic quadratic

risk q
(
θ, θ̂
[
π2pt[η, ν]

]
, 1
)
of the Bayes estimate of π2pt[η, ν] in an estimative set-up

with unit noise variance, has the following properties:

Property 1: Because of the very high mass at 0, the risk at 0 will be insignificant

(lower than the order of η log η−1) and the dominant proportion of the Bayes

risk will be from the non-zero support point ν.

Property 2: As η → 0, the quadratic risk at the non-zero point ν will be of the

order of ν2 as long as ν2 ≤ λ2
e − c a λe with c > 0. Once ν exceeds λe the

quadratic risk at ν becomes negligible compared to its peak value. Thus, the

maximal first order asymptotic quadratic risk is attained when ν = λe and

q
(
θ, θ̂
[
π2pt[η, ν]

]
, 1
)
∼
{

ν2 if ν2 < λ2
e − c a λe

O (1) if ν2 ≥ λ2
e + 2a λe

.

Again, we know that the Gaussian estimative set up with noise variability v can

be reduced to an unit variance problem by suitably scaling the observations as well

as the location parameter by v1/2. Posterior probabilities remain invariant to the

transformation leading Bayes point estimates to be similarly scaled. And so, the

quadratic risk of Bayes estimates under the variance stabilizing transformation is

scaled by variability v, i.e.

q
(
θ, θ̂
[
π2pt[η, ν]

]
, v
)
= v · q

(
v−

1/2θ, θ̂
[
π2pt[η, v

−1/2ν]
]
, 1
)
.
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Thus, while computing the predictive risk of the Bayes density estimate of π[η, r, 2]

at νη by the Equation [2.3] we have:

ρ

(
νη, p̂

[
π[η, r, 2]

])
=

∫ 1

vw

1

2v2
q
(
νη, θ̂

[
π2pt[η, νη]

]
, v
)
dv

=

∫ 1

vw

1

2v
q
(
v−

1/2νη, θ̂
[
π2pt[η, v

−1/2νη]
]
, 1
)
dv.

Also, for all v ∈ [vw, 1] we have (v−1/2νη)
2 ≤ λ2

e − a λe. So using the aforementioned

Property 2, as η → 0 we get

ρ

(
νη, p̂

[
π[η, r]

])
≥
∫ 1

vw

1

2v
×

ν2
η

v
dv = ν2

η

∫ 1

vw

1

2v2
dv =

ν2
η

2r
=

λ2
f

2r
(1 + o (1)) as η → 0

and the corresponding predictive Bayes risk satisfies

B(π[η, r, 2]) ≥ η × r

(
νη, p̂

[
π[η, r]

])
≥

λ2
f

2r
(1 + o (1)) .

This completes the proof.

Actually we can infer more about the prior π[η, r] and like PE, here too we can

show that the prior π[η, r] is asymptotically least favorable among all 2–points pri-

ors.

As η → 0, π[η, r, 2] maximizes the asymptotic Bayes risk in the class of all

2–point priors in m
+.

Lemma 4.3.3.

Proof. We know (by Property 1 described in Lemma 4.3.2) that the risk at the origin

will have insignificant contribution (lower than the order of ηλ2
e ) to the Bayes risk.

Also, based on Property 2, for maximizing the risk at the non-zero support point

the choice of ν is reduced to the set {νk = kλe : k ∈ [0, 1]}. The predictive risk of
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π2pt[η, νk] at the non-zero support point will be given by,

B
(
π2pt[η, νk]

)
∼ η · ρ

(
νη, p̂

[
π2pt[η, νk]

])

= η

∫ 1

vw

1

2v2
q
(
νη, θ̂

[
π2pt[η, νk]

]
, v
)
dv

= η

∫ 1

vw

1

2v
q
(
v−

1/2νη, θ̂
[
π2pt[η, v

−1/2νk]
]
, 1
)
dv.

Now, as η → 0, q
(
v−

1/2νη, θ̂
[
π2pt[η, v

−1/2νk]
]
, 1
)
∼
{

v−1 k2 λ2
e if v > k2

O (1) if v ≤ k2

so, the asymptotic predictive Bayes risk is

B
(
π2pt[η, νk]

)
= η

{
2−1 k2 λ2

e

∫ 1

max(k2,vw)

v−2 dv

}(
1 + o (1)

)

= k2
{
1− (max(k2, vw))

−1
}
ηλ2

e/2
(
1 + o (1)

)

which is maximized at k = v
1/2
w . Thus the Bayes risk is maximized for the 2–point

prior whose non-zero support point is at λf .

In this context, note that the optimal asymptotic predictive risk is always lower

than the square error of point estimation of θ0 based on X . This is because in the

predictive set up (for Nature) the future Y could disclose additional information about

θ0. As such, we will see afterward that the ratio of the optimal predictive to estimated

risk is vw. For the two extreme cases as r approaches 0 and ∞ the ratio tends to 0

and 1 respectively. It validates our intuition about this predictive set-up. As with

r → ∞, even knowing Y will not provide any additional information about X . So,

for Nature the predictive problem will be as easy to set as the estimation one where

only one sample X is explored. Similarly, as r → 0, Y would disclose infinite amount

of more information than X . Comparing the optimal risk in point estimation and the

predictive regime we can say that predictive density estimation based on KL loss is

an easier task than Point Estimation under quadratic loss. However, it does not say

that prediction is easier than estimation.
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On the contrary, constructing optimal predictive densities (for the statistician) is

far more complicated than designing point estimates. The issues that need addressing

are

Sparsity Regularization: The prior information of having at least (1− η) mass at

the origin has to incorporated.

Risk Diversification: The statistician does not see Y but can balance his ignorance

about Y by sharing his future uncertainty.

As such, the interplay between sparsity-regularization needs and the dynamics of risk

diversification (because of predictive purposes), requires to be explicitly tracked for

calibrating optimal predictive schemes. We will see that the optimal strategies will

lie outside the given parametric (Gaussian) family. However, there exists at least an

asymptotic solution in the class of Gaussian mixture (finite) densities which is flexible

enough to optimally balance the regularization vs diversification trade-off.

As η → 0, for any r ∈ (0,∞) we have

sup
π∈m+(η)

B(π, p̂[η,T,CL+,U]) ≤ ηλ2
f/(2r)(1 + o (1)).

Theorem 4.3.4.

This theorem is proved in Section 4.5. For controlling the sparsity effect, the statis-

tician can use a threshold density estimate. Threshold rules are a particular class of

non-linear estimates which may be successfully employed to devise sparse minimax

optimal estimates particularly in location estimation. The idea behind threshold rules

is to use an unbiased estimate (generally unbiased or controlled bias) when the ob-

served data is above the threshold and an adjusted one if the observation is below

the threshold. Here we see that an optimal choice of threshold can depend entirely

on the degree of sparsity η. As only X is observed the statistician is forced to use

λe as the threshold. He can use the best invariant predictive density p̂U if the past

observation X crosses λe. Below the threshold, his estimate has to account for both
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sparsity effect and risk sharing. The rationale for this choice rests on the fact that,

because of the severe sparsity constraints a near zero density estimate is required to

control the risk at the origin. If nature places the entire remaining mass η between

the parametric values (0, λf ], the statistician can perform under the optimal Bayes

risk for this problem by using the zero density estimate φ(y|0, r). However, as the

supremum Bayes risk is λ2
f/(2r) the zero estimator is unusable when the parametric

value is greater than λf . Thresholding ensures that the predictive risk above λe is

bounded. So, the need is to control the risk in (λf , λe] by moving away from the zero

estimator. But, this deformation should not be large to affect the risk at the origin

and an approach would be to use the Bayes predictive density based on a prior with

(1− η) probability at the origin (this leaves the sparsity restrictions untouched) and

with η probability distributed approximately in (λf , λe].

2–Player Game and Equilibrium strategies

Nature: Will choose a distribution on θ which will make point

estimation of θ, under quadratic loss and based on ob-

serving both the past X and future Y , the most difficult.

Statistician: Will use threshold estimators. He is forced to

use λe as threshold as he only observes X . The idea

is to use 0 estimator when θ < λf and share his risk

for θ between λf and λe. A predictive strategy can be

constructed by using a prior with probability 1 − η at 0

and share equally the remaining mass η among a finite

chain of points covering λf and λe.

Decision Theoretic Evaluation Game

Through the above sharing policy we control the transition of the corresponding Bayes

predictive density (and subsequently the threshold version) under θ ∈ (0, λe]. The

Bayes predictive density will be sufficiently close to φ(y|0, r) till θ < λf and thereafter

it gradually shifts rightwards in way that the risk at any θ ∈ (λf , λe] is under the

desired limit. The interval (λf , λe] increases with decrease of r and the statistician
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is completely non-informative in that zone. As such (λf , λe] can be regarded as his

most vulnerable zone. A way to share his predictive risk across that zone would be

to divide the probability η equally in a finite chain of point covering the interval. The

non-informativeness in (λf , λe] is reflected in uniform sharing of the future uncertainty.

Distributing the vulnerability in finite locations across the interval is pivotal. As soon

as the parametric value θ crosses λf we need sharp transitions from the zero-estimator

for which there is need for non-zero mass around λf . So, continuous sharing policies

which are independent of the degree of sparsity η will not work.

In Section 4.7, we will see several efficient alignments of the chain. p̂T (.|x) is dis-
continuous at x = λe and the number of Gaussian mixtures in p̂T and their weights

are based on the degree of sparsity η, the future volatility r and the past observa-

tion X . However, neither the Bayes density density corresponding to π[η, r] attain

minimax risk nor the cluster prior (which is the basis of p̂T ) is least favorable. But,

based on the calculation we can trace an infinite support prior π[η, r, INF] on θ which

attains supremum risk and produces minimax Bayes density estimate.

4.4 Maximal Bayes risk of 2–point priors

Here, we will work directly with the predictive loss. Calculation will involve deriving

closed forms for the Bayes predictive densities. In the process we will show that

properties similar to those stated in Lemma 4.3.2 for the quadratic loss also exist for

predictive densities.

Posterior probabilities based on π2pt[η, ν] is given by

π2pt[η, ν](θ = 0| x) = (1− η)φ(x)

η φ(x− ν) + (1− η)φ(x)
and

π2pt[η, ν](θ = ν| x) = 1− π(θ = 0| x).
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And so, the corresponding Bayes predictive density is

p̂
[
π2pt[η, ν]

](
y|x
)
=
(1− η) · φ(x) · 1√

r
φ
(

y√
r

)
+ η · φ(x− ν) · 1√

r
φ
(
y−ν√

r

)

(1− η) · φ(x) + η · φ(x− ν)

=
1√
r
· φ
(

y√
r

)
(1− η) + η · eν(x+y/r)− 1+r

2r
·ν2

(1− η) + ηeνx−
1
2
ν2

= φ(y|0, r)× hν(x, y).

For doing calculations under strong sparsity, we found it most convenient to represent

the Bayes predictive densities as tiltings of the zero-density. The tilt function hν(X, Y )

is given by

hν(x, y) =
{
1 + η (1− η)−1eνx−

1
2
ν2
}−1{

1 + η (1− η)−1eν(x+y/r)− 1+r
2r

·ν2} (4.11)

with both the numerator and denominator being greater than unity which implies

that their logarithms are always positive.

Now, from definition we have predictive risk at 0 as,

ρ

(
0, p̂
[
π2pt[η, ν]

])
= E0

(
log

(
φ(Y |0, r)

p̂
[
π2pt[η, ν]

](
Y |X

)
))

= −E0 {log hν(X, Y )}

where the expectation is over both X and Y which are independent Gaussian with

common mean (denoted in subscript) and known variances 1 and r respectively. Also,

note that though there is a negative sign the risk is always positive (as we have showed

before that KL divergences are always positive).
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The risk at ν is given by

ρ

(
ν, p̂
[
π2pt[η, ν]

])
= Eν

(
log

(
φ(Y |ν, r)

p̂
[
π2pt[η, ν]

](
Y |X

)
))

= Eν

(
log

(
φ(Y |ν, r)
φ(Y |0, r)

))
−Eν{log hν(X, Y )}

=
1

2r
· Eν(2νY − ν2)− Eν{log hν(X, Y )}

=
ν2

2r
− Eν {log hν(X, Y )} .

As η → 0, for any 2–point prior with the very high probability (1−η) at 0, the risk at

the origin is always small irrespective of where the non-zero support ν is placed. We

show in Lemma 4.4.1 that it remains bounded by η. At ν though, the asymptotic risk

can be unbounded as η → 0. We will chose an optimal ν maximizing this risk and

the asymptotic maximal Bayes risk will be solely governed by risk at the non-zero

support point in-spite of its low prior probability η.

Now as we move ν away from the origin, the Bayes density estimate at ν initially

behaves like φ(.|0, r) giving rise to the first order asymptotic risk ν2/2r. In these cases

the tilt function hν fails to sway the predictive density away from the origin when the

true parametric value is ν. However, as we move ν further away from 0, hν(X, Y )

will be successful in tilting the predictive density away from φ(.|0, r) and towards

φ(y|ν, r). Subsequently, the risk at ν will drop due to appreciable contribution from

Eν {log hν(X, Y )}.
If the non-zero support point is νη (the positive root of the quadratic equation [4.9])

the tilt function is still unable to cause any significant reduction in the first order

asymptotic risk at νη. The proof follows directly from Lemma 4.4.2. So, with η → 0,

the first order asymptotic risk of the Sparse 2–point prior ρ(νη, p̂π[η,r,2]) ≥ ν2
η/(2r) (1+

o(1)) which in turn reproves Lemma 4.3.2 as

B
(
π[η, r, 2]

)
= (1− η)× r

(
0, p̂
[
π[η, r]

])
+ η × r

(
νη, p̂

[
π[η, r]

])

≥ η
ν2
η

2r
(1 + o(1)) .
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For any η ∈ [0, 1) and ν ∈ [0,∞) we have,

ρ
(
0, p̂
[
π2pt[η, ν]

])
≤ η(1− η)−1.

Lemma 4.4.1.

Proof. We use the representation of hν(X, Y ) given by Equation [4.11] and so can

assume that the logarithm of the numerator there is non-negative. Hence,

ρ
(
ν, p̂
[
π2pt[η, ν]

])
≤ E0 log

{
1 + η (1− η)−1eνX− 1

2
ν2
}

≤ η (1− η)−1e
−ν2/2 E0 e

νX

by using the inequality log(1 + x) ≤ x which holds for all non-negative x. Again, as

X is standard normal we have E0

(
exp(νX)

)
= exp(ν2/2) and we have the required

result.

For any η ∈ [0, 1] such that a > 0 and there exists a positive solution νη of

Equation [4.9], we have

log(1− η) ≤ Eν {log hν(X, Y )} ≤ 1 + v−
1/2

w a−2 for all ν ∈ (0, νη].

Lemma 4.4.2.

Proof. We first show the upper bound. For that purpose we will use the representation

of hν(X, Y ) given by Equation [4.11] and so the logarithm of the denominator there is

always positive and can be ignored while calculating the upper bound. We can rewrite

the numerator in terms of the futuristic random variable W = (1 + r−1)−1(X + Y/r)

and its variance vw = (1 + r−1)−1 as:

Eν log

{
1 + η (1− η)−1 exp

(
v−1
w ν W − 1

2
v−1
w ν2

)}
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where W
d
= N(ν, vw). We change the measure to standard normal Z = v

−1/2
w (W − ν)

and it results in

E0 log

{
1 + η (1− η)−1 exp

(
v−

1/2
w ν Z +

1

2
v−1
w ν2

)}

Now, as ν ≤ νη by Equation [4.9] we have,

η (1− η)−1 exp

(
v−

1/2
w ν Z +

1

2
v−1
w ν2

)
= cν exp

(
v−

1/2
w ν (Z − a)

)

where cν is a constant and cν ∈ [0, 1]. Choosing cν = 1 we get the upper bound,

Eν {log hν(X, Y )} ≤ E0 log

(
1 + exp

(
v−

1/2
w ν (Z − a)

))
.

Now, we decompose the expectation of the random variable on R.H.S. conditioned

on the event {Z > a}. When Z ≤ a, the random variable (whose expectation is

considered) is bounded by log 2.

When Z > a, we use the naive bound: ‘log(1 + x) ≤ 1 + log x if x > 1’ for bounding

the said random variable. Aggregating the two parts the ultimate bound would be

Eν {log hν(X, Y )} ≤ log 2 · P (Z ≤ a) +
[
P (Z > a) + v−

1/2
w νE(Z − a)+

]

≤ 1 + v−
1/2

w νE(Z − a)+

and the truncated Gaussian expectation can be exactly computed as

E(Z − a)+ =

∫ ∞

a

zφ(z) dz − a Φ̃(a) = φ(a)− a Φ̃(a) ≤ a−2φ(a) ≤ a−2λ−1
f

where the first inequality uses the result (4.22) about Mill’s Ratio. As νη ≤ λf , for

any ν ≤ νη we have νE(Z − a)+ ≤ a−2. So, Eν {log hν(X, Y )} is also bounded by

1 + v
−1/2
w a−2.
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For lower bound we can similarly neglect the numerator of hν(X, Y ) and so,

Eν {log hν(X, Y )} ≥ −Eν log

(
1 + η (1− η)−1eνX− 1

2
ν2
)

≥ − log

(
1 + η (1− η)−1e−

1
2
ν2Eνe

νX

)

which follows by Jensen’s inequality. Noting, that X ∼ N(ν, 1) the bound simplifies

to − log
(
1 + η (1− η)−1

)
= log(1− η).

By Lemma 4.4.1 and Lemma 4.4.2 the asymptotic behavior of B
(
π2pt[η, ν]

)
can be

characterized when ν varies in [0, νη]. Next, we track ρ
(
ν, p̂
[
π2pt[η, ν]

])
(and hence

B
(
π2pt[η, ν]

)
by using Lemma 4.4.1) when ν > λf .

We will prove that the risk remains bounded as ν crosses the threshold λe (Lemma 4.4.3).

In between λf and λe we can show that the risk is decreasing (Lemma 4.4.4). However,

the descent is gradual and there is no abrupt transition in the first order risk before

λe. Thus, the maximal Bayes risk for 2–point prior is attained around ν = λf and we

have effectively characterized the first order behavior of the risk with ν varying along

the positive axis in resolution of a units. As such, as η → 0

ρ
(
ν, p̂
[
π2pt[η, ν]

])
∼





ν2/2r if ν ≤ νη

decreasing if λf + (2 v−1
w )1/2a ≤ ν ≤ λe − 2a

O(1) if ν > λe + (2v−1
w )1/2a

.

We do not quantify the rate of descent of ρ
(
ν, p̂
[
π2pt[η, ν]

])
though it can be approx-

imated from our proof of Lemma 4.4.4. In Figure [4.4], we trace the asymptotic risk

by Monte Carlo simulation. It depicts the gradual descent which compared to PE

regime is a contrast.

For any η ∈ (0, 1) such that a > 0 we have,

ρ
(
ν, p̂
[
π2pt[η, ν]

])
≤ (4

√
π a r)−1 + log 2 for all ν > λe + (2v−1

w )
1/2a.

Lemma 4.4.3.
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Figure 4.4: The plot shows the risk ρ
(
ν, p̂
[
π2pt[η, ν]

])
of the Bayes predictive density

from the two point prior π2pt[η, ν] at the non-zero support point ν as ν is moved
along the positive axis. λf and λe are marked by vertical lines and the horizontal
gray line represents the first order maximal risk of λ2

f/2r. Reflecting the resolution of
our asymptotic calculations the abscissa is ticked at multiples of a while the ordinate
is marked in multiple of 1/(2r) units to represent change in order of quadratic loss.
The figure is actually drawn according to scale with η = e−50, r = 0.3 producing
λf = 4.8, λe = 10, a = 1.77.
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Proof. We know that ρ
(
ν, p̂
[
π2pt[η, ν]

])
= ν2/2r − Eν{log hν(X, Y )}. As before we

can standardize the measure to standard Gaussian. Because of the logarithm the

numerator and denominator of hν separates and can be standardized simultaneously.

After standardization, we have:

ρ
(
ν, p̂
[
π2pt[η, ν]

])
=

ν2

2r
−E0 log

{
1 + η (1− η)−1 exp

(
v
−1/2
w ν Z + 1

2
v−1
w ν2

)

1 + η (1− η)−1 exp
(
ν Z + 1

2
ν2
)

}
(4.12)

=
ν2

2r
−E0 log

{
1 + exp

(
v
−1/2
w ν Z + 1

2
v−1
w ν2 − 1

2
λ2
e

)

1 + exp
(
ν Z + 1

2
ν2 − 1

2
λ2
e

)
}

(4.13)

by substituting η(1 − η)−1 by exp(−λ2
e/2). Note that ν > λe + (2v−1

w )1/2a implies

2∆ = ν2 − 2νb − λ2
e > 0 where b = (4 v−1

w log ν)1/2 and hence the expectation above

can be rewritten as

E0A(Z) where A(Z) = log

{
1 + exp

(
v
−1/2
w ν (Z + bv

1/2
w )
)
· exp(∆) · exp(ν2/2r)

1 + exp
(
ν (Z + b)

)
· exp(∆)

}

where Z is standard normal distribution. Noting the following properties about A(Z):

(i) A(Z) ≥ 0 if Z ≥ −ν

(ii) A(Z) ≥ − log 2 if Z < −ν

(iii) A(Z) ≥ ν2/(2r) + (v−1/2
w − 1) ν Z − log 2 if Z > −bv1/2w

it follows that E0{A(Z)} ≥ ν2Φ(
√
4 log ν) /(2r)− log 2, and eventually we have

ρ
(
ν, p̂
[
π2pt[η, ν]

])
≤ ν2

2r
· Φ̃
(
(4 log ν)

1/2
)
+ log 2 ≤ (4ar

√
π)−1 + log 2

where the second inequality follows from Equation 4.22. Thus, we get the result.
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As η → 0 and ν2 ∈
( {

λf + (2 v−1
w )1/2a

}2
, λ2

e − 2 a λe

)
the risk

ρ
(
ν, p̂
[
π2pt[η, ν]

])
is dominated by a decreasing function of ν which is

bounded above by λ2
f/(2r).

Lemma 4.4.4.

Proof. The risk is given by Equation 4.12. Similarly as before we can show that as

long as ν2 < λ2
e − 2aλe the contribution from the denominator is insignificant and

E0 log

{
1 + exp

(
ν Z +

1

2
ν2 − 1

2
λ2
e

)}
≤ 1 + v−1/2

w

and whenever ν ≥ λf + (2 v−1
w )1/2a we have,

E0 log

{
1 + exp

(
v−

1/2
w ν Z +

1

2
v−1
w ν2 − 1

2
λ2
e

)}
≥ 1

2

(
v−1
w ν2 − λ2

e

)
.

So, ultimately we will have

ρ
(
ν, p̂
[
π2pt[η, ν]

])
≤ ν2

2r
− 1

2

(
v−1
w ν2 − λ2

e

)
+ 1 + v−1/2

w

=
1

2

(
λ2
e − ν2

)
+ 1 + v−1/2

w

which is decreasing in ν and bounded above by (λ2
e − λ2

f)/2 = λ2
f/(2r).

It will be seen that to prove Theorem we only need Lemma 4.3.2 for the lower

bound. In that regard, the extensive calculations in this section may seem to be a

digression from the objective. However, these results not only provide more intuition

about the predictive regime but will also help to follow the risk calculations in the

next section where the risk of the density estimate from a multi (K) point prior

compounded with thresholding complications is evaluated.
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4.5 Minimax upper bound

To simplify notations the univariate strategy p̂[η,T,CL+,U] and the cluster prior

p̂[η, r,CL+] will be abbreviated as p̂T and π[η, r,K] through out this section. K

is the number of support point in the cluster prior and is a function of η and r.

As mentioned before, the p̂T is governed by 2 major effects: thresholding and risk

diversification. The risk diversification procedure involves (a) probability allocation

(b) alignment of non-zero support points across the vulnerable zone, which in our p̂T

is characterized by π[η, r,K]. In this section, the risk calculations of p̂T are carried

out in a manner such that they can be easily generalized for other reasonable discrete

probability sharing schemes (with 1 − η probability at the origin). In particular, we

incorporate the peculiar alignment of the non-zero support points of π[η, r,K] only

toward the end of the section and the results before Lemma 4.5.4 will be reused in

Section 4.7 to display other feasible sharing schemes.

Proof of Theorem 4.3.4

We characterize the Bayes predictive density for the Cluster prior. Using Bayes

formula, the posterior distribution of π[η, r,K] is given by:

π[η, r,K](0 |x) = (1− η) φ (x)

(1− η) φ (x) + η/(K+1)
∑K

i=0 φ (x− µi)

π[η, r,K](µj |x) =
η/(K+1) φ (x− µj)

(1− η) φ (x) + η/(K+1)
∑K

i=0 φ (x− µi)
, j = 0, . . . , K

and the predictive density p̂
[
π[η, r,K]

](
y
∣∣x
)
is given by

π[η, r,K](0 |x) · φ(y|0, r) +
K∑

i=0

π[η, r,K](µi |x) · φ(y|µi, r)

=
(1− η)φ(x)φ(y|0, r) + η/(K+1)

∑K
i=0 φ(x− µi)φ(y|µi, r)

(1− η)φ(x) + η/(K+1)
∑K

i=0 φ(x− µi)
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which like the 2-point prior case can be rewritten as a tilt function acting on the zero

density p̂
[
π[η, r,K]

]
= φ(y|0, r)× h

[
π[η, r,K]

]
(x, y) where

h
[
π[η, r,K]

]
(x, y) =

1 + η(1−η)−1

K+1

∑K
i=0 exp

{
µi(x+ y

r
)− 1

2
(1 + r−1)µ2

i

}

1 + η(1−η)−1

K+1

∑K
i=0 exp

{
µix− 1

2
µ2
i

} . (4.14)

Observing X = x, its predictive loss at the point θ is expressed as :

L

(
θ, p̂
[
π[η, r,K]

](
. |X = x

))
= Eθ

[
log

(
φ(Y |θ, r)

p̂[ π[η, r,K] ](Y |x)

)]

=
θ2

2r
− Eθ

{
log
(
h
[
π[η, r,K]

]
(x, Y )

)}

where the discounted location distance θ2/2r appears due to the predictive loss be-

tween φ(Y | θ, r) and φ(Y | 0, r).
We would need to study the behavior of the conditional expectation as well as the

unconditional Eθ

{
log
(
h
[
π[η, r,K]

]
(X, Y )

)}
(the expectation is over both X and

Y ) in details. For that purpose it will be helpful to change the measure to central

Gaussian with X and Y having variances 1 and r respectively

Eθ

{
log
(
h
[
π[η, r,K]

]
(X, Y )

)}
= E0

(
Nθ(X, Y )−Dθ(X)

)

whereNθ andDθ are the logarithms of the numerator and denominator of h
[
π[η, r,K]

]

and

Nθ(x, y) = log

[
1 +

η(1− η)−1

K + 1

K∑

i=0

exp

{
µi

(
x+

y

r

)
− 1

2
v−1
w µ2

i + v−1
w µiθ

}]

= log

[
1 +

η(1− η)−1

K + 1

K∑

i=0

exp

{
v−1
w

(
µiw − 1

2
µ2
i + µiθ

)}]

where W is the semi-futuristic random variable and W ∼ N(0, 1). Now, using the

fact that η−1(1− η) actually equals exp(v−1
w λ2

f/2) (by Equation 4.9) we have,
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Nθ(x, y) = log

[
1 +

1

K + 1

K∑

i=0

exp

{
v−1
w

(
µiw − 1

2
µ2
i + µiθ −

1

2
λ2
f

)}]

(4.15a)

= log

[
1 + (K + 1)−1

K∑

i=0

exp
{
v−1
w Γi(θ)

}
× exp

{
v−1
w µi(w + a)

}
]

(4.15b)

where Γi(θ) = µiθ −
1

2
µ2
i − aµi −

1

2
λ2
f . (4.15c)

Thus when v−1
w µi(W + a) ≥ 0 for all i ∈ {0, 1, . . . , K} a very naive lower bound is

Nθ(x, y) ≥ v−1
w Γ(θ)− log(K + 1) where Γ(θ) =

K
max
i=0

Γi(θ). (4.15d)

Similarly, for the denominator we have

Dθ(x) = log

[
1 +

η(1− η)−1

K + 1

K∑

i=0

exp
{
µix− 1

2
µ2
i + µiθ

}
]
. (4.15e)

Next we calculate the risk of our threshold estimate

p̂T (y|x) =
{

p̂
(
y|x; π[η, r,K]

)
if X ≤ λe

p̂
(
y|x; πU

)
if X > λe

We will later see that the threshold estimator p̂T (.|x) is discontinuous at x = λe.

However, modifications of p̂U can be used to incorporate continuity correction. We are

interested in finding the maximum risk of p̂T . However, due to high prior probability

concentration at 0 we have to treat the risk at the origin separately. Depending on

X the loss of the threshold estimate is given by:

L

(
θ, p̂
[
π[η, r,K]

]
(.|x)

)
=

θ2

2r
− E0Nθ(x− θ, Y ) +Dθ(x− θ) if x ≤ λe

L
(
θ, p̂
[
πU

]
(.|x)

)
=

1

2

(
log(1 + r−1)− (1 + r)−1

)
+

(x− θ)2

2(1 + r)
if x > λe
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where the loss of p̂πU
follows from the risk calculations of linear estimators (see Ap-

pendix). Now, averaging over the observed data X , the risk of p̂T will be given by:

ρ(θ, p̂T ) = ρB(θ) + ρA(θ)

where ρA(θ) is the risk when X crosses the threshold

ρA(θ) =
1

2

(
log(1 + r−1)− (1 + r)−1

)
Pθ(X ≥ λe) +

Eθ[(X − θ)2I{X≥λe}]

2(1 + r)

and the component of risk from below the threshold is

ρB(θ) =
1

2r

[
ρB,1(θ)− ρB,2(θ) + ρB,3(θ)

]
where,

ρB,1(θ) = θ2 Φ(λe − θ)

ρB,2(θ) = 2rE0

[
Nθ(X, Y )I{X≤λe−θ}

]

ρB,3(θ) = 2rE0

[
D

θ
(X)I{X≤λe−θ}

]
.

As we have mentioned before, due to the very high probability of the parameter to

concentrate at the origin we need to bound both ρA(0) and ρB(0) with high precision.

Note that, by definition Nθ(X, Y ) ≥ 0 and so ρB(0) ≤ 2rE0

(
D0(X) I{X≤λe}

)
which

again equals η + o(η) as η → 0 by Lemma 4.5.1. Though ρA(0) will be significantly

larger than ρB(0), it will not be enough to carry the risk at 0 above the maximum

value and

ρA(0) ≤
1

2
log
(
1 + r−1

)
Φ̃(λe) +

1

2(1 + r)
E0

(
X2I{X≥λe}

)
(4.16)

≤1

2

(
log

r + 1

r
· Φ̃(λe) +

1

1 + r
λφ(λe)

)
(4.17)

= O(ηλ) [as φ(λe) = η/
√
2π]. (4.18)

The second inequality follows from calculation involving the risk of hard threshold

point estimators where we know that E0

(
X2I{X≥λe}

)
= λeφ(λe) Johnstone (2012,

Equation 8.15) and the third one uses the result in equation 4.22. Thus, the risk at
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1:
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Figure 4.5: Schematic diagram of the behavour of the quadratic Risk under sparse
minimax point estimation.

0 stays well below the maximal value.

Next we need to produce an upper bound on the maximum risk at any non-zero

parametric point. While working with ρ(0, p̂T ) we saw that the significant contribu-

tion came from ρA(0). Whereas, over R
+ the maximal predictive risk is governed

solely by ρB(θ) which can be unbounded as η → 0 while ρA(θ) remains bounded by

2−1{log(1 + r−1) + (1 + r)−1}.
Now we trace the behavior of ρB(θ) as θ varies. It will vividly demonstrate how the

dynamics of sharing future risk can be co-ordinated with sparsity prior information.

ρB,1(θ) is the dominant portion of quadratic risk of the Hard threshold point

estimator of θ. From point estimation theory we know that it behaves as θ2 until the

threshold λe and then shrinks to 0 with a steep decent (see Figure [4.5]). ρB,2 − ρB,3

is the diversification or aggregation effect. ρB,3 being based on X entirely will be

insignificant before λe due to sparsity and negligible thereafter due to thresholding

effect. It is technically proved in Lemma 4.5.1. So, ρB,2 portrays the diversification

effect. It is dormant before λf . In between λf + a and λe, ρB,2 produces significant

contribution and is effective in bringing the predictive risk ρ(θ, p̂T ) below λ2
f/2r. The
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technical details of the following first order behavior of ρB is carried out in a serially

in the Lemma 4.5.2, Lemma 4.5.3 and Lemma 4.5.4:

ρB,1(θ) ∼
{

θ2 if θ < λe

O (λf) if θ ≥ λe + a

ρB,2(θ) ∼
{

2g(θ) if θ ∈ [µ0 + a, λe + a]

0 otherwise

ρB,3(θ) ∼ 0 for all θ

And, ρB,1(θ)− 2g(θ) ≤ µ2
0 for θ ∈ [µ0 + a, λe + a].

where g(θ) = 2(1+r) Γ(θ) q(θ)−2r log(K+1) with Γ(θ) and q(θ) defined in Lemma 4.5.3.

So we have,

sup
θ>0

ρ(θ, p̂T ) ≤ λ2
f/(2r)(1 + o(1)) and the minimax predictive risk of p̂T equals

sup
π∈m+(η)

∫
ρ(θ, p̂T ) π(θ) dθ ≤ (1− η) ρ(0, p̂T ) + η sup

θ>0
ρ(θ, p̂T ) ≤ η

λ2
f

2r
(1 + o (1)).

Figure 4.5 and Figure 4.1 show schematic diagrams of the univariate risk plot of

threshold rules in the PE and density estimation framework. The sole difference

between the two regimes is the reduction ρB,2(θ) in the predictive risk in the vulnerable

zone [λf , λe]. Plug-in density estimates fail to attain this risk reduction and have risk

properties like optimal threshold estimates in PE. To obtain the risk reduction we

need to have diversified predictive schemes. Lemma 4.5.3 provides a crude lower

bound on the decrement and Lemma 4.5.4 shows that it is sufficient enough to attain

first order optimality. Figure 4.6 contains Monte-Carlo simulation of the different

predictive risk curves.



CHAPTER 4. EXACT SPARSITY & RISK DIVERSIFICATION 142

For any η ∈ (0, 1) such that λe is well defined and greater than 1, we have

(a) E0

{
D0(X) I[X ≤ λe]

}
≤ − log(1− η)

(b) E0

{
Dθ(X) I[X ≤ λe − θ]

}
≤ log 2

Lemma 4.5.1.

Proof. The first inequality follows directly from Jensen’s inequality,

E0 {D0(X) I[X ≤ λe]} ≤ log

[
E0

{(
1 +

η (1− η)−1

K + 1

K∑

i=0

eµiX− 1
2
µ2
i

)
I[X ≤ λe]

}]

≤ log

[
1 +

η (1− η)−1

K + 1

K∑

i=0

E0

(
eµiX− 1

2
µ2
i

)]

= log
(
1 + η (1− η)−1

)
= − log(1− η)

For the second inequality, as Dθ(X) is an increasing function of X we have

E0

{
Dθ(X) I[X ≤ λe − θ]

}
≤ Dθ(λe − θ) Φ(λ− θ) where,

Dθ(λ− θ) = log

(
1 +

η(1− η)−1

K + 1

K∑

i=0

eµiλe− 1
2
µ2
i

)
.

Also, as for each i ∈ {0, 1, . . . , K} we have 0 ≤ µi ≤ λe + a, and so the maximum

value of µiλe − µ2
i/2 is at most λ2/2 for all i ∈ {0, 1, . . . , K} which would imply that

Dθ(λ− θ) ≤ log
(
1 + η(1− η)−1 exp(λ2

e/2)
)
≤ log 2. This completes the proof.

For any θ ≥ λe + a, ρB,1(θ) ≤ O(λf) as η → 0.

Lemma 4.5.2.

Proof. This Lemma follows from the risk calculations of threshold point estimates.
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Taking derivative, we see

ρ′B,1(θ) = 2θΦ(λe − θ)− θ2φ(λe − θ) and so for t ≥ 0

ρ′B,1(λe + t) = 2(λe + t)Φ(t)− (λe + t)2φ(t) ≤
(
2t−1 − (λe + t)

)
(λe + t)φ(t)

where the inequality follows from Equation [4.22]. Hence, for all t ≥ 2 λ−1
e , ρ′B,1(λe+t)

is negative. As, η → 0, we have a ≥ 2 λ−1
e which implies that ρ1(θ) is a decreasing

function of θ as θ > λe + a. So, as η → 0,

sup
θ≥λe+a

ρB,1(θ) ≤ (λe + a)2Φ̃(a) ≤ (λ+ a)2 a−1φ(a) = (λ+ a)2a−1λ−1
e = O(λf).

As η → 0 and for θ ∈ [νη + a, λe + a),

ρB,2(θ) ≥ 2(1 + r) Γ(θ) q(θ)− 2r log(K + 1) where,

Γ(θ) =
K

max
i=0

(
µiθ −

1

2
µ2
i − aµi −

1

2
λ2
f

)
and

q(θ) = Φ(λe − θ)− Φ̃(a)− Φ̃(ar−
1/2).

Lemma 4.5.3.

In particular when θ ∈ (λ, λ + a), the bound shown in the Lemma can be negative

which certainly proves that its crudeness as we already know that ρB,2 is always non-

negative. However, the bound is intentionally kept crude as it helped to increase

clarity in some of the later proofs.

Proof. Using Inequality 4.15d and the fact that Nθ(X, Y ) is non-negative, we get the

following lower bound:
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Figure 4.6: Plot of the dominant portion of the predictive risk ρB(θ) as θ varies over
the positive axis. In red, green and blue are respectively the risks of the optimal
hard threshold plug-in estimator, unshared prediction scheme p̂[r,T, π[η, r, 2],U] and
the minimax optimal density estimate p̂[r,T,CL+,U]. Here, r = 0.25 , η = e−20,
λf = 2.83 and λe = 6.32. The red boxes at 2.83 and 4.24 in the yellow bar zone show
the non-zero support point of the cluster prior π[η, r,CL+].



CHAPTER 4. EXACT SPARSITY & RISK DIVERSIFICATION 145

E0

{
Nθ(X, Y ) I[X ≤ λe − θ]

}
+ log(K + 1)

≥ v−1
w Γ(θ) × P0

(
X ≤ λe − θ and v−1

w µi(W + a) ≥ 0 for i = 0, 1, . . . , K
)

≥ v−1
w Γ(θ) × P0

(
X ≤ λe − θ and W ≥ −a

)

as each of the µi is positive and we the bound the probability by

P0

(
X ≤ λe − θ, W ≥ −a

)

≥ P0

(
− a ≤ X ≤ λe − θ and X + Y r−1 ≥ −a(1 + r−1)

)

≥ P0

(
− a ≤ X ≤ λe − θ and Y ≥ −a

)

= P0

(
− a ≤ X ≤ λe − θ

)
P0

(
Y ≥ −a

)

=
(
Φ(λe − θ)− Φ̃(a)

)
·
(
1− Φ̃(ar−

1/2)
)

≥ Φ(λe − θ)− Φ̃(a)− Φ̃(ar−
1/2).

Now, noting that ρB,2(θ) = 2rE0

{
Nθ(X, Y ) I[X ≤ λe − θ]

}
the result follows.

For θ ∈ [λf + a, λe + a), ρB,1(θ)− ρB,2(θ) ≤ λ2
f (1 + o (1)).

Lemma 4.5.4.

Proof. From Lemma 4.5.3, ρB,1(θ)− ρB,2(θ) equals

θ2
{
Φ̃(a) + Φ̃(ar−

1/2)
}
+
{
θ2 − 2(1 + r) Γ(θ)

}
q(θ) + 2r log(K + 1).

In the similar way as in Lemma 4.5.2, we can show that as η → 0, for all θ < λe + a,

θ2Φ̃(a) = O(λf) and θ2Φ̃(ar−1/2) = o(λ2
f).

And we show that the second sum involving θ2−2(1+r) Γ(θ) is bounded by λ2
f (1+o(1))
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when θ ∈ [λf + a, λe + a). For this purpose, note that

θ2 − 2(1 + r)Γ(θ)− λ2
f =

K

min
i=0

{
fi(θ) + 2(1 + r)aµi

}

≤ 2(1 + r) a (λe + a) +
K

min
i=0

fi(θ)

where fi(θ) = θ2 − 2(1 + r)µiθ + (1 + r)µ2
i + rλ2

f .

By construction of the cluster prior π[η,K, r] the points µi were geometrically starting

from µ0 = νη and with µi+1 = (1 + 2r)µi for all i ∈ {0, . . . , K − 1}. Also, the points

end before λe+a. We have not used the properties of aligning rule anywhere before in

our proof. A discrete, equi-probable prior distribute was all we utilized in the proofs

before this stage.

Now, we will use the properties of µi. Note that for each i ∈ {0, . . . , K}:

• fi is convex in θ.

• fi(µi) = µ2
i − 2(1 + r)µ2

i + (1 + r)µ2
i + rλ2

f = −r(µ2
i − λ2

f) ≤ −r(ν2
η − λ2

f)

as µi are increasing.

• Define µK+1 = (1 + 2r)µK. Then by choice of K,µK+1 > λe + a. Also,

fi(µi+1) = µ2
i+1 − 2(1 + r)µiµi+1 + (1 + r)µ2

i + rλ2
f

= (µi+1 − (1 + r)µi)
2 − (1 + r)rµ2

i + rλ2
f

and using the common ration of the geometric progression, we have

fi(µi+1) = r2µ2
i − (1 + r)rµ2

i + rλ2
f = −r(µ2

i − λ2
f) ≤ −r(ν2

η − λ2
f).

Convexity of fi implies that if µi ≤ θ ≤ µi+1 for some i ∈ {1, . . . , K}, then fi(θ) ≤
O(λ2

f − ν2
η) = o(λ2

f) as by Equation [4.9], ν2
η − λ2

f ≤ 2v
1/2
w aλf . Hence, for all θ ∈

[λf + a, λe + a] we have minK
j=0 fj(θ) = o(λ2

f). This complete the proof.



PART B: HIGH-DIMENSIONAL

MINIMAX PREDICTIVE DENSITIES

4.6 Multivariate predictive risk

In this section, we would need to construct sequence of priors as (n, s) varies. For

notational convenience we assume s as a function of n here. It can easily be gen-

eralized. We consider a tractable convex collection of probability measures in the

n–dimensional space

M(n, sn) =

{
π(θ) :

n∑

i=1

Pπ(θi 6= 0) ≤ sn

}
.

However, M(nn, s) contains prior whose support is not confined to Θ(n, sn). We

consider the sub-classMp(n, sn) of all product priors inM(n, sn). The least favorable

prior in Mp(n, sn) concentrates on Θ(n, sn) when sn → ∞ and sn/n → 0 as n → ∞.

For any n, s and r we have R(n, s, r) ≤ nβ(s/n, r).

Lemma 4.6.1.

147
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Proof. The set M(n, s) contains all Dirac priors δθ ∀ θ ∈ Θ(n, s) and is convex and

weakly compact . So we can apply the Minimax Theorem 4.2.1 to have ,

R(n, s, r) ≤ sup{B(π) : π ∈ M(n, s)} := B(M(n, s), r)

and the result follows by Lemma 4.8.1.

Based on the univariate least favorable 3–point prior, for each ǫ < 1, we construct

a sequence (in n) of prior π[n, sn, ǫ, r] in Mp(ǫsn, r) as

π[n, sn, ǫ, r](θ) =

n∏

i=1

π[ǫs/n, r, 3](θi).

The extension into the multivariate Bayes-Minimax set up can be conducted through

the following lemma which is proved in the Appendix.

As n → ∞, s → ∞ then if for each ǫ < 1 there exists an exchangeable prod-

uct prior πn,ǫ(θ) =
∏n

i=1 π1[s/n, r](θi) in M(n, sn) satisfying the following

conditions:

a. B(πn,ǫ) ≥ ǫB(r,M(n, ǫ sn)),

b. πn,ǫ(Θ(n, s)) → 1,

c. The Bayes predictive density based on the prior tn,ǫ = πn,ǫ(·|Θ(n, s)) is

such that

∫

Θc(n,s)

πn,ǫ(θ)ρ(θ, p̂tn,ǫ
) dθ = o

(
B(r,M(n, sn))

)
,

then we have

R(n, s, r) ∼ B(r,M(n, sn)).

Lemma 4.6.2.

Proof of Theorem 4.1.2. We check the conditions of the lemma for our least favorable
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prior. Consider the random variable Nn which is the number of non-zero coordinates

in a random sample from π[n, sn, ǫ, r]. So, Nn ∼ Binomial(n, sn/n).

As s/n → 0 the 3-point prior is least favorable in m(ǫs/n) and hence we have

property (a) and Lemma 4.8.1 implies B(π[n, sn, ǫ, r]) ≥ ǫβ(ǫsn, r). Property (b) also

holds as

π[n, sn, ǫ, r]
(
Θc(n, ǫsn)

)
= P (Nn ≥ ǫsn) ≤

Var(Nn)

(1− ǫ)2E2(Nn)

which by Chebyshev’s inequality goes to 0 as sn → ∞.

Now, note that the support of π[n, sn, ǫ, r] is given by

Sn,ǫ =
{
ζ : ζi = 0 or ± νη and Nn(ζ) ≤ sn

}

where νη is given by Equation [4.9] with η = n−1ǫsn. And, the univariate plug-in risk

ρ(θ, p̂E[0]) = θ2/(2r) and ρ(θ, p̂E [±νη]) = (θ ± νη)
2/(2r).

So, by convexity of the relative entropy loss function we have,

ρ
(
θ, p̂

[
π[n, sn, ǫ, r]

] )
≤ sup

ζ∈Sn,ǫ

ρ
(
θ, p̂E[ζ ] )

≤ 1

2r

[∑

i:ζi=0

θ2i +
∑

i:ζi 6=0

(θi ± νη)
2

]

≤ r−1
{
||θ||22 +Nn ν

2
η

}
= 2r−1Nnν

2
η .

Now integrating over the prior π, we have

∫

θ∈Θc(n,sn)

π[n, sn, ǫ, r](θ) ρ
(
θ, p̂
[
π[n, sn, ǫ, r]

] )
dθ = 2r−1ν2

ηE{Nn; Θ
c
n}.
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Extending the univariate minimax problem it follows thatB(r,M(n, sn)) ∼ (2r)−1snν
2
η

and so the ratio

{
B(r,M(n, sn))

}−1
{∫

θ∈Θc(n,sn)

π[n, sn, ǫ, r](θ)ρ
(
θ, p̂[ π[n, sn, ǫ, r] ]

)
dθ

}

is asymptotically equal to E[NnI{Θc(n, ǫsn)}]/E(Nn), which converges to 0 as n → ∞.

The convergence is a consequence of the concentration ofNn asNn(θ) = ENn (1+o(1))

which follows directly from Chebyshev’s inequality.

Thus, property (c) of the Lemma is also satisfied and
∏n

i=1 π[n, sn/n, r, 3](θi) is

the asymptotically least favorable prior and the theorem follows.

4.7 Further Insights into Minimax strategies

4.7.1 The choice of Threshold

For having an optimal threshold density estimate we need to have a minimum thresh-

old of λe. The working principle of threshold rule is that after the threshold zone

they use an estimator with bounded bias and as a side-effect it has considerable loss

at the origin. So, it needs ideal calibration of the threshold as the higher thresholds

decreases the risk contribution from above the threshold ρA at the origin.

Based on the calculations in Section 4.5 it follows that we need to restrict ρA(0)

below the minimax risk ηλ2
f/2r. If the threshold is t = qλe, where 0 < q < 1, then

from the calculations in Equation [4.16] we have

ρA(0) = O
(
t φ(t)

)
= O

(
te−t2/2

)
= O

(
ηq

2)
>> O(ηλ2

f).

So, λe is the minimal threshold that is to be used. This proves Lemma 4.1.6. Note that

the fact that the threshold is controlled entirely by the degree of sparsity resonates

with general philosophy of this sparse predictive regime where the order of the optimal

risk depends on sparsity and is scaled by future uncertainty.
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4.7.2 Sub-optimality of L, E and G
Based on the minimax risk of sparse estimation of the normal mean and the calcula-

tions in Chapter 2, we see that Plug-in density estimates and in general the class of

Gaussian predictive densities is minimax sub-optimal with the sub-optimality ratio

being independent of η.

For any fixed r ∈ (0,∞), under the condition of Theorem 4.1.2, we have

R(n, s, r, E) ∼ (1 + r−1)R(n, s, r).

Lemma 4.7.1.

Also, minimax optimal density estimates lie outside G. Lemma 4.1.4 follows by using

Theorem 4.1.2 with the following lemma.

In model M.2 as n → ∞ and s/n → 0 we have

lim inf
n→∞

min
p̂∈Gn

max
θ∈Θn(s)

ρ (θ, p̂) ≥ (1 + r)−1 s log(n/s)
(
1 + o (1)

)
.

Lemma 4.7.2.

Proof Outline. Following the previously described Bayes-Minimax procedure, the mul-

tivariate minimax problem can be reduced to univariate minimax problem with mo-

ment prior constraints

m(η) = {π ∈ P(R) : π(0) ≥ 1− η}

where P(R) is the collection of all probability measures on R. By Theorem 4.1.1 we

have the univariate minimax risk

min
p̂

max
π∈m(η)

∫
ρ(θ, p̂) π(θ) dθ ∼ (1 + r)−1 η log η−1 as η → 0.
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When restricted to the Gaussian family the minimax risk will be

min
p̂∈G

max
π∈m(η)

∫
ρ(θ, p̂) π(θ) dθ ∼ f(η) as η → 0

where f(η) = r−1 η log η−1. In this univariate asymptotic set-up the lower bound in

Equation (3.23) is much lower than the asymptotic rate η log η−1 and hence unusable.

We get an upper bound on the minimax Gaussian risk as from point estimation

theory (Donoho & Johnstone 1994b)it follows that the minimax plug-in risk in this

asymptotic set-up is f(η). For a lower bound consider the predictive risk of the

normal density estimate g[θ̂, d̂]

ρ
(
θ, g[θ̂, d̂]

)
= E θ

(
log d̂

)
+ Eθ

{
d̂−1 · (1 + (θ̂ − θ)2)− 1

}
. (4.19)

And the idea is to establish the necessity of threshold zone as done in Johnstone &

Silverman (2004). For ρ
(
0, g[θ̂, d̂]

)
– the predictive risk of g[θ̂, d̂] at the origin, to be

lower than the order of η we need a threshold size of at least λ(η) =
√

2 log η−1. And

for density estimators of the form

p̂ [λ(η) ] (·|X) =

{
N
(
0, σ2

f

)
if |X| ≤ λ(η)

N
(
θ̂(X), d̂(X) σ2

f

)
if |X| > λ(η)

(4.20)

the supremum predictive risk at the non-zero support points is f(η), i.e.,

sup
θ 6=0

ρ
(
θ, p̂ [λ(η) ]

)
∼ f(η) as η → 0. (4.21)

Thus, it follows that sup-optimality of the class G[p] is 1 + r−1.

The sub-optimality of Linear density estimates as described in Lemma 4.1.3 follows

from the risk calculations in Chapter 2.
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4.7.3 Risk sharing schemes and efficient alignments of sup-

port points

While constructing the minimax threshold estimator p̂T we have used the cluster prior

π[η, r,K] below the threshold. This choice is not unique and we can use other proper

estimates in its place. By the proof in the Section 4.5, it follows that we can not use

zero-threshold estimator as then ρB will only require ρB,1 and for optimality we also

need the sharing effect from ρB,2. The proof structure outline before Lemma 4.5.4 goes

through for any finite prior with (1− η) probability at the origin and the remaining

probability η being equally allocated across finite points between λf and λe.

So a prior with (1 − η) mass at the orgin and sharing the remaining mass η across

the non-zero support points µ0, . . . , µK1 will produce an optimal allocation if the

alignment of these points (and the cardinality of the support) is such that Lemma 4.5.4

still holds.

For example, instead of the cluster prior π[η, r,K] we choose a (K1+2)-points prior

whose non-zero support points are equispaced (unlike in geometric progression) and

equiprobable. Let the spacing between the points be s. So, µ0 = νη and µi = µ0 + i s

for i ∈ {0, . . . , K1} where

K1 = max{i : µ0 + i s ≤ λe + a} and so as η → 0, K1 ∼
⌊
λe − λf

s

⌋
.

Again if we would like to equate fi(µi+1) ≤ −r(µ2
i − λ2

f ) as in Lemma 4.5.4 we have,

fi(µi+1) = (µi+1 − (1 + r)µi)
2 − (1 + r)rµ2

i + rλ2
f

= (s− rµi)
2 − (1 + r)rµ2

i + rλ2
f

= −rµ2
i + rλ2

f + s2 − 2srµi.

Now, we solve for the condition sµ0(sµ0 − 2rµi) ≤ 0. A solution is given by s = 2rλf

which produces a choice of K1 = ⌊ (2r)−1{(1 + r−1)1/2 − 1} ⌋.



CHAPTER 4. EXACT SPARSITY & RISK DIVERSIFICATION 154

We construct the following univariate prior with the non-zero support , equiprob-

able and equidistant support points lying in between µ0 and λ+ a

π[η, r, E]θ) = (1− η) · δ0(θ) +
η

K1 + 1

K1∑

i=0

δµi
(θ)

where µi = (1 + 2ri)µ0, i = 1, . . . , K1 and K1 =

⌊
(1 + r−1)1/2 − 1

2r

⌋
.

As η → 0, it will produce a first order minimax optimal predictive density estimate

for the univariate restricted Bayes-Minimax problem over the constrained prior space

m
+(η).

In Figure 4.7 we have the empirical evaluations of optimal predictive schemes in

the asymptotic regime. Figure 4.8 contains the risk plots under moderate sparsity.

4.7.4 Other Minimax Estimators

We consider the following non-negative analogue of π[η, r, INF]

π[η, r, INF+](θ) = (1− η) · δ0(θ) + (1− η)
∞∑

j=0

ηj+1
K∑

i=0

si δµij
(θ) where,

µij = j λe + (1 + 2r)i νη ; i = 0, . . . , K and j = 1, . . . ,∞
si = (log η−1)−i for i = 1, . . . , K and

s0 = 1− (1− (log η−1)−K)

(log η−1 − 1)
∼ 1− (log η−1)−1 as η → 0.

The between cluster spacing and probability distribution on the clusters is motivated

by the construction of second order minimax optimal point estimates of the normal

mean in Johnstone (1994b). The with-in cluster mass distribution is more interesting.

First note that for the univariate predictive density estimation problem π[η, r, 2] or

its corresponding infinite support geometric version is not the Bayes optimal strategy

for the statistician because it is a prediction problem and he has to share his future

risk. Also, neither π[η, r,CL+] nor its corresponding infinite support geometric ver-

sion is least favorable as after sharing the statistician incurs the maximum risk at λf
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Figure 4.7: Plot of the predictive entropy risk ρ(θ, ·) for the different univariate
predictive schemes as the parameter θ varies over R+. In green, blue, brown and black
are respectively the risks of p̂[ r,T, π[η, r, 2],U], p̂[ r,T,CL+,U ], p̂[ r,T, π[η, r, E],U ]
and that of the Bayes predictive density estimate based on the infinite support prior
π[η, r, INF]. Here, r = 0.25, η = e−20, λf = 2.83 and λe = 6.32. The brown boxes at
2.83 and 4.24 in the yellow zone show the non-zero support point of the cluster prior
π[η, r,CL+] and the black circles denote the non-zero support points of π[η, r, E].
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Figure 4.8: The figure shows the risk plots for the different univariate predictive
schemes under moderate degree of sparsity (η = 0.001) for the two different values of
the future to past variances: r = 0.25 (top) and r = 1. In red, green, blue, brown
and black are respectively the risks of the optimal hard-threshold plug-in scheme,
p̂[ r,T, π[η, r, 2],U], p̂[ r,T,CL+,U ], p̂[ r,T, π[η, r, E],U ] and that of the Bayes pre-
dictive density estimate based on the infinite support prior π[η, r, INF].
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(which is expected) and the risks at the other non-zero support points is appreciably

lower even in first order calculations. However, as η → 0 a geometrically decreasing

discrete probability sharing scheme with common ratio log η−1 solves this problem

because log η−1 → ∞ when η → 0 and hence dampens the first-order terms in the

asymptotic limit.

Proof of Theorem 4.1.5. We prove the result in the corresponding univariate model

M.2(1, η, r) with σp = 1 and the parameter space restricted to the non-negative axis.

The risk of p̂(y|x, π[η, r, INF+]) at the point θ is given by:

ρ(θ) =
1

2r

(
θ2 − 2rE0(N

′
θ(X, Y )) + 2rE0(D

′
θ(X))

)
where,

N ′
θ= log

[
1 +

∞∑

j=0

ηj+1

K + 1

K∑

i=0

exp

{
µij

(
x+

y

r

)
− 1 + r

2r
µ2
ij +

1 + r

r
µijθ

}]

D′
θ= log

[
1 +

∞∑

j=0

ηj+1

K + 1

K∑

i=0

exp{µijx− 1

2
µ2
ij + µijθ}

]
.

Now, ρ(0) = η + o(η) as N ′
θ(X, Y ) ≥ 0 and

E0(D
′
0(X)) ≤ log

[
1 +

∞∑

j=0

K∑

i=1

ηj+1

K + 1

]
= − log(1− η) = η +O(η2).

Next we note that, with probability 1 we will have,

E0(N
′
θ(X, Y )) ≥ max

i=1,...,K

j=0,...,∞

(
µijθ −

1

2
µ2
ij − aµij −

1

2
(j + 1)µ2

0

)(
1 +

1

r

)

− log(K + 1) + O (1) and

E0(D
′
θ(X)) ≤ max

i=1,...,K
j=0,...,∞

(
µijθ −

1

2
µ2
ij + aµij −

1

2
(j + 1)λ2

)

+

+O(1).

Also, the optimum value of j and i for both the numerator and denominator is same.
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And so it follows

ρ(θ) ≤ 1

2r
max

i=1,...,K

j=0,...,∞

(θ2 − 2µijθ + µ2
ij + 4aµij) + O (1)

≤ 1

2r
max

i=1,...,K

j=0,...,∞

(θ2 − 2µij)
2 + o(µ2

0) ≤ µ0/2r(1 + o (1)).

Risk calculations similar to Section 4.5 will show that the B(π[η, r, INF+]) attains the

above lower bound. This will complete the proof.

4.7.5 Quality of our results under moderate sparsity

The results we have discussed in this chapter are based in a highly sparse asymptotic

regime where the degree of ℓ0 sparsity ηn → 0. In the univariate and non-negative

parameter space version of model M.2(1, η, r) it corresponds to having the non-origin

prior probability η → 0. Here, we perform numerical experiments to study the

effectiveness of our asymptotic results under different levels of sparsity. An object of

special interest is to record the performance of the previously discussed asymptotically

optimal predictive schemes under moderate sparsity. Depending on the degree of

sparsity, we consider the following 3 different regimes:

• Moderate Sparsity: η = 0.1.

• High Sparsity: η = 0.001.

• Very High Sparsity: η = 10−10.

Figure 4.11, Figure 4.10 and Figure 4.9 respectively show the univariate risk plots in

these 3 different sparsity regimes (moderate to very high) for the following 3 predictive

density estimates:

• hard threshold Plug-in density p̂[ r,T, 0,U ]

• Unshared predictive density p̂[ r,T, π[η, r, 2],U]

• Cluster prior based diversified density p̂[ r,T,CL+,U ].



CHAPTER 4. EXACT SPARSITY & RISK DIVERSIFICATION 159

0 2 4 6 8 10 12 14

0
2

4
6

8
10

λ

0 2 4 6 8 10 12 14

0
5

10
15

λ

0 2 4 6 8 10 12 14

0
5

10
15

20
25

30

λ

0 2 4 6 8 10 12 14

0
10

20
30

40
50

λ

0 2 4 6 8 10 12 14

0
20

40
60

80

λ

0 2 4 6 8 10 12 14

0
20

40
60

80
12

0

λ

Figure 4.9: Risk plots under very high sparsity, η = 10−10: As the parameter θ
varies over R+ these plots show the risk ρ(θ, ·) for the 3 different univariate predictive
densities (i) hard thereshold plug-in density p̂[ r,T, 0,U] (in blue) (ii) unshared pre-
dictive density p̂[ r,T, π[η, r, 2],U ](in violet) (iii) cluster prior based diversified density
p̂[ r,T,CL+,U ] (in green). The horizontal line denotes the theoretical minimax risk.
From top-left, in clockwise direction, the plots corresponds to r=1.5, 1.0, 0.5, 0.3, 0.2
and 0.1.
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Figure 4.10: Risk plots under high sparsity, η = 0.001: As the parameter θ varies
over R+ these plots show the risk ρ(θ, ·) for the 3 different univariate predictive den-
sities (i) hard threshold plug-in density p̂[ r,T, 0,U ] (in blue) (ii) unshared predic-
tive density p̂[ r,T, π[η, r, 2],U ](in violet) (iii) cluster prior based diversified density
p̂[ r,T,CL+,U ] (in green). The horizontal line denotes the theoretical minimax risk.
From top-left, in clockwise direction, the plots corresponds to r=1.5, 1.0, 0.5, 0.3, 0.2
and 0.1.
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Figure 4.11: Risk plots under moderate sparsity, η = 0.1: As the parameter θ varies
over R+ these plots show the risk ρ(θ, ·) for the 3 different univariate predictive den-
sities (i) hard threshold plug-in density p̂[ r,T, 0,U ] (in blue) (ii) unshared predic-
tive density p̂[ r,T, π[η, r, 2],U ](in violet) (iii) cluster prior based diversified density
p̂[ r,T,CL+,U ] (in green). The horizontal line denotes the theoretical minimax risk.
From top-left, in clockwise direction, the plots corresponds to r=1.5, 1.0, 0.5, 0.3, 0.2
and 0.1.
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Maximum Univariate Predictive Risk Under Sparsity
Sparsity (η) r Theory Plug-in Unshared Cluster Equispaced Bayes

10−10

1.00 1.15e-09 1.43e-09 8.86e-10 8.83e-10 8.89e-10 8.80e-10
0.50 1.54e-09 2.85e-09 1.30e-09 1.30e-09 1.30e-09 1.31e-09
0.25 1.84e-09 5.68e-09 2.28e-09 1.69e-09 1.72e-09 1.69e-09
0.10 2.04e-09 1.09e-08 5.26e-09 1.98e-09 2.02e-09 NaN

0.001

1.00 0.00345 0.00377 0.00220 0.00220 0.00217 0.00206
0.50 0.00461 0.00746 0.00352 0.00351 0.00349 0.00335
0.25 0.00553 0.01480 0.00667 0.00449 0.00465 0.00435
0.10 0.00628 0.03660 0.02010 0.00618 0.00639 0.00610

0.1

1.00 0.115 0.134 0.0787 0.0779 0.0786 0.0603
0.50 0.154 0.261 0.1440 0.1430 0.1430 0.1100
0.25 0.184 0.507 0.2860 0.2160 0.1710 0.1580
0.10 0.209 1.230 0.7700 0.2980 0.2850 0.2060

Table 4.2: Numerical evaluation of the maximum risk under ℓ0 sparsity for the differ-
ent univariate predictive densities as the degree of sparsity (η) and predictive difficulty
r varies.

Maxima of the risk plots: maxθ∈R+ ρ(θ, ·)
η r λf λe Theory Plug-in Unshared Cluster Equispaced Bayes

10−10

1.00 4.80 6.79 11.5 14.3 8.82 8.8 8.84 8.79
0.50 3.92 6.79 15.4 28.5 13.00 13.0 13.10 13.00
0.25 3.03 6.79 18.4 56.8 22.70 17.0 17.30 16.90
0.10 2.30 6.79 20.4 109.0 52.60 19.7 20.20 NaN

0.001

1.00 2.63 3.72 3.45 3.77 2.19 2.18 2.18 2.07
0.50 2.15 3.72 4.61 7.46 3.53 3.53 3.55 3.34
0.25 1.66 3.72 5.53 14.80 6.61 4.55 4.67 4.37
0.10 1.12 3.72 6.28 36.60 20.10 6.18 6.43 6.08

0.1

1.00 1.520 2.15 1.15 1.34 0.783 0.791 0.791 0.612
0.50 1.240 2.15 1.54 2.61 1.430 1.440 1.440 1.110
0.25 0.960 2.15 1.84 5.07 2.810 2.110 1.740 1.550
0.10 0.647 2.15 2.09 12.30 7.810 3.000 2.920 2.040

Table 4.3: Numerical evaluation of the maxima of the risk plots for the different
univariate predictive densities as the degree of sparsity (η) and predictive difficulty r
varies.
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Figures 4.11, 4.10 and 4.9 show that that the fundamental features of the risk plots are

unchanged even under moderate sparsity. For all the different regimes, risk-diversified

density estimates have better performances than the unshared and plugin estimates

and its maximum risk is close to the evaluation of the minimax risk based on the

asymptotic formula in Theorem 4.3.4.

In Table 4.3 we report the maximum value of the risk-plots of these predic-

tive strategies as well as those of the risk-diversified Equispaced predictive density

p̂[ r,T, π[η, r, E],U] (denoted by Equispaced) and that of the Bayes predictive density

estimate based on the infinite support prior π[η, r, INF] (denoted by Bayes). In Ta-

ble 4.2 we provide numerical evaluations of their respective maximum predictive risk

under the ℓ0 sparsity restriction of having at least (1 − η) probability at the origin.

In the tables, by Theory we denote evaluation of the minimax risk by the expression

η log η−1/(1 + r) which is given by Theorem 4.3.4. We see that across all regimes

the risk diversified strategies perform better than the unshared and plug-in schemes.

All the risk-diversified schemes have very similar maximum risks though the Bayes

predictive density based on π[η, r, INF] has optimal performance among them. In

Figure 4.12, we have plots of the risk of (1−η)-sparse 2-point priors at the non-origin

support point. The maxima and maximum values based on Lemma 4.3.2 are also

shown. From the figures and the tables, it is seen that the differences between our

theory and the numerical evaluations increase as r increases or η decreases. And, in

those cases our theory results overestimate the minimax risks. Second order optimal-

ity calculations as done in Johnstone (1994b) for point estimation case can be helpful

in those regimes.
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Figure 4.12: Non-origin risk of (1 − η)-sparse 2–point priors : Each of these curves
is the plot of ρ(ν, p̂[π2pt(η, ν)]) as ν varies for a fixed r and η. In brown, yel-
low, green, blue, red and black respectively are curves corresponding to r =
1.5, 1, 0.5, 0.3, 0.2 and 0.1. The white lines correspond to the theoretical maxima and
maximum values respectively. From top to bottom we have 3 different levels for
η : 10−10, 0.001 and 0.1 respectively.



DISCUSSIONS

Our results on ℓ0 sparsity can be extended to the orthogonal sequence model M.2 with

approximate sparsity restrictions on the parameter space. The constrained minimax

results can be generalized to a wide range of parameter class indexed by ℓp balls with

shape parameter p and normalized mean radius τn both varying in (0,∞):

ℓp balls: Θn,p(Cn) =

{
n∑

i=1

|θi|p ≤ Cp
n

}
with mean radius τn = n−1/pσ−1

p Cn.

Figure 1.2 shows the relation between exact and approximate or ℓp–sparsity. In the

context of the curve prediction problem discussed in Section 1.3.3, here we assume

that the future and past observation vector are sampled with noise from an unknown

function at the same set of n equispaced points (i.e. m1 = m2 = n). However, the

past and future noise variability can vary but are known to be σ2
p and σ2

f respectively.

And so, the predictive difficulty is given by r = σ2
f/σ

2
p.

Approximate Sparsity and ℓp constrained parameter spaces

As n → ∞, we derive expressions for the first order minimax risk over ℓp balls for

all choices of p and τn. Asymptotically least favorable priors are exchangeable priors

and first order minimax optimal rules are co-ordinate wise rules. Table 4.4 shows the

165
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results in the two extreme regimes

• Very High Signal to Noise Ratio (SNR): τn → ∞.

• Very Low Signal to Noise Ratio(SNR: τn → 0.

In high SNR, the class of plug-in predictive density estimates is sub-optimal but the

class of linear estimates attain minimax risk. As such, the best invariant density

estimate p̂U is minimax optimal in high SNR. In low SNR, as in point estimation

theory, here also phrase transition in the behavior of the asymptotic minimax risk is

witnessed at p = 2. For p ≥ 2, the zero-density estimate is first order minimax. For

p < 2, linear sub-optimality is ∞ but the class of plug-in estimates (P) perform much

better. However, in these regimes there is no gain in minimax risk if we consider

the wider class of all Gaussian density estimates instead of P. In the non-extreme

regimes where τn → τ ∈ (0,∞), informative upper and lower bounds can be derived

on the minimax predictive risk. Following Johnstone (1994a), these results can be

generalized to weak-ℓp sparsity.

Mean Radius p P L G ρ minimax

τn → ∞ [ 0,∞) r−1{log (1 + r−1)}−1 1 1 2−1 n log(1 + r−1)

[ 2,∞) 1 1 1 (2r)−1 n τ 2n

τn → 0

[ 0, 2) (1 + r−1)1−p/2 ∞ (1 + r−1)1−p/2 κp,r n τ pn {log τ−p
n }1−p/2

Table 4.4: The sub-optimality coefficients of the classes of Plug-in (P), Linear (L) and
Gaussian (G) density estimates as the parameter spaces lie in ℓp balls with mean radius
reflecting the two extreme signal-to-noise regimes. Here, κp,r = (2r)−p/2(1+ r)(p−2)/2.

Example: Simultaneous probability forecasts of Wind Speed

Next, we illustrate the approximate sparsity results through the motivating example

of simultaneous estimation of predictive densities for wind-speeds over a series of time

points at a particular meteorological station. It is important to predict the occur-

rence of extreme wind speeds with high accuracy and warnings for weather hazards
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are based on the probability estimates of these outliers. Simultaneous probability

forecasts of wind speeds are used in weather forecasting, aircraft and maritime op-

erations, atmospheric dispersion modeling and growth & metabolism rate estimation

of many plant species. Often, objects of predictive interest are based on the log wind

profiles which describe the vertical distribution of horizontal mean wind speeds.

We consider the data set where the average wind speeds at every 4 hours are

recorded over the course of 10 years starting from January 1, 2003 to December 31,

2012. The average wind speed (in miles per hours) data is recorded at AgriMet

Station (BKVO) at Baker Valley (44.78°N, 117.85°W, Elevation 3483ft ) in Oregon

and is available from http://www.usbr.gov/pn/agrimet/.

Using the first 5 years of data from January 1, 2003 to December 31, 2007 we would

like to make simultaneous predictive inferences on the wind speeds in the succeeding

years. We assume that each year’s the wind speed data {W [j] : 1 ≤ j ≤ J} indexed

sequentially at the set J of 4-hours intervals can be assumed to be coming from the

same smooth curve f :

W [j] = f [j] + σ · ǫ[j], j ∈ J.

We would like to estimate the simultaneous predictive densities of wind speeds over

the set J for the year 2008. Note that in this case the predictive difficulty of the

problem is low as r = 5. If we want to estimate the simultaneous predictive densities

of wind speeds averaged over 2, 3, 4 and 5 years following 2007 then the values of r

are 2.5, 1.67, 1.25 and 1 respectively. Here, we use two different choices of predictive

densities:

• The best invariant linear predictive density estimate p̂U .

• The hard threshold wavelet transformed plug-in density estimate p̂[wavelet,H].

Using the waved R-package of Raimondo & Stewart (2011) we fit a wavelet loca-

tion estimate θ̂[wavelet,H] for each point in J . θ̂[wavelet,H] is hard thresholded

in the wavelet basis based on the our theoretical threshold choice of 0.104 (we

used Meyer wavelet of level 10). Figure 4.13 shows that θ̂[wavelet,H] is able

to capture the the seasonal variability in the mean wind speed. Usually, the
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autumn months are comparatively calmer than the summer (when the plane-

tary boundary layer is more turbulent) and winter months (when there is snow

on the ground). We consider the plugin predictive density p̂[wavelet,H] around

θ̂[wavelet,H].

In Figure 4.14, we produce point-wise 90% prediction interval based on the above

two estimates. Based on data from 2008 to 2012, Table 4.5 shows their respective

coverage as well as the percentage of time-points when the the linear prediction in-

terval contains the plug-in prediction interval. We observe that the intervals based

on both the predictive densities have similar coverage which is close to 90%. In most

cases the intervals from p̂U contain those from p̂[wavelet,H] and this proportion of

inclusion increases with increase in predictive difficulty (r−1). Our theoretical results

support these observations. Though our results do not specifically address optimality

(in terms of width) of prediction intervals, they provide predictive performances of

the density estimates the in terms of the average likelihood ratio. Attributes such as

width and coverage of the prediction intervals are functions of the predictive likeli-

hood ratio.

Here, in the wavelet basis we have a sparse predictive regime with τn = 5 · 10−4 and

n = 211 and theoretically the sub-optimality of the entire class of linear estimates

lim
τn→0

Sr(p, τn,L) → ∞ for any p ∈ (0, 2)

where as sub-optimality of p̂[wavelet,H] in this low SNR regime is less than 1 + r−1.

So, for all the different choices of r that we have here, p̂[wavelet,H] is at least 50%

efficient with respect to the optimal minimax predictive risk whereas linear estimates

are extremely inefficient and it is reflected in the greater width of its associated

prediction intervals.
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Figure 4.13: Mean Wind Speed at 4 hours interval: In blue, we have the mean wind-
speed (in miles per hour) at every 4 hours interval averaged over the 5 years 2003-2008.
The white line is the hard-threshold based wavelet transformed location estimate
θ̂[wavelet,H].

r Coverage of p̂U Coverage of p̂[wavelet,H] Relative Width
5.00 90.92 91.55 64.94
2.50 88.77 90.58 77.83
1.67 87.06 87.45 89.65
1.25 88.92 88.62 98.19
1.00 88.43 87.74 99.90

Table 4.5: Percentage of coverage in 2008-2012 of 90% point-wise prediction intervals
which are constructed based on 2003-2007 data by using predictive densities estimates
p̂U and p̂[wavelet,H]. By relative width, we denote the proportion of time-points in
which the prediction interval constructed from p̂[wavelet,H] is entirely contained in
those built from p̂U .
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Figure 4.14: 90% point-wise prediction interval. The white region represents the
90% prediction interval at each time point from p̂[H, λ] – the hard threshold plug-in
density estimate. In green, we have the point-wise 90% prediction interval from the
best invariant linear predictive density p̂U . These prediction intervals are constructed
based on the data from January 1, 2003 to December 31, 2007. Superimposed on
them, in red we have the wind speed averaged across 5, 4, 3, 2 and 1 year (bottom
to top) starting from January 1, 2008.
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4.8 Appendix

Mills ratio and Gaussian tails (Johnstone 2012, Exercise 8.1)

The function M(u) = Φ̃(u)/φ(u) is called Mills Ratio. The following inequalities

will provide an approximation to the Mills ratio which will be very helpful for our

calculations with truncated Gaussian random variable. As such:

For any u ≥ 0 we have
φ(u)

u

(
1− 1

u2

)
≤ Φ̃(u) ≤ φ(u)

u
. (4.22)

And so for large u, which will typically be the case, the approximation Φ̃(u) ∼ u−1φ(u)

is quite sharp.

Multivariate Minimax Risk

For any fixed n, s, r we have B(r,M(n, sn)) = nβ(s/n, r).

Lemma 4.8.1.

Proof. For any prior π onR
n and its marginals {πi : i = 1, . . . , n} we have ρ(θ, p̂π1×π2×...πn

) =
∑n

i=1 ρ(θi, p̂πi
). So,

B(π) =

∫
π(θ)ρ(θ, p̂π) dθ ≤

∫
π(θ)ρ(θ, p̂π1×π2×...πn

) =
n∑

i=1

∫
π(θi)ρ(θi, p̂πi

) dθi

Again, if π ∈ M(n, sn) then π̄ = π1 × π2 × . . . πn ∈ Mp(n, sn) and Mp(n, sn) ⊂
M(n, sn). So, B(r,M(n, sn)) = B(r,Mp(n, sn)) and due to decomposability of the

Bayes risk for product priors we have

B(r,Mp(n, sn)) = sup

{
n∑

i=1

β(τi, r) :

n∑

i=1

τi ≤ sn

}
.

Now as β(τ, r) is concave function of τ the supremum in the above expression occurs

when τi = s/n ∀ i. This completes the proof.
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Note that for any ǫ ∈ (0, 1) the parametric space Θ(n, ǫ s) as well as the prior

space M(n, ǫ sn) is equivariant in the sense Θ(n, ǫs) = ǫ · Θ(n, s) and M(n, ǫsn) =

ǫ · M(n, sn).

Proof of Lemma 4.6.2. From definition of Bayes risk it follows

B(πn,ǫ) =

∫
πn,ǫ(θ)ρ(θ, p̂πn,ǫ

) dθ ≤
∫

πn,ǫ(θ)ρ(θ, p̂νn,ǫ
) dθ

=

{∫

Θ(n,s)

νn,ǫ(θ)ρ(θ, p̂νn,ǫ
) dθ

}
· πn,ǫ(Θn) +

∫

Θc(n,s)

πn,ǫ(θ)ρ(θ, p̂νn,ǫ
) dθ

= πn,ǫ

(
Θ(n, s)

)
B(νn,ǫ) +

∫

θ∈Θc(n,s)

πn,ǫ(θ)ρ(θ, p̂νn,ǫn
) dθ

≤ πn,ǫ(Θ(n, s))R(n, s, r) + o
(
B(r,M(n, sn))

)

as support of νn is contained in Θ(n, s), so we have B(νn,ǫ) ≤ R(n, s, r) and we use

property (c) on the second sum.

Now, using Condition (b) of the lemma, we have R(n, s, r) ≥ ǫB(r,M(n, ǫsn))−
o (B(r,M(n, sn))) and the result follows by using the following Lemma 4.8.2.

For any fixed r ∈ (0,∞) we have

lim
ǫ↑1

lim inf
n→∞

B(r,M(n, ǫsn))

B(r,M(n, sn))
= 1.

Lemma 4.8.2.

Proof. The proof is similar to Exercise 4.7 in Johnstone (2012).

Minimax Theorem

We consider the Gaussian predictive sequence model

xi = θi + σp ǫ1,i and yi = θi + σp ǫ2,i (4.23)
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for i ∈ I ⊂ N, with ǫ1,i and ǫ2,i are i.i.d. N(0, 1) random variables. The parameter

space is a collection of θ for which
∑

i θ
2
i < ∞ and is denoted by ℓ2(N). The action

set is given by

A∞ =

{
p : R∞ → R such that

∫

R∞

p(y) dy = 1 and p(y) ≥ 0 for all y

}
.

For each n ∈ N consider all sub-probabilities in R
n bounded by cn by extending

A(n, cn) to its closure

Ā(n, cn) =

{
p : Rn → R such that

∫

Rn

p (y) dy ≤ 1 and p ∈ [0, cn]

}
.

Ā(n, cn) is a sub-set of the Banach space L∞(Rn,R) – all bounded functionals in R
n.

Now, expanding the discussions in Section 2.4, we consider the topology on Ā(n, cn)

induced by the weak⋆ topology on L∞(Rn,R).

In the predictive sequence model consider the experiment (Ω,B, {Pθ : θ ∈ ℓ2(N)})
where the sample space Ω = {⊗i∈N(xi, yi) : xi, yi ∈ R} and B is the associated Borel

sigma field. As the parameter space is ℓ2, we have a dominated experiment here with

dPθ

dP0

= exp

[
σ−2
p

{〈
θ,x+ r−1y

〉
− 1

2

(
1 + r−1) ||θ||2

) }]
.

Also, for each n ∈ N, the restricted, closed action set Ā(n, cn) is weak
⋆ compact and

the loss function L(θ, p) is

• strictly convex in p ∈ Ā(n, cn,+) for any θ ∈ R
n where Ā(n, cn,+) = {p ∈

Ā(n, cn) such that L(θ, p) < ∞ for all θ ∈ R
n} and

• lower semi-continuous in p on Ā(n, cn) for any fixed θ ∈ R
n.

And so, following the lines of Johnstone (2012, Appendix 1) and Brown (1974) we

can arrive at a version of the minimax theorem for the predictive setting. It is stated

below.
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Consider the predictive density estimation problem in the Gaussian predictive

sequence model (4.23) with the parameter space ℓ2(N). For any convex set

M of probability measures on ℓ2(N) we have

inf
p̂∈A∞

sup
π∈M

B (π, p̂ ) = sup
π∈M

inf
p̂∈A∞

B (π, p̂ )

Theorem 4.8.3.
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