
The Annals of Applied Statistics
2020, Vol. 14, No. 4, 1777–1805
https://doi.org/10.1214/20-AOAS1362
© Institute of Mathematical Statistics, 2020

A NEAREST-NEIGHBOR BASED NONPARAMETRIC TEST FOR VIRAL
REMODELING IN HETEROGENEOUS SINGLE-CELL PROTEOMIC DATA

BY TRAMBAK BANERJEE1, BHASWAR B. BHATTACHARYA2 AND

GOURAB MUKHERJEE3

1Analytics, Information and Operations Management, School of Business, University of Kansas, trambak@ku.edu
2Department of Statistics, The Wharton School, University of Pennsylvania, bhaswar@wharton.upenn.edu

3Department of Data Sciences and Operations, Marshall School of Business, University of Southern California,
gmukherj@marshall.usc.edu

An important problem in contemporary immunology studies based on
single-cell protein expression data is to determine whether cellular expres-
sions are remodeled postinfection by a pathogen. One natural approach for
detecting such changes is to use nonparametric two-sample statistical tests.
However, in single-cell studies direct application of these tests is often inade-
quate, because single-cell level expression data from processed uninfected
populations often contain attributes of several latent subpopulations with
highly heterogeneous characteristics. As a result, viruses often infect these
different subpopulations at different rates, in which case the traditional non-
parametric two-sample tests for checking similarity in distributions are no
longer conservative. In this paper, we propose a new nonparametric method
for Testing Remodeling under Heterogeneity (TRUH) that can accurately de-
tect changes in the infected samples compared to possibly heterogeneous un-
infected samples. Our testing framework is based on composite nulls and is
designed to allow the null model to encompass the possibility that the in-
fected samples, though unaltered by the virus, might be dominantly arising
from underrepresented subpopulations in the baseline data. The TRUH statis-
tic, which uses nearest neighbor projections of the infected samples into the
baseline uninfected population, is calibrated using a novel bootstrap algo-
rithm. We demonstrate the nonasymptotic performance of the test via simu-
lation experiments and also derive the large sample limit of the test statistic
which provides theoretical support toward consistent asymptotic calibration
of the test. We use the TRUH statistic for studying remodeling in tonsillar T
cells under different types of HIV infection and find that, unlike traditional
tests which do not have any heterogeneity correction, TRUH based statistical
inference conforms to the biologically validated immunological theories on
HIV infection.

1. Introduction. In many contemporary scientific methodologies it is extremely diffi-
cult, even in well-regulated laboratory experiments, to simultaneously control the multitude
of factors that give rise to heterogeneity in the population (Chapter 3 of Holmes and Huber
(2018)). Nevertheless, these experiments are very powerful, and are often our only recourse
to study several interesting biological phenomena. For example, in single-cell proteomic and
genomic studies (Jia et al. (2017), Jiang et al. (2018), Shi and Huang (2017), Wang et al.
(2018)), it is now well understood that there is high heterogeneity in cellular responses from
controlled cell population. Statistical tests are often used on these datasets to determine dif-
ferences between the case and control samples. The presence of heterogeneity greatly com-
plicates statistical inference and direct application of existing two-sample testing methods,
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without modulating for the latent heterogeneity in the samples, may lead to erroneous statis-
tical decisions and scientific consequences. The problem of testing similarity in the distribu-
tions of two samples under heterogeneity arises in a host of modern immunology research
set-ups where heterogeneous protein expression datasets collected at single-cell resolution
are analyzed to detect viral perturbation. To provide a rigorous statistical hypothesis testing
framework for these immunology studies, we consider a composite null hypothesis that al-
lows mixture expression distributions in cases and controls with the mixture having same
components but potentially different mixing proportions; the alternative hypothesis contains
scenarios where at least one of the mixture components is actually different between the
cases and the controls. We develop a new nonparametric testing procedure based on nearest-
neighbor distances that can accurately detect if there are differences between the case and
control samples in the presence of unknown heterogeneity in the data-generation process.
We next provide the background of the problem through an immunology study on human
immunodeficiency virus (HIV) infection in tonsillar cells.

1.1. Phenotypic profiling of T cells under HIV infection. In single-cell immunology, phe-
notypic profiling of immune cells under the influence of a target virus, such as the HIV
(Cavrois et al. (2017)), the varicella zoster virus (VZV) (Sen et al. (2014)) or the rotavirus
(RV) (Sen et al. (2012)), is a critical research endeavor. It enhances understanding of which
subsets of cells are most or least susceptible to infection, leading to new insights regarding
the magnitude of viral persistence which is crucial in the development of life saving drugs
(Sen, Mukherjee and Arvin (2015)). Mass cytometry based techniques (Bendall et al. (2011),
Giesen et al. (2014)) are popularly used for generating proteomic datasets for such pheno-
typic analysis. These techniques can simultaneously measure around 50 protein expressions
on individual cells. In this paper we provide a rigorous statistical analysis for testing if there
are any HIV induced changes in the proteomic expressions of tonsillar T cells, which are a
type of lymphocyte that plays a central role in the immune response, based on the dataset
generated in Cavrois et al., 2017.

Figure 1 presents a schematic representation of the experimental set-up used for generat-
ing single-cell level proteomic expression data of HIV-infected T cells using cytometry by
time of flight (CyTOF) technique. Tonsillar T cells from four healthy donors were infected
with two variants of a HIV viral strain: Nef rich HIV and Nef deficient HIV. Nef
(negative regulatory factor) is a protein encoded by HIV which enhances virus replication in
the host cell by protecting infected cells from immune surveillance. We study the differen-
tial impact of these two variants on the immune cells. The healthy cells were cultured and
processed into three batches for each donor. For each patient, one among the three batches

FIG. 1. Schematic representation of the experimental design associated with the phenotypic analysis of HIV-in-
fected CD4+ T cells using mass cytometry. Tonsillar T cells from a healthy donor (represented by green circles)
are infected with the Nef rich or the Nef deficient HIV virus (represented by red triangles). These cells
were then phenotyped in a 38 parameter panel after allowing four days for infection. The resulting data has 38
protein expressions for approximately 25,000 uninfected cells, and the number of virally infected cells was around
250.
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was randomly selected and phenotyped to generate the expression data of the uninfected pop-
ulation, while the other two batches were contaminated with the Nef rich HIV and the
Nef deficient HIV, respectively, and phenotyped after four days of infection. All the
batches where phenotyped using multiparameter CyTOF panel which contained 35 surface
markers and three viral markers. These are special proteins attached to the cell membrane.
After leaving out dead cells from each run of the CyTOF experiment, we had 38 protein ex-
pressions for approximately 25,000 uninfected cells. Virus infected cells in the contaminated
population were marked based on the expression of the viral markers, and it was found that
the number of virally infected cells in the batch subjected to HIV infection was around 250.
These cells constitute the infected cell population.

1.2. Viral remodeling. If the virus changes the expression of any of the surface markers,
which are proteins attached to the cell membrane, then the cell is said to have undergone vi-
ral remodeling of its phenotypic characteristics (Sen et al. (2014)). A virally remodeled cell
will have aberrant intercellular activities, therefore detecting the presence of remodeling is
a fundamental step toward understanding the mechanism of pathogenesis and disease pro-
gression. Detecting remodeling translates to testing if there is enough evidence in the data to
reject the null hypothesis that the joint distribution of all the surface proteins is same between
the uninfected and virus infected sample. A natural approach for this problem is to invoke
nonparametric two-sample testing methods to see if there is enough evidence to support the
alternative hypothesis that the virus has changed the distribution of least one of the subpop-
ulations. However, for single-cell level expression data the hypothesis test described above
is particularly difficult because of the following two reasons: (a) the presence of heterogene-
ity in the uninfected population, and (b) due to the phenomenon of preferential infection.
Single-cell resolution expression data from processed uninfected population often contains
attributes from several latent subpopulations with highly heterogeneous characteristics. This
subpopulation level heterogeneity in the uninfected (also referred to as the control or base-
line) samples can arise from varied attributes that cannot be controlled in experiments, such
as differences in the cell effector functions, trafficking and longevity (Cavrois et al. (2017)).
Viruses often infect these different subpopulations at different rates. If a virus infects differ-
ent subpopulation at different rates, but does not alter the marker expressions for any of the
subpopulations, then the distribution of the overall viral sample will still be different from
the uninfected samples. In these situations the difference in distribution between the infected
and the uninfected samples is not due to viral remodeling but due to preferential infection
(for a detailed biological explanation, see Figures 2A and 2B of Cavrois et al., 2017) of the
uninfected subpopulations by the virus.

Figure 2 presents two scenarios that may arise when the cloud of infected and uninfected
cells are analyzed with respect to a single marker A. In this toy example, Panel 1 in Figure 2
shows that the uninfected T cells arise from three subpopulations with varying expression lev-
els for marker A which may reflect their inherent heterogeneity with respect to cell longevity.
The scenario of preferential infection is depicted in Panel 2 where the HIV preferentially
infects the T cell subpopulation that has a lower expression level for marker A amongst the
uninfected cells. Moreover, the virus does not alter the expression levels of these infected
cells when compared to Panel 1. In Panel 3, which represents HIV remodeling, the virus tar-
gets those uninfected cells that have low to medium expression for marker A amongst the
uninfected cells and alters their original expression levels upon infection. The distinct pink
and yellowish shade of the infected cells in panel 3 depicts their phenotypic change associ-
ated with infection. Here, we have described the phenomenon of viral remodeling only for the
HIV. However, remodeling analysis is widely conducted across virology for understanding
mechanism of other pathogens also. For correct scientific understanding of the viral mech-
anism, it is extremely important to accurately distinguish the instances of viral remodeling
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FIG. 2. Schematic representation of HIV remodeling of T cells with respect to a single marker A. Panel 1 shows
that the uninfected T cells arise from three subpopulations with varying expression levels for marker A. Panel
2 depicts preferential infection where the HIV preferentially infects the T cell subpopulation that has a lower
expression level for marker A amongst the uninfected cells and the infection does not alter the expression levels of
the T cells when compared to Panel 1. Panel 3 represents HIV remodeling where the HIV targets those uninfected
cells that have low to medium expression for marker A amongst the uninfected cells and alters their original
expression levels upon infection, which is represented by the distinct pink and yellowish shade of the infected
cells.

from mere preferential infection. However, popular single-cell based segmentation and clas-
sification algorithms (Amir et al. (2013), Bruggner et al. (2014), Linderman et al. (2012), Qiu
(2012)) lack a rigorous statistical hypothesis testing framework for conducting two-sample
inference and can greatly suffer in testing problems, particularly if there is high imbalance in
the sizes of the uninfected (control) and infected (case) samples which is often the situation
in virology.

1.3. Testing procedures in existing literature and statistical challenges. The statistical
framework for testing remodeling falls under the realm of nonparametric two-sample test-
ing. For univariate data, nonparametric two-sample tests like the Kolmogorov–Smirnov test,
the Wilcoxon rank-sum test and the Wald–Wolfowitz runs test are extremely popular and
find a place in every practitioner’s toolkit. Multidimensional versions of these widely used
tests date back to the randomization tests of Chung and Fraser (1958) and to the generalized
Kolmogorov–Smirnov test of Bickel (1968). Friedman and Rafsky (1979) proposed the first
computationally efficient nonparametric two-sample test which applies to high-dimensional
data. The Friedman–Rafsky edge-count test, which can be viewed as a generalization of the
univariate runs test, computes the Euclidean minimal spanning tree (MST)1 of the pooled
sample and rejects the null if the number of edges with endpoints in different samples is
small. Many variants of the edge-count test, based on nearest-neighbor distances and geo-
metric graphs, have been proposed over the years by Hall and Tajvidi (2002), Henze (1984),

1Given a finite set S ⊂ Rd , the minimum spanning tree (MST) of S is a connected graph with vertex-set S and
no cycles, which has the minimum weight, where the weight of a graph is the sum of the distances of its edges.
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Rosenbaum (2005), Schilling (1986), Weiss (1960). Recently, Chen and Friedman (2017)
suggested novel modifications of the edge-count test for high-dimensional and object data,
and Chen, Chen and Su (2018) proposed new and powerful tests to deal with the issue of
sample-size imbalance. Asymptotic properties of two-sample tests based on geometric graphs
can be studied in the general framework described in Bhattacharya (2019). Other popular
two-sample tests include the test of Baringhaus and Franz (2004), the energy distance test
of Aslan and Zech (2005) and the kernel based test using maximum mean discrepancy of
Gretton et al. (2007). More recently, Chen, Dou and Qiao (2013) address the problem of
sample-size imbalances in the two-sample problem by constructing an ensemble subsam-
pling scheme for the nearest-neighbor tests Henze (1984), Schilling (1986). Very recently,
Deb and Sen (2019) and Ghosal and Sen (2019) proposed distribution-free two-sample tests
based on the concept of multivariate ranks, defined using optimal transport. Methods based on
nearest neighbor distances have been also used extensively in other nonparametric statistical
problems, such as density estimation Mack (1983), Mack and Rosenblatt (1979), nonpara-
metric clustering Heckel and Bölcskei (2015), classification Cannings, Berrett and Samworth
(2020), Cover and Hart (1967), Gadat, Klein and Marteau (2016), Samworth (2012), entropy
and other functional estimation Berrett and Samworth (2019a), Berrett, Samworth and Yuan
(2019), Kozachenko and Leonenko (1987) and testing problems, such as testing for normality
Vasicek (1976), testing for uniformity Cressie (1976) and independence testing Berrett and
Samworth (2019b), Goria et al. (2005).

One of the main challenges for devising a statistically correct test to detect viral remod-
eling from preferential infection is that the virus may infect different subpopulations at dif-
ferent rates. In Section 2 we show that even in very large sample sizes direct application of
existing nonparametric two-sample tests can lead to erroneous inference. We expound this
phenomenon by exhibiting explicit scenarios of preferential infection and remodeling where
traditional tests fail in a simple setting of d = 2 markers. In Figure 3 the green triangles cor-
respond to a sample of uninfected (UI) cells that arise from three different subpopulations
while the red dots reflect the infected (VI) cells. The leftmost panel presents a setting where
the virus has infected all the three cellular subpopulations and the overlap of the UI and
VI cells indicate no remodeling. The middle panel presents a scenario where the cells have
undergone remodeling under the influence of the virus, as is evident through a shift in the
location of the VI cells. The rightmost panel reflects no remodeling but preferential infection.
The different g-tests (Chen, Chen and Su (2018), Chen and Friedman (2017), Friedman
and Rafsky (1979)), the cross-match test (Rosenbaum (2005)) and the energy test (Aslan and
Zech (2005)) reject the null hypothesis of no remodeling in all the three cases and in each

FIG. 3. Schematic representation of viral remodeling of infected cells versus preferential viral infection with
respect to d = 2 markers, X1 and X2. From left to right, we have (a) no remodeling, (b) remodeling and (c) no
remodeling but preferential infection. Uninfected cells are in green whereas virus infected cells are in red.
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of the 100 simulation replications (see Table 3 in Section 3.1). This is not surprising because
these tests are designed to test the simple null hypothesis of equality of the two distributions.

Due to the presence of subpopulation level heterogeneity, the problem of testing for remod-
eling warrants testing a composite null hypothesis. To this end, note that, under preferential
infection, the two samples arise from the mixture distribution with identical component dis-
tributions but with different mixing weights. This is the case for the rightmost subplot in
Figure 3. In this paper we formulate the problem of testing for preferential infection versus
remodeling as a composite two-sample hypothesis with mixture distributions and develop a
new nearest-neighbor based test that can consistently and efficiently detect the differences
between the two samples.

1.4. The TRUH testing framework: Novel attributes and our contributions. In this arti-
cle we propose a novel procedure for Testing Remodeling under Heterogeneity (TRUH) that
effectively incorporates the underlying heterogeneity and imbalance in the samples and pro-
vides a conservative test for the composite null hypothesis that the two samples arise from the
same mixture distribution but may differ with respect to the mixing weights. We summarize
its key attributes below:

• The TRUH statistic is based on a nearest-neighbor approach (Cover and Hart (1967),
Devroye, Györfi and Lugosi (1996)) that first relies on identifying for every infected cell
a predictive precursor cell which is the phenotypically closest cell in the uninfected pop-
ulation. It then measures the relative dissimilarities between the infected cells and their
predictive precursors and the predictive precursors to their most phenotypically similar un-
infected cells. A large relative dissimilarity between the infected cells and their predictive
precursors indicates surface protein regulation or remodeling by the virus, while a small
relative dissimilarity provides evidence for preferential infection or no remodeling.

• We describe an efficient bootstrap based approach for calibrating the TRUH test statistic and
evaluate its performance in finite-sample simulations. We then use this method to test for
viral remodeling in tonsillar T cells under different types of HIV infection, corroborating
the efficacy of our proposed procedure.

• We provide an extensive theoretical understanding of the large sample characteristics of our
proposed test statistics. We establish the L2-limit of our proposed statistic using asymp-
totic properties of functionals of random geometric graphs Penrose and Yukich (2003).
The limit can be expressed in terms of the densities of the uninfected and infected popula-
tions and dimension dependent constants obtained from nearest-neighbor distances defined
on a homogeneous Poisson process. Using these properties, we can select a cut-off for
the TRUH statistic that is asymptotically consistent against biologically-relevant location
alternatives. Traditional nonparametric tests enjoy these consistency properties in homo-
geneous populations but not under heterogeneity. We show that, using a nearest-neighbor
based approach, this inefficiency of existing nonparametric tests in heterogeneous data can
be mitigated.

The rest of the paper is organized as follows: In Section 2 we formulate the problem of test-
ing for remodeling in single-cell virology as a heterogeneous two-sample problem, describe
the TRUH framework and show how it can be calibrated using the bootstrap. Numerical ex-
periments demonstrating the nonasymptotic performance of our testing procedure are given
in Section 3. In Section 4 we use TRUH for studying remodeling in tonsillar T cells under
different types of HIV infection. The asymptotic properties of the test statistic are discussed
in Section 5. We conclude the paper in Section 6 with a discussion. The technical details and
proofs of the theoretical results are given in the Supplementary Material (Banerjee, Bhat-
tacharya and Mukherjee (2020)).
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2. Statistical framework and the proposed TRUH statistic. In this section we formu-
late the problem of testing for remodeling in single-cell virology as a heterogeneous two-
sample problem (Section 2.1), introduce the TRUH statistic (Section 2.2) and discuss how to
calibrate it using the bootstrap (Section 2.3).

2.1. The heterogeneous two-sample problem. In our virology example the baseline con-
stitutes the m uninfected cells. For each cell, i ∈ {1, . . .m}, we denote by Ui a d-dimensional
vector of cellular characteristics typically measuring expressions corresponding to different
genes or proteins. Denote the uninfected/baseline population by Um = {U1, . . . ,Um}. Let
F0 be the cumulative distribution function (cdf) of the baseline population with the hetero-
geneity in the population being reflected by K different subgroups, each having unimodal
distributions with distinct modes and cdfs F1, . . . ,FK and mixing proportions w1, . . . ,wK ,
such that

F0 =
K∑

a=1

waFa, where wa ∈ (0,1) and
K∑

a=1

wa = 1.(2.1)

Note that the number of components K , the mixing distributions F1, . . . ,FK and the mix-
ing weights w1, . . . ,wK are fixed (nonrandom) attributes which are unknown. Also, as
F1, . . . ,FK are cdfs from unimodal distributions with distinct modes, F0 is well defined
with a unique specification. In addition to the uninfected population, we observe n i.i.d. in-
fected observations V n = {V1, . . . , Vn} from a distribution function G in Rd . Note that the
infected and uninfected samples Um and V n are collected from separate experiments and are
independent of each other.

Simple vs. composite null. In single-cell virology when an uninfected population is ex-
posed to a pathogen, the virus may infect the different subpopulations at different rates.
Therefore, even if the virus does not cause any change in the cellular characteristics, the
virus infected sample might have different representations of the uninfected subpopulations
than the uninfected mixing proportions {w1, . . . ,wK}. As such, it is quite possible that a
few of the uninfected subpopulations are completely absent in the viral population which,
biologically, implies that the virus preferentially targets few cellular subpopulations. Thus,
if the virus does not induce any change in the cellular characteristics, then the distribution
of the infected population G lies in a class of distributions F(F0) that contains any convex
combination of {F1, . . . ,FK}, including the boundaries, that is,

F(F0) =
{

Q =
K∑

a=1

λaFa : λ1,λ2, . . . ,λK ∈ [0,1] and
K∑

a=1

λa = 1

}

.(2.2)

Note that the uninfected cdf F0 is a particular member of the class F(F0). If the virus in-
duces changes in the cellular characteristics, then the viral population distribution would
contain at least one nontrivial subpopulation with distribution substantially different from
{F1,F2, . . . ,FK} or their linear combinations. Thus, the test for viral remodeling is tanta-
mount to testing the following composite null hypothesis:

(2.3) H0 : G ∈ F(F0) versus HA : G /∈ F(F0).

If the null hypothesis is accepted, we say the virus exhibits preferential infection, otherwise
we say the virus exhibits remodeling (see Figure 6 below), and the hypothesis testing problem
(2.3) will be referred to as the problem of testing remodeling under heterogeneity (TRUH).
Later on, to facilitate proofs of the theoretical properties of our proposed method, we will
assume that the baseline cdfs F1, . . . ,FK have unimodal densities f1, . . . , fK (with respect
to Lebesgue measure). In this case the baseline uninfected population will have density f0 =∑K

a=1 wafa , and the set of distributions in (2.2) can be represented in terms of the densities
f1, . . . , fK and will be denoted by F(f0).
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Inefficiency of existing tests. Traditional nonparametric graph-based two-sample tests,
such as the edge-count (EC) test of Friedman and Rafsky (1979) or the crossmatch (CM)
test of Rosenbaum (2005), are tailored for the null hypothesis H0 : F0 = G, that is, test-
ing whether the distributions of the uninfected samples Um and the infected samples V n

are the same. However, not surprisingly, direct application of these tests to the composite
hypothesis testing problem, described in (2.3) above, gives nonconservative procedures. To
see this, consider the EC test. Recall that the EC test is based on the statistic R(Um,V n)
which counts the number of edges in the minimal spanning tree (MST) of the pooled
sample {U1, . . . ,Um,V1, . . . , Vn} that connect points from different samples. Then, the EC
test rejects the null hypothesis of F0 = G for small values of R(Um,V n). The cut-off
for R(Um,V n) can be chosen based on the asymptotic distribution R(Um,V n) under
F0 = G, which was derived by Henze and Penrose (1999) in the usual limiting regime where
m,n → ∞ and n/m → ρ ∈ (0,∞). In particular, it follows from Theorem 1 of Henze and
Penrose (1999) that

lim
m,n→∞PF0=G

(
R(Um,V n) < Cm,n(α)

) = α,(2.4)

with Cm,n(α) = 2mn
m+n −z1−ασd

√
m + n, where z1−α is the αth quantile of the standard normal

distribution, σ 2
d = ρ(4ρ + (1 − ρ)2δd)/(1 + ρ)4 and δd is a constant depending only on

dimension d . More precisely, δd is the variance of the degree of the origin 0 ∈ Rd in the
minimal spanning tree built on a homogeneous Poisson process of rate 1 in Rd with the origin
added to it. Note that (2.4) shows that the test with rejection region {R(Um,V n) < Cm,n(α)}
is asymptotically level α for the null hypothesis of F0 = G.

The following proposition shows that direct application of the EC test, as described above,
will not be conservative for testing the hypothesis (2.3) of viral remodeling. In fact, for cases
of preferential infection but no remodeling the EC test will produce undesired false discover-
ies:

PROPOSITION 1. Fix α ∈ (0,1/2). Then, for F0 as in (2.1) and for any G ∈ F(F0)\ {F0}
in the usual limiting regime,

lim
m,n→∞P

(
R(Um,V n) < Cm,n(α)

) = 1,

with Um = {U1, . . . ,Um} i.i.d. from f0 and V n = {V1, . . . , Vm} i.i.d. from g, where f0 and g
are the densities (with respect to the Lebesgue measure) of F0 and G, respectively.

The proof of the above result is given in the Supplementary Material (Section A of
Banerjee, Bhattacharya and Mukherjee (2020)). This shows that, for any level α, the EC test
will be inconsistent, as it would reject with certainty all cases of preferential infection but
no remodeling. This phenomenon is demonstrated in Figure 4 through a simple univariate
simulation experiment. Here, we consider m = 1000, n = 50 and d = 1. The true distribution
of the uninfected and infected subpopulations are Gaussian mixtures. We consider two cases:

• Case A: Here, F0 and G are equal-weighted mixtures of three Gaussians, with each subpop-
ulation in G having a different mean from those in F0, that is, F0(u) = 1

3
∑2

a=0 &(u − 4a)

and G(u) = 1
3

∑2
a=0 &(u − 4a − 2).2 This is a clear case of viral remodeling.

• Case B: Here, F0 = 1
3

∑2
a=0 &(u − 10a) and G = 1

2
∑1

a=0 &(u − 20a). In this case there
is preferential infection but no remodeling, that is, G ∈ F(F0) with the middle population
in F0 being resistant to viral infection.

2Throughout, &(·) and φ(·) will denote the standard normal distribution function and density function, respec-
tively.
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FIG. 4. Simulation example showing the performance of edge-count test statistic versus the TRUH statistic. In
the top row we describe the density of the true uninfected F0 (in continuous line) and the density of the infected G

(in dotted line) for the two cases. In both cases, F0 and G are mixtures of normal distributions. In the first case,
all the three equiprobable subpopulations in F0 have undergone a discernible location change in G. In case B, F0
again has three equiprobable subgroups, while G has two of those three subgroups. Thus, while case A signifies
viral remodeling, there is no remodeling but only preferential infection in Case B. In the bottom row we have the
histogram of the values of the TRUH statistic in the left (defined below in (2.7)) and the edge-count statistic in the
right, respectively, under the two cases.

Any test for the hypothesis (2.3) should ideally reject Case A and fail to reject Case B.
However, Figure 4 shows that the histogram of EC test statistic values across 500 replications
under cases A and B have a significant overlap. Table 1 shows the rejection rate (proportion
of false discoveries) in Case B and power (proportion of true discoveries) in case A, as the
level of the test is varied. From the table it is evident that there does not exists any choice of a
critical value such that the rejection rate of the EC test in Case B is commendable, as it rejects
all cases of preferential infection presented under Case B. On the other hand, our proposed
test statistic (TRUH), described in the following section, entertains possibilities where both
the rejection rate and the power attain the desired limit.

TABLE 1
The rejection rate and the power of the edgecount and TRUH test statistics across 500 repetitions of the

simulation setting of Figure 4

Level 0.01 0.05 0.10 0.20

Power in Case A edgecount 1.000 1.000 1.000 1.000
TRUH 1.000 1.000 1.000 1.000

Rejection rate in Case B edgecount 1.000 1.000 1.000 1.000
TRUH 0.000 0.000 0.000 0.038



1786 T. BANERJEE, B. B. BHATTACHARYA AND G. MUKHERJEE

FIG. 5. Boxplots of the coordinates of NV n,Um
= {N(Vi,Um) : 1 ≤ i ≤ n} in green, adjacent to the boxplots of

the coordinates of the corresponding infected cells V n in red for each of the scenarios discussed under Figure 3.
Recall that, from left to right, we have (a) no remodeling, (b) remodeling and (c) no remodeling but preferential
infection.

2.2. Proposed test statistic: TRUH. In this section we describe a nearest-neighbor based
statistic for testing the hypothesis of remodeling. To this end, recall that Um = {U1, . . . ,Um}
is the uninfected sample and V n = {V1, . . . , Vn} is the infected sample. Now, for each infected
sample Vi ∈ V n, let

Di = min
1≤j≤m

‖Vi − Uj‖,(2.5)

the Euclidean distance of Vi to its nearest point in the uninfected sample Um. The point
in Um, which attains this minimum, will be denoted by N(Vi,Um)3 and constitutes a key
point in Rd for measuring the relative phenotypic difference between the infected cells
and their closest uninfected counterparts. In Figure 5 we show the boxplots of the co-
ordinates of NV n,Um = {N(Vi,Um) : 1 ≤ i ≤ n} in green, for each of the scenarios dis-
cussed under Figure 3. Recall from Figure 3 that we have, from left to right, (a) no re-
modeling, (b) remodeling and (c) no remodeling but preferential infection. We note that,
for scenarios (a) and (c), the distributions of NV n,Um and V n appear to overlap. How-
ever, in the case of remodeling (scenario (b) in the center plot), there is a clear difference
between the two distributions for both the markers. The TRUH statistic captures this phe-
nomenon and deals with the presence of heterogeneous groups (which can make the den-
sity within the uninfected sample Um to vary greatly) by comparing Di with a feature of
the local density of Um at N(Vi,Um). For that purpose, define, for each infected observa-
tion,

Ci = min
1≤j≤m:Uj )=N(Vi,Um)

∥∥N(Vi,Um) − Uj

∥∥(2.6)

which is the distance of N(Vi,Um) to its nearest neighbor in Um. Our proposed test statistic
for testing (2.3), hereafter referred to as the TRUH statistic, is

Tm,n = 1

n1− 1
d

∣∣∣∣∣

n∑

i=1

(Di − Ci)

∣∣∣∣∣ = n
1
d |D̄m,n − C̄m,n|,(2.7)

3Given a finite set S and any point x ∈ Rd , denote by N(x,S) = arg miny∈S ‖x − y‖, that is, the nearest
neighbor of x in the set S. If there is a tie, that is, N(x,S) has multiple elements, then we choose a random
element from them and set that to N(x,S). However, if the underlying distribution of the data has a continuous
density, then there are no ties with probability 1.
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FIG. 6. Panel A represents the scenario of remodeling, while Panel B exhibits Preferential Infection. Uninfected
cells are in green, while infected cells are in red. The gaps are larger in case of remodeling, as infected cells are
phenotypically different than their uninfected counterparts.

where D̄m,n = 1
n

∑n
i=1 Di and C̄m,n = 1

n

∑n
i=1 Ci . Note that the TRUH statistic above is

an aggregated measure of how far apart each viral cell is from the uninfected sample
compared to the local distance between uninfected sample points in its vicinity. Con-
sider, for example, panel A in Figure 6 that represents a schematic for remodeling, while
panel B depicts preferential infection. Here, the three infected cells (in red) in Panel A
are phenotypically different than their uninfected counterparts, and thus the average gap
|D̄m,n − C̄m,n| in Panel A, averaged over the three infected cells, is relatively larger than
what is observed under preferential infection in Panel B. Therefore, we develop a test
to reject the null hypothesis of no remodeling for large values of Tm,n. The cut-off for
Tm,n can be chosen based on a bootstrap calibration (Section 2.3) or using the asymp-
totic limit of Tm,n (Section 5). Note that, since the nearest neighbor of a point in a
cloud of n random points in Rd typically lies within a ball of radius n− 1

d centered at
that point, the TRUH statistic is scaled by n1− 1

d which makes Tm,n bounded in probabil-
ity.

One of the interesting properties of the quantity Tm,n is that it only involves enumeration
of distance based features for the viral sample, unlike classical graph-based two-sample tests
(Friedman and Rafsky (1979), Rosenbaum (2005)) which are built using the interpoint dis-
tances of the pooled sample. As a consequence, the TRUH test statistic is not symmetric in
its usage of the uninfected and infected samples, even when the sample sizes are equal and
the two samples were actually generated from the same population distribution. This asym-
metric sample usage of TRUH helps in tackling possibly different heterogeneity levels in the
two samples. Finally, note that, even though the quantities Di and Ci are defined above using
the Euclidean distance, they can be easily generalized to any arbitrary distance function, and
the statistic Tm,n can potentially be used in non-Euclidean data spaces, such as graph data or
functional data, as well.

2.3. Bootstrap-based calibration for TRUH. In this section we present a bootstrap-based
procedure to determine the cut-off tm,n,α for a level α test using Tm,n. To this end, recall that
F(F0) contains any convex combination of the baseline distribution functions {F1, . . . ,FK}.
Therefore, the proposed bootstrap procedure relies on the following two steps: (i) random
sampling of the mixing proportions a large number of times, and (ii) for each such sampled
mixing proportion, surrogate samples from F(F0) are constructed to generate a pseudo null
distribution which is used to estimate the level α cut-off. The maximum of all the level α

cut-offs so obtained, one for each sampled mixing proportion, is then used to calibrate the
TRUH statistic.
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Our algorithm leverages the fact that, in our virology example, the number m of uninfected
samples is much larger than the size n of the infected samples. Therefore, we can use the
prediction strength approach of Tibshirani and Walther (2005) on the uninfected samples to
obtain an estimate K̂ of the unknown number of heterogeneous subgroups K . We then use
this value of K̂ to estimate the class memberships of the baseline samples Um using a K̂-
means algorithm. For 1 ≤ a ≤ K̂ , denote by Ĵa ⊆ {1,2, . . . ,m} the subset of indices which
belong to class a in the output of the K̂-means algorithm. Let U Ĵa

= {Ui : i ∈ Ĵa} be the

subset of the baseline samples estimated to be in the ath class by the K̂-means algorithm.
Note that Um = {U Ĵa

: a = 1,2, . . . , K̂} and
∑K̂

a=1 ma = m, where ma = |Ĵa|.
Now, for each b1 = 1, . . . ,B1, denote by (λ

(b1)
1 , . . . ,λ

(b1)

K̂
) a random sample from the K̂-

dimensional simplex SK̂ = {(z1, . . . , zK̂) ∈RK̂ : za ∈ [0,1], for 1 ≤ a ≤ K̂, and
∑K̂

a=1 za =
1}. Given the mixing weights {λ(b1)

1 , . . . ,λ
(b1)

K̂
}, we construct B2 surrogate-infected sam-

ples from F(F0) as follows: for each b2 = 1, . . . ,B2 and for 1 ≤ a ≤ K̂ , randomly sample
+nλ

(b1)
a , elements without replacement from U Ĵa

. Denote the chosen elements by

V(b2)
a = {

U
(b2)
1 , . . . ,U

(b2)

+nλ
(b1)
a ,

}
,

and set the remaining ma − +nλ
(b1)
a , elements in U Ĵa

as the residual baseline sample U (b2)
a

in class a. Now, combining the samples over the K̂ classes, we get the surrogate infected
sample as V (b2)

n = {V(b2)
a : a = 1, . . . , K̂} and the corresponding baseline sample as U (b2)

m̃ =
{U (b2)

a : a = 1, . . . , K̂}, where

m̃ =
K̂∑

a=1

(
ma − ⌈

nλ(b1)
a

⌉)
.

Note that, under the null hypothesis of no remodeling (G ∈F(F0)), the bootstrapped samples
in the bth

2 round, U (b2)
m̃ and V (b2)

n (which are surrogates for Um and V n, respectively) can be
used to compute the statistic

T
(b2)
m̃,n = n

1
d |τf c · D̄m̃,n − C̄m̃,n|.(2.8)

For b1 fixed, T
(b2)
m̃,n is the surrogate of the TRUH statistic in the bth

2 bootstrap round. Observe
that compared to (2.7), we have introduced a tuning parameter τf c in (2.8) above. We define
it as the fold change (fc) hyperparameter and will consider values of τf c ≥ 1. Biologically
relevant remodeling corresponds to significant fold change increase or decrease in the mag-
nitude of cellular expressions between the infected and the uninfected cells. As we test the
global null hypothesis of no change in any of the concerned genes, alternative hypothesis of
remodeling with meager fold changes, if accepted, will only lead to biologically uninterest-
ing discoveries. For discovering virologically interesting alternatives, it is natural to set τf c

slightly larger than 1. (Note that τf c = 1 corresponds to the bootstrapped version of the TRUH
statistic in (2.7).) In the simulation experiments presented later in Section 3, we set τf c = 1
whereas in Section 4 τf c is fixed at 1.1 as we study a real-world virology dataset.

The bootstrap procedure described above is summarized in Algorithm 1. The computa-
tional complexity of Algorithm 1 is driven by the following two steps: (i) the computation of
the estimated number of clusters K̂ , and (ii) the computation of the TRUH test statistic over
the bootstrap samples. While the calculations in step (ii) can be distributed across the B1B2

bootstrap samples and n infected samples, the computational cost of estimating T
(b)
m̃,n for a

fixed b is O(md) which is the cost of running the 1-nearest neighbor algorithm twice for
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Algorithm 1: Bootstrap cut-off for a level α test using Tm,n

Input: The parameters n, τf c, and α. The baseline sample Um, and the estimates K̂ and
{Ĵa : a = 1, . . . , K̂} from the K-means algorithm.

Output: The bootstrapped level α cutoff tm,n,α .
for b1 = 1, . . . ,B1 do

STEP 1: Random sample {λ(b1)
1 , . . . ,λ

(b1)

K̂
} from the K̂-dimensional simplex;

for b2 = 1, . . . ,B2 do
for a = 1, . . . , K̂ do

if +nλ
(b1)
a , ≤ ma then

STEP 2: Draw a simple random sample V(b2)
a = {U(b2)

1 , . . . ,U
(b2)

+nλ
(b1)
a ,

}
without replacement from U Ĵa

;

STEP 3: U (b2)
a = U Ĵa

\V(b2)
a the baseline residual sample in class a;

else
Stop: Go to STEP 1;

Surrogate Case sample: V (b2)
n = {V(b2)

a : a = 1, . . . , K̂};
Baseline sample: U (b2)

m̃ = {U (b2)
a : a = 1, . . . , K̂};

STEP 4: Calculate T
(b2)
m̃,n = n

1
d |τf c D̄m̃,n − C̄m̃,n|;

STEP 5: Return t
(b1)
m,n,α = min{T (b2)

m̃,n : 1
B2

∑B2
r=1 1{T (r)

m̃,n ≥ T
(b2)
m̃,n } ≤ α}.

STEP 6: Return tm,n,α = max{t (b1)
m,n,α : 1 ≤ b1 ≤ B1}.

each of the n infected samples. To estimate K , we use prediction strength along with a K-
means algorithm where the target number of clusters and the maximum number of iterations,
over which the K-means algorithm runs before stopping are both fixed, and thus has O(md)
complexity. Therefore, the overall computational complexity of Algorithm 1 is O(md). For
the numerical experiments and real data analysis of Sections 3 and 4, we set B2 = 200 and
implement a version of Algorithm 1 which samples the mixing proportions {λ1, . . . ,λK̂}
only from the corners of the K̂ dimensional simplex SK̂ as follows: we set B1 = K̂ and for

b1 = 1, . . . ,B1, and a = 1, . . . , K̂ , we take λ
(b1)
a = 1 if b1 = a and 0 otherwise. This sam-

pling scheme ensures that the mechanism for generating the mixing proportions places most
weight on the corners of SK̂ .

3. Numerical experiments. In this section we evaluate the numerical performance of
the TRUH procedure across a wide range of simulation experiments. We consider the follow-
ing six competing testing procedures that use different methodologies to conduct a nonpara-
metric two-sample test: (i) Energy test (Energy) of Aslan and Zech (2005) available from
the R package energy, (ii) Cross-Match test (Crossmatch) of Rosenbaum (2005) avail-
able from the R package crossmatch, (iii) edgecount test (E Count) of Friedman and
Rafsky (1979), (iv) Generalized edgecount test (GE Count) of Chen and Friedman (2017),
(v) Weighted edgecount test (WE Count) of Chen, Chen and Su (2018) and (vi) the Max
Type edgecount test (MTE Count) of Zhang and Chen (2017). The aforementioned four
edge count-based tests are available from the R package gtests. We note that the preceding
six testing procedures are not designed to test the composite null hypothesis of equation (2.3)
and rely on a simple null hypothesis H0 : F0 = G for inference. Nevertheless, the simulation
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experiments presented in this section highlight the incorrect inference that may result when
traditional two-sample tests are used for testing the composite null hypothesis of equation
(2.3).

To assess the performance of the competing testing procedures, we simulate Um and
V n from F0 and G, the cdf of the baseline and the infected population, respectively, and
for each testing procedure, we measure the proportion of rejections across 100 repeti-
tions of the composite null hypothesis test, described in (2.3) at 5% level of significance.
For TRUH, we use Algorithm 1 with fold change constant τf c = 1, B2 = 200 and sam-
ple the mixing proportions only from the corners of K̂ dimensional simplex SK̂ , as de-
scribed in Section 2.3. The R code that reproduces our simulation results is available in
the Supplementary Material (Banerjee, Bhattacharya and Mukherjee (2020)) and online
at https://github.com/trambakbanerjee/TRUH_paper. The TRUH R package is available at
https://github.com/trambakbanerjee/TRUH.

3.1. Experiment 1. In the setup of Experiment 1, we consider testing H0 : G ∈
F(F0)vs.HA : G /∈ F(F0), when F0 is the cdf of a d dimensional Gaussian mixture dis-
tribution with three components,

F0 = 0.3Nd(µ1,!1) + 0.3Nd(µ2,!2) + 0.4Nd(µ3,!3),

where µ1 = 0d , µ2 = −31d , µ3 = −µ2, and !K , for K = 1,2,3, are d dimensional positive
definite matrices with eigenvalues randomly generated from the interval [1,10]. To simulate
V n from G, we consider two scenarios as follows:

• Scenario I: Here, G = 0.1Nd(µ1,!1) + 0.1Nd(µ2,!2) + 0.8Nd(µ3,!3). In this case, G
has all the subpopulations present in F0 but at different proportions. Thus, G ∈ F(F0), and
the correct inference here is no remodeling.

• Scenario II: This setting presents a scenario where G /∈ F(F0) and the composite null H0
is not true. Here, we consider G = 0.5Nd(µ1,!1) + 0.5Nd(µ4,!4), where !4 is a d
dimensional positive definite matrix generated independently of !1, !2, !3, and µ4 =
4εd , where εd is a vector of d independent Rademacher random variables.

For Scenario I, Table 2 reports the rejection rates for 100 repetitions of the test for varying d ,
m, n when the parameters {µi ,!i1 ≤ i ≤ 4} are held fixed across these repetitions. We see
that TRUH returns the smallest rejection rate. The other six tests all have very high rejection
rates as they fail to account for the composite nature of the null hypothesis. The rejection
rate for TRUH is below the prespecified 0.05 level establishing that it is a conservative test
across all the regimes considered in the table. In Scenario II, however, we find that all the

TABLE 2
Rejection rates at 5% level of significance: Experiment 1 and Scenario I wherein H0 : G ∈F(F0) is true

m = 500, n = 50 m = 2000, n = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30

Energy 1.000 1.000 1.000 1.000 1.000 1.000
Crossmatch 0.220 0.150 0.145 0.460 0.410 0.340
E Count 0.185 0.115 0.055 0.400 0.335 0.195
GE Count 0.170 0.185 0.225 0.510 0.540 0.605
WE Count 0.300 0.295 0.360 0.655 0.745 0.735
MTE Count 0.230 0.230 0.290 0.605 0.665 0.665

TRUH 0.02 0.015 0.015 0.01 0.02 0.01
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TABLE 3
Rejection rates at 5% level of significance: Simulation experiment corresponding to Figure 3

m = 2000, n = 500, d = 2

Left panel: Center panel: Right panel:
Method no remodeling (G ∈F(F0)) remodeling (G /∈F(F0)) preferential infection (G ∈F(F0))

Energy 0.030 1.000 1.000
Crossmatch 0.030 1.000 1.000
E Count 0.010 1.000 1.000
GE Count 0.000 1.000 1.000
WE Count 0.060 1.000 1.000
MTE Count 0.030 1.000 1.000

TRUH 0.000 0.980 0.000

tests correctly identify G /∈ F(F0) in all the regimes and across all replications. This shows
that all the tests exhibit perfect rejection rates in this scenario. These two scenarios under
Experiment 1 demonstrate that for testing the composite null hypothesis of equation (2.3),
direct application of traditional two-sample tests, such as those considered here, is no longer
conservative as these tests rely on a simple null hypothesis for inference. TRUH, on the other
hand, is adept at detecting H0 : G ∈ F(F0) and powerful against departures from H0.

In Table 3 we present the results of the simulation exercise that correspond to the
three scenarios described in Figure 3. The two dimensional uninfected marker expressions
(X1,X2) are randomly sampled from F0 = w1N2(µ1, I 2)+w2N2(µ2, I 2)+w3N2(µ3, I 2),
where µ1 = 0, µ2 = (0,−4), µ3 = (4,−2) and the sample size is m = 2000. The mixing
weights are given by (w1,w2,w3) = (0.3,0.3,0.4). For the panel on the left of Figure 3,
infected marker expressions arise from F0 but with sample size n = 500, while for the cen-
ter panel the infected marker expressions represent a random sample of size n from G =
0.5N2(µ4, I 2)+ 0.5N2(µ5, I 2), where µ4 = 0.25µ2 + 0.5µ3 and µ5 = (3/4)µ2 + (9/8)µ3.
Clearly, in this case G /∈ F(F0). For the right-most panel, infected marker expressions are
again a random sample of size n from F(F0) with mixing weights given by the vector
(w1,w2,w3) = (0.8,0.1,0.1). Under this setting the three g-tests (Chen, Chen and Su
(2018), Chen and Friedman (2017), Friedman and Rafsky (1979)), the cross-match test of
Rosenbaum (2005) and the energy test of Aslan and Zech (2005) infer G /∈ F(F0) in all of
the 100 repetitions of the experiment thus suggesting their inability to tackle subpopulation
level heterogeneity.

3.2. Experiment 2. For Experiment 2 we consider a more complex setup wherein F0 is
the cdf of a d dimensional mixture distribution which is not necessarily Gaussian. Here,

F0 = 0.5 Gamd(shape = 51d, rate = 1d,!1) + 0.5 Expd(rate = 1d,!2),

where Gamd and Expd are d dimensional Gamma and exponential distributions. For gen-
erating correlated Gamma and exponential variables, we use the Gaussian copula approach
based function from the R-package lcmix (Dvorkin (2012), Song (2000)). We consider ta-
pering matrices with positive and negative autocorrelations: (!1)ij = 0.7|i−j | and (!2)ij =
−0.9|i−j | for 1 ≤ i, j ≤ d . For simulating V n from G, we consider the following two scenar-
ios:

• Scenario I: Here, G = Expd(rate = 1d,!2). In this case, G arises from only one of the
components of F0, that is, G ∈ F(F0).
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TABLE 4
Rejection rates at 5% level of significance: Experiment 2 and Scenario I wherein H0 : G ∈F(F0) is true

m = 500, n = 50 m = 2000, n = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30

Energy 1.000 1.000 1.000 1.000 1.000 1.000
Crossmatch 0.460 0.440 0.390 0.800 0.850 0.760
E Count 0.290 0.190 0.280 0.720 0.690 0.560
GE Count 0.400 0.430 0.390 0.900 0.920 0.900
WE Count 0.560 0.590 0.600 0.970 0.960 0.940
MTE Count 0.460 0.510 0.440 0.930 0.950 0.910

TRUH 0.000 0.000 0.000 0.000 0.000 0.000

• Scenario II: Here, G = 0.1 Gamd(shape = 101d, rate = 0.51d,!1) + 0.9 Expd(rate =
1d,!2). In this setting, G /∈ F(F0) and the composite null H0 is not true. When the ratio
n/m is small, this scenario presents a difficult setting for detecting departures from H0 as
majority of the case samples from V n will arise from Expd(rate = 1d,!2) and the tests
will rely on only a small fraction of samples from Gamd(shape = 101d, rate = 0.51d,!1)
to reject the null hypothesis.

Table 4 reports the rejection rates, for 100 repetitions, of the different tests in Scenario I. Note
that TRUH correctly identifies that G ∈ F(F0) while the remaining tests overwhelmingly sup-
port G /∈F(F0), especially when m is large, demonstrating their lack of conservatism in test-
ing the composite null hypothesis of the form (2.3). The results for Scenario II (Table 5) are
reported for n/m = 0.02, where, with the exception of Energy test, all the other competing
tests demonstrate small rejection rates for m = 500. Substantial improvement in the rejection
rates is evident when m = 2000. However, for both these cases, m = 500 and m = 2000, the
Energy test followed by TRUH exhibit the largest rejection rates. Although Energy test
rejects H0 in almost all of the testing instances in Scenario II, its performance in Scenario I
(Table 4) reveals that it can be severely nonconservative when testing under a composite null
hypothesis H0 : G ∈ F(F0).

3.3. Experiment 3. For Experiment 3 we introduce zero inflation in both the baseline
and case samples to mimic the scenario that is often encountered in virology studies wherein
some of the markers exhibit only a small probability of expressing themselves. We let p =
(p1, . . . , pd) denote the d dimensional vector of point masses at 0 across dimensions and

TABLE 5
Rejection rates at 5% level of significance: Experiment 2 and Scenario II wherein H0 : G ∈F(F0) is false

m = 500, n = 10 m = 2000, n = 40

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30

Energy 0.930 0.960 1.000 1.000 1.000 1.000
Crossmatch 0.400 0.350 0.470 0.600 0.720 0.720
E Count 0.180 0.120 0.130 0.340 0.310 0.200
GE Count 0.310 0.230 0.160 0.800 0.790 0.770
WE Count 0.510 0.490 0.460 0.800 0.790 0.790
MTE Count 0.390 0.430 0.380 0.800 0.780 0.770

TRUH 0.580 0.580 0.580 0.880 0.940 0.960
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consider

F0 = 0.5F1 + 0.5F2,

where F1 = pδ{0} + (1d − p)Gamd(shape = 51d, rate = 1d,!1) and F2 = pδ{0} + (1d −
p)Expd(rate = 1d,!2). In the above representation, p regulates the differential zero infla-
tion across the d dimensions. For the purposes of this experiment, we chose the first 0.8d
coordinates of p independently from Unif(0.5,0.6), and the remaining 0.2d coordinates are
set to 0. Thus, the zero inflation is encountered only in the first 0.8d coordinates of F0. To
simulate the baseline sample Um from F0, we use the R-package lcmix with !1, !2 as de-
scribed in Experiment 2 (Section 3.2). For simulating V n from G, we consider the following
two scenarios:

• Scenario I: Let G = pδ{0} + (1d − p)Expd(rate = 1d,!2). Here, G arises from only one
of the components of F0, that is, G ∈F(F0).

• Scenario II: Here, we let G = 0.5G1 +0.5G2, where G1 = qδ{0} + (1d −q)Gamd(shape =
51d, rate = 0.51d,!1) and G2 = qδ{0} + (1d −q)Expd(rate = 1d,!2), and we set the first
0.8d coordinates of q to 0.3 and the remaining 0.2d coordinates to 0. Note that in this
setting, apart from the difference in the rate parameter of the Gamma distribution, we
also have differential zero inflation across G and F0, as q )= p. Thus, G /∈ F(F0) and
the composite null H0 is not true. Moreover, when n is small, this scenario presents a
challenging setting for detecting departures from H0, as the tests will have to rely on both
the differences in the rate parameter and differential zero expression between Um, V n to
reject the null hypothesis.

Tables 6 and 7 report the rejection rates for 100 repetitions of the test when p is held fixed
across these repetitions. For Scenario I (Table 6), we see that TRUH, unlike the other six tests,
does not excessively reject the null hypothesis and is the only conservative test. In Scenario
II (Table 7), when n = 10, the TRUH and Energy tests dominate all the remaining tests and
reject H0 in more than 80% of the testing instances. However, when n = 40, all tests are
competitive, with the exception of the Crossmatch for d < 30. Overall, across the above
two zero-inflated scenarios, TRUH is both conservative and powerful against departures from
the null hypothesis H0 : G ∈F(F0).

4. Remodeling analysis of HIV-infected T cells. In this section we analyze the data
collected in Cavrois et al. (2017). It contains protein expressions of uninfected and HIV-
infected CD4 (which is a protein found on the surface of immune cells) positive tonsillar
T cells. We show that existing two-sample tests,which rely on a simple null hypothesis for

TABLE 6
Rejection rates at 5% level of significance: Experiment 3 and Scenario I wherein H0 : G ∈F(F0) is true

m = 500, n = 50 m = 2000, n = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30

Energy 1.000 1.000 1.000 1.000 1.000 1.000
Crossmatch 0.340 0.330 0.240 0.730 0.800 0.670
E Count 0.200 0.120 0.100 0.670 0.440 0.340
GE Count 0.300 0.290 0.330 0.870 0.860 0.870
WE Count 0.510 0.460 0.540 0.970 0.920 0.930
MTE Count 0.400 0.350 0.460 0.890 0.910 0.920

TRUH 0.000 0.000 0.000 0.000 0.000 0.000
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TABLE 7
Rejection rates at 5% level of significance: Experiment 3 and Scenario II wherein H0 : G ∈F(F0) is false

m = 500, n = 10 m = 2000, n = 40

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30

Energy 0.850 0.920 0.940 1.000 1.000 1.000
Crossmatch 0.460 0.410 0.590 0.820 0.730 0.970
E Count 0.410 0.520 0.730 0.890 0.990 1.000
GE Count 0.410 0.480 0.730 0.920 0.960 1.000
WE Count 0.550 0.580 0.780 0.920 0.920 1.000
MTE Count 0.590 0.570 0.810 0.900 0.960 1.000

TRUH 0.760 0.940 0.980 0.970 1.000 1.000

inference, may lead to biologically incorrect inference when testing the composite null hy-
pothesis of equation (2.3). Our proposed TRUH hypothesis testing framework, on the other
hand, is proficient at detecting H0 : G ∈ F(F0) and powerful against departures from H0.

As discussed in Section 1.1, the goal in Cavrois et al. (2017) was to conduct a mass cy-
tometric assessment of subsets of CD4+ T cells that support HIV entry and viral infection
in humans using two variants of the HIV virus: Nef rich HIV and Nef deficient
HIV. It is known in the immunology literature that Nef-rich cells are more prone to vi-
ral remodeling (Basmaciogullari and Pizzato (2014)). The data set we analyze here contains
uninfected and infected data from two different sets of experiments. Both the experiments
have four replications based on tonsillar T cells from four healthy donors. In Experiment I,
the infection was done by Nef-rich HIV, whereas in Experiment II the infection was done
by Nef-deficient HIV. We expect remodeling, if any, in the infected cells to be higher
in Experiment I than in Experiment II compared to their respective baseline uninfected pop-
ulations.

The cells in the data were phenotyped in a 38 parameter CyToF (Bendall et al. (2014))
panel after allowing four days for infection. The panel used three markers to classify the
cells as uninfected or infected which leaves d = 35 of the original 38 markers for our anal-
yses. For donor r , let Um,r = {U1,r , . . . ,Um,r} denote the uninfected sample where each
Uj,r is a d dimensional vector of arcsin transformed marker expression values with cdf F0.
We assume that the heterogeneity in the uninfected population is captured by K heteroge-
neous cellular subgroups with each having unimodal probability distribution functions with
cdfs F1,F2, . . . ,FK and mixing proportions w1,w2, . . . ,wK , such that F0 is of the form
represented in equation (2.1). We observe the virus infected sample V n,r = {V1,r , . . . , Vn,r}
consisting of n i.i.d. d-dimensional arcsin transformed observations from G and the goal is
to test H0 : G ∈ F(F0) vs. HA : G /∈ F(F0), where F(F0) is the convex hull of {F1, . . . ,FK}
as defined in equation (2.2). Note that rejection of the null hypothesis would indicate that the
distribution of the marker expressions under infection is different from F0 and any convex
combination of its components, thus providing evidence in favor of remodeling. Virologists
study remodeling in virus infected cells in reference to the expressions of bystander cells. In
panels of cells subjected to infection by the virus, not all of the cells get infected. Bystanders
are those cells which are not directly infected by the virus but are neighbors of virus infected
cells. In these experiments it was seen that, when τf c is set to 1, then even bystander cells
exhibit remodeling in some experiments. However, when τf c is set to 1.1, there is no remod-
eling in the bystander population in any experiments. Thus, to detect biologically relevant
cases of remodeling and avoid discovering benign instances, we use τf c = 1.1 throughout
this section to obtain the bootstrapped null distribution of the TRUH statistic.
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Among the 35 markers considered here, it is known that the expressions of the four markers
CD4, CCR5, CD28 and CD62L are changed due to HIV infection and these four markers
play a significant role in HIV induced remodeling (Garcia and Miller (1991), Matheson et al.
(2015), Michel et al. (2005), Ross, Oran and Cullen (1999), Swigut, Shohdy and Skowronski
(2001), Vassena et al. (2015)). Consider two testing problems: (A) in which we test the hy-
pothesis for all 35 markers, and (B) in which we test the hypothesis of viral remodeling on
31 markers leaving aside the four markers which are known to be remodeled by HIV. Thus,
here we have four different cases on which we conduct the tests of viral remodeling, viz.:

• CASE 1 corresponds to Experiment I A where we test viral remodeling on Nef-rich
infected cells based on all 35 markers, including the four which are known to be remodeled.

• CASE 2 corresponds to Experiment I B where we test viral remodeling on Nef-rich
infected cells based on 31 markers which are known to be mainly invariant under HIV
infection.

• CASE 3 corresponds to Experiment II A where we test viral remodeling on Nef-
deficient infected cells based on all 35 markers, including the four which are known
to be remodeled.

• CASE 4 corresponds to Experiment II B where we test viral remodeling on Nef-
deficient infected cells based on 31 markers which are known to be mainly invariant
under HIV infection.

In all of the four cases, we have four replications corresponding to four donors. It has been
established through validation experiments in Cavrois et al. (2017) that there is no remodel-
ing but only preferential infection in cases 2 and 4 whereas cases 1 and 3 exhibit remodeling
with the intensity of remodeling being much higher in the former than the later. Biologically,
it corresponds to the fact that there is Nef-independent remodeling, but the intensity of re-
modeling is higher in presence of Nef. Also, remodeling in cellular expressions is confined
to the four markers CD4, CCR5, CD28 and CD62L in the set of markers considered in the
study. Figures 7 and 8 present t-SNE plots (van der Maaten and Hinton (2008)) of the data
where the d dimensional uninfected and infected cellular expression levels are projected to
a two-dimensional space for each of the four donors across the four cases. While these plots
exhibit the underlying heterogeneity in the uninfected sample and the sample size imbalance,
instances of remodeling are also visible in cases 1 and 3 (Figure 7) wherein a relatively large
fraction of the infected cells in red occupy a distinct position in the two-dimensional space
with no overlap with their uninfected counterparts.

For conducting statistical hypothesis tests for the above four cases, along with our pro-
posed TRUH procedure, we also use the siz other competing tests statistics described in Sec-
tion 3 which are the Energy test (Aslan and Zech (2005)), CrossMatch (Rosenbaum
(2005)), E Count(Friedman and Rafsky (1979)), GE Count (Chen and Friedman (2017)),
WE Count (Chen, Chen and Su (2018)) and MTE Count (Zhang and Chen (2017)). As dis-
cussed in Section 3, these six testing procedures are not designed to test the composite null
hypothesis of equation (2.3) and rely on a simple null hypothesis H0 : F0 = G for inference.
In this section we highlight the biologically incorrect inference that may result when these
tests are used for testing the composite null hypothesis of no remodeling.

Figure 9 presents the values of the TRUH statistic and the 2.5th, 50th, 97.5th percentiles
of the associated null distribution. From the plots it is evident that, at 5% level, our pro-
posed procedure correctly captures the biological phenomena of remodeling or no remodel-
ing across the four cases. The other six tests fail to correctly detect the phenomena in some of
the four cases due to heterogeneity in the data. Next, we describe the results in further detail.
In Tables 8 and 9 we report the p-values of the seven competing tests statistics for testing
remodeling under HIV infection in Nef-rich environment. In Table 8 all seven tests reject
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FIG. 7. This is a t-SNE plot (van der Maaten and Hinton (2008)) of the data for Cases 1 and 3 where the d = 35
dimensional uninfected and infected cellular expression levels are projected to a two-dimensional space for each
of the four donors.

the null hypothesis of no remodeling, thus verifying that CD4+ T cells exhibit remodeling
under the influence of Nef rich HIV infection. In Table 9, however, we present the p-values
of the tests when the four cell surface markers, CD4, CCR5, CD28 and CD62L, known

FIG. 8. This is a t-SNE plot of the data for Cases 2 and 4 where the d = 31 dimensional uninfected and infected
cellular expression levels are projected to a two-dimensional space for each of the four donors.
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FIG. 9. Null distribution of the TRUH statistic under cases 1–4. The blue dots are magnitudes of TRUH statistic
for each donor under the four cases while the red bars indicate the 2.5th, 50th and 97.5th percentiles of the
bootstrapped null distribution obtained from algorithm 1 with τf c = 1.1.

to be down regulated by Nef, were removed from our analysis (d = 31). Other than donor
1, TRUH indicates no remodeling in this scenario for the remaining three donors which is
expected given the mechanism of remodeling that Nef pursues by down-regulating CD4,
CCR5, CD28 and CD62L (Swigut, Shohdy and Skowronski (2001)). The absence of these
four cell markers from the uninfected and infected samples reduces the phenotypic gap be-
tween these samples as measured through their surface markers. The top row in Figure 9
shows that, while the null distribution shifts down from CASE 1 (left plot) to CASE 2 (right

TABLE 8
p-values in CASE 1: Uninfected vs. Nef-rich HIV Infected for entire 35 markers

Donor 1 Donor 2 Donor 3 Donor 4

Tests m = 24,984, n = 245 m = 31,552, n = 521 m = 17,704, n = 211 m = 22,830, n = 660

Energy <0.001 <0.001 <0.001 <0.001
CrossMatch 0.005 0.005 0.005 0.005
E Count <0.001 <0.001 <0.001 <0.001
GE Count <0.001 <0.001 <0.001 <0.001
WE Count <0.001 <0.001 <0.001 <0.001
MTE Count <0.001 <0.001 <0.001 <0.001
TRUH <0.001 <0.001 <0.001 <0.001
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TABLE 9
p-values in CASE 2: Uninfected vs. Nef-rich HIV Infected for 31 invariant markers

Donor 1 Donor 2 Donor 3 Donor 4

Tests m = 24,984, n = 245 m = 31,552, n = 521 m = 17,704, n = 211 m = 22,830, n = 660

Energy <0.001 <0.001 <0.001 <0.001
CrossMatch 0.005 0.005 0.005 0.005
E Count <0.001 <0.001 <0.001 <0.001
GE Count <0.001 <0.001 <0.001 <0.001
WE Count <0.001 <0.001 <0.001 <0.001
MTE Count <0.001 <0.001 <0.001 <0.001
TRUH <0.001 0.67 0.274 0.914

plot) across all four donors, the drop in the magnitude of the TRUH statistic is far more sub-
stantial when the four surface markers are excluded. The remaining six test statistics appear
to be insensitive to these subtle changes in the uninfected and infected samples across the two
scenarios and continue to detect remodeling in Case 2 which is actually no remodeling but
preferential infection. This demonstrates their inability to handle heterogeneity in the data
that TRUH tackles via the composite null testing framework of equations (2.1)–(2.3).

In Tables 10 and 11, we present the p-values of the seven test statistics for testing the
null hypothesis H0 of no remodeling when the HIV-infected sample lacks the critical Nef
gene (see Construction and validation of reporter viruses in Supplemental Experimental Pro-
cedures of Cavrois et al. (2017) for details around the generation of Nef-deficient HIV-
infected cells). We see that TRUH rejects the null hypothesis of no remodeling in CASE
3 (Table 10) while it fails to do so in CASE 4 (Table 11), thus corroborating the biologi-
cal phenomena that: (a) Nef independent remodeling is prevalent in HIV-infected cells and,
(b) even in the absence of Nef, the down regulation of the four surface markers by other
mechanisms contributes to remodeling. The bottom row in Figure 9 presents the values of
the TRUH statistic and the 2.5th, 50th, 97.5th percentiles of the associated null distribution.
Similar observations from the top row continue to hold for Cases 3 and 4 in the bottom
row of Figure 9, wherein the drop in the magnitude of TRUH statistic is far more significant
when the four surface markers are excluded. Moreover, from Figure 9 we see that, for every
donor the TRUH statistic obeys, a rank ordering across the scenarios which is of the form
TRUH1 > TRUH3 > TRUH2 > TRUH4 where TRUHs is the magnitude of the TRUH statistic
under cases s = 1, . . . ,4. This is not accidental for the relative strength of remodeling is
known to be highest under the influence of Nef-rich HIV infection and more so when

TABLE 10
p-values in CASE 3: Uninfected vs. Nef-deficient HIV Infected for the entire 35 markers

Donor 1 Donor 2 Donor 3 Donor 4

Tests m = 24,984, n = 129 m = 31,552, n = 382 m = 17,704, n = 174 m = 22,830, n = 440

Energy <0.001 <0.001 <0.001 <0.001
CrossMatch 0.005 0.005 0.005 0.005
E Count <0.001 <0.001 <0.001 <0.001
GE Count <0.001 <0.001 <0.001 <0.001
WE Count <0.001 <0.001 <0.001 <0.001
MTE Count <0.001 <0.001 <0.001 <0.001
TRUH <0.001 <0.001 <0.001 <0.001
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TABLE 11
p-values in CASE 4: Uninfected vs. Nef-deficient HIV Infected for 31 invariant markers

Donor 1 Donor 2 Donor 3 Donor 4

Tests m = 24,984, n = 129 m = 31,552, n = 382 m = 17,704, n = 174 m = 22,830, n = 440

Energy <0.001 <0.001 <0.001 <0.001
CrossMatch 0.005 0.005 0.005 0.005
E Count <0.001 <0.001 <0.001 <0.001
GE Count <0.001 <0.001 <0.001 <0.001
WE Count <0.001 <0.001 <0.001 <0.001
MTE Count <0.001 <0.001 <0.001 <0.001
TRUH 0.58 0.94 0.464 0.524

Nef down-regulates the four cell surface markers, CD4, CCR5, CD28 and CD62L. As
was seen in Cases 1 and 2, the remaining six tests continue to side in favor of remodeling in
both Cases 3 and 4, thus reflecting their relative lack of conservatism in detecting remodeling
under our composite null testing framework.

The remodeling analysis of the HIV-infected T Cells reveals that our proposed testing pro-
cedure, TRUH, conforms to the biologically validated phenomenon of remodeling of human
tonsillar T cells under both Nef-rich (Case 1) and Nef-deficient (Case 3) HIV in-
fection. However, unlike traditional tests that continue to infer remodeling in Cases 2 and 4,
TRUH detects preferential infection and concludes that phenotypic differences between the
HIV-infected and uninfected T cells are primarily driven by variations in the expression lev-
els of CD4, CCR5, CD28 and CD62L across the uninfected and infected cells. Moreover,
through Cases 1 and 2, TRUH corroborates the findings in Chaudhuri et al. (2007), Michel et
al. (2005), Swigut, Shohdy and Skowronski (2001), Vassena et al. (2015) that HIV remod-
eling of the T cells is driven by Nef dependent down-regulation of CD4, CCR5, CD28,
CD62L, while through Cases 3 and 4 TRUH reveals Nef independent remodeling of T cells,
as evidenced in Cavrois et al. (2017).

5. Optimality properties of the TRUH statistic. In this section we derive the L2-limit of
the proposed test statistic Tm,n in the usual limiting regime where the sample sizes m,n → ∞,
such that n/m → ρ > 0. This can be used to choose a cut-off and construct a test based on
Tm,n and show asymptotic consistency for biologically relevant location alternatives.

Recall that the uninfected and infected samples are denoted as

Um = {U1, . . . ,Um} and V n = {V1, . . . , Vn},(5.1)

which are i.i.d. samples from two unknown densities f0 and g in Rd , respectively. To derive
the limit of Tm,n, we need certain integrability/moment assumptions on f0 and g.

ASSUMPTION 1. The densities f0 and g have a common support S ⊆ Rd and satisfy
either one of the following two assumptions, depending on the dimension:

1. For d ≤ 2, the support S is compact (with a nonempty interior) and f0 and g are
bounded away from zero on S.

2. For d ≥ 3, f 0 and g satisfy the following conditions:
∫
S f0(y)1− 1

d dy < ∞,
∫
S f0(y)−

1
d g(y)dy < ∞, and

∫
S |y|rf0(y)dy < ∞,

∫
S |y|rg(y)dy < ∞, for some r >

d/(d − 2).
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To describe the limit of Tm,n, we need a few definitions: For λ > 0, denote by Pλ the
homogeneous Poisson process of intensity λ in Rd , and Px

λ = Pλ ∪ {x} for x ∈ Rd . Now,
define the following two quantities:

ζ1(000,P1) = inf
b∈P1

‖b‖ and ζ2(000,P1) = inf
b∈P1\N(000,P1)

∥∥N(000,P1) − b
∥∥,(5.2)

that is, the distance from the origin 000 in Rd to its nearest neighbor in the Poisson process P1
and the distance of this point to its neighbor in P1, respectively.

THEOREM 1. Let Tm,n be as in (2.7). Then, for f0 and g as in Assumption 1 above, as
m,n → ∞ such that n/m → ρ,

Tm,n
L2→ ϕ(f0, g,ρ) = ρ

1
d +d

∫
g(y)

f0(y)
1
d

dy,(5.3)

with +d = (ζ2 − ζ1), where:

– ζ1 = Eζ1(000,P1), the expected distance from the origin in 0 ∈ Rd to its nearest neighbor in
P1, and

– ζ2 = Eζ2(000,P1), the excepted distance between the nearest neighbor of the origin in P1 to
its nearest neighbor in P1.

The above theorem gives the L2-limit of the test statistic for general distributions f0
and g. The proof of the theorem, which is given in the Supplementary Material (Section
B of Banerjee, Bhattacharya and Mukherjee (2020)), uses the machinery of geometric stabi-
lization, introduced by Penrose and Yukich (2003), which obtains the asymptotics of nearest
neighbor based functionals in terms of functionals defined on a homogeneous Poisson pro-
cess. Before we discuss how the result in Theorem 1 can be used to construct a test based on
Tm,n for the hypothesis (2.2), we discuss some properties and the consequences of the limit
in (5.3):

• Note that the finiteness of the limit in (5.3) is ensured by Assumption 1. For d ≥ 3, the
moment conditions in Assumption 1 are required to establish the L2 convergence in (5.3).
This assumption can be relaxed to

∫
S |y|rf0(y)dy < ∞ and

∫
S |y|rg(y)dy < ∞, for some

r > d/(d − 1), if we are only interested in L1 convergence (by combining the proof of
Theorem 1 with that of Penrose and Yukich (2003), Proposition 3.2). However, this still
does not apply for d = 1, where it is necessary to assume the compactness of the support,
in order to ensure that the limit in (5.3) is finite. This is a well-known constraint which
arises in a large family of random geometric graphs, while dealing with the asymptotics
of edge lengths (see, e.g., Penrose and Yukich (2003), Theorem 1.1, and the references
therein). Even though the compactness assumption technically rules out some natural dis-
tributions, from a practical standpoint, there is no real concern because one can approxi-
mate the univariate density by truncating it to a large interval on which the above result
applies. Incidentally, there has been recent work on relaxing the compactness and den-
sity bounded below assumptions in the related problems of nearest-neighbor classification
Cannings, Berrett and Samworth (2020), Gadat, Klein and Marteau (2016) and entropy es-
timation Berrett, Samworth and Yuan (2019) which could provide useful insights on how
to relax these assumptions from Theorem 1, and what are the effects of tail behavior on the
heterogeneity testing problem.

• Note that ζ1 and ζ2 are both constants, which depend only on the dimension d . In fact, ζ1
has a closed form expression which can be easily derived. To this end, denote by Vd and Sd

the volume and the surface area of the unit ball in Rd , respectively. It is easy to verify that
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Sd = dVd . Moreover, for r > 0 and x ∈ Rd , denote by B(x, r) the ball of radius r centered
at x ∈ Rd . Then, using the observation that a point b is the nearest neighbor of the origin,
if are there no points of the Poisson process P1 in the ball B(0,‖b‖), it follows that

ζ1 = E(ζ1(000,P1) =
∫

‖b‖P(
b = N

(
0,P0,b

1
))

db = Sd

∫ ∞

0
tde−Vd td dt,

which, by the change of variable x = Vdtd , equals
( 1

Vd

) 1
d

∫ ∞

0
x

1
d e−x dx =

( 1
Vd

) 1
d

,

(
d + 1

d

)
,(5.4)

where ,(·) denotes the Gamma function.

Theorem 1 shows that, for K fixed densities f1, . . . , fK , and f0 = ∑K
a=1 wafa ,

sup
g∈F(f0)

ϕ(f0, g,ρ) = ρ
1
d +d sup

λ1,λ2,...,λK

K∑

a=1

λa

∫
fa(y)

(
∑K

b=1 wbfb(y))
1
d

dy

= ρ
1
d +d max

1≤a≤K

{∫
λafa(y)

(
∑K

b=1 wbfb(y))
1
d

dy

}
,(5.5)

where the last step uses the fact that λa ∈ [0,1], for 1 ≤ a ≤ K and
∑K

a=1 λK = 1. Note that
the RHS above is unknown, because the densities f1, . . . , fK and the weights w1, . . . ,wK as
well as the number K of mixture components, are all unknown. However, if we can consis-
tently estimate the RHS of (5.5), then the test, which rejects H0 in (2.3) when Tm,n is greater
than the estimated value of (5.5), would have zero asymptotic Type I error and would be
powerful whenever g has some separation from the set F(f0) (recall definition in (2.2)).

The approach described above is, in general, infeasible because nonparametric estimation
of mixture parameters in multivariate problems, especially when the number K is unknown,
can often be difficult. In the following we show how in location families, one can obtain a
slightly weaker upper bound on ϕ(f0, g,ρ), which is free of the unknown parameters, that can
be used to construct a valid and powerful test for the remodeling hypothesis (2.3). To this end,
consider {p(y|θ) = p(y − θ) : θ ∈ .} a family of densities indexed by the parameter space
. ⊆ Rd , where p : Rd → R≥0 such that

∫
Rd p(y)dy = 1. Throughout, we assume that the

densities in the family satisfy Assumption 1. Suppose the baseline samples U1,U2, . . . ,Um

are i.i.d. from the density f0(·) = ∑K
a=1 wap(·|θa), where θ1, . . . , θK ∈ . are fixed (but un-

known), and there exists a known constant L > 0 such that wa ≥ L, for all 1 ≤ a ≤ K . If
the infected samples V1,V2, . . . , Vn are i.i.d. from a density g in Rd , then the hypothesis of
remodeling (2.2), in this parametric setting, becomes,

H0 : g ∈ F(θ) versus HA : g /∈ F(θ),(5.6)

where θ = (θ1, . . . , θK) and F(θ) is defined as follows:

F(θ) =
{

q(·) =
K∑

a=1

λap(·|θa) : λa ∈ [0,1], for 1 ≤ a ≤ K, and
K∑

a=1

λa = 1

}

is the collection of K-mixtures of p(·|θ1),p(·|θ2), . . . , p(·|θK). Note that under the null H0,
g(·) = ∑K

a=1 λap(·|θa), for some λ1,λ2, . . . ,λK ∈ [0,1], such that
∑K

a=1 λa = 1. Then, using∑K
a=1 wap(y|θa) > wbp(y|θb) ≥ Lp(y|θb), for all b ∈ {1,2, . . . ,K},

ϕ(f0, g,ρ) = ρ
1
d +d

K∑

a=1

λa

∫
p(y|θa)

(
∑K

b=1 wbp(y|θb))
1
d

dy

<
ρ

1
d +d

L
1
d

∫
p(z)1− 1

d dz = γ ,

(5.7)
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where the last step follows by the change of variable z = y − θa . Note that the constant γ
depends on L (the lower bound on the mixing weights of the baseline population), the dimen-
sion d and the base function p, defining the location family (which is assumed to be known),
but not on the unknown means (θ1, θ2, . . . , θK ), the unknown weights (w1,w2, . . . ,wK ) or
the number of components, and hence can be directly calculated. This implies that the test,
which rejects when Tm,n > γ , would have zero asymptotic Type I error and would also be
powerful whenever g has some separation from the set of possible null distributions F(f0),
as explained below.

The corollary below shows how the bound in (5.7) can be used to construct a test based
on Tm,n, which is powerful for mixtures of radially symmetric distributions, such as Gaus-
sian mixtures and t-mixtures, among others. Hereafter, we assume p(y) = r(‖y‖) is ra-
dially symmetric, where r : R≥0 → R≥0 is a uniformly continuous function, such that∫
Rd r(‖y‖)dy = 1. (Recall, ‖y‖ denotes the Euclidean norm of y ∈Rd .)

COROLLARY 1. For the testing problem (5.6) in the family {p(y|θ) = r(‖y − θ‖) : θ ∈
.}, the following hold:

• For any g ∈ F(θ), with γ as defined in (5.7), we have

lim
m,n→∞Pf0,g(Tm,n > γ ) = 0.(5.8)

• There exists ε(γ ) > 0 such that

lim
m,n→∞Pf0,g(Tm,n > γ ) = 1,(5.9)

for any g(y) = ∑K
a=1 λ̄ap(y|θ ′

a) with min1≤a,b≤K ‖θ ′
a − θb‖1{λ̄a > 0} ≥ ε(γ ).

The proof of the corollary is given in the Supplementary Material (Section C of Banerjee,
Bhattacharya and Mukherjee (2020)). Note that the condition on g(y) in (5.9) quantifies a
natural notion of separation between g and the set F(θ) by assuming that at least one of the
mixture means of g is ε-far (in L2-distance) from all the unknown null means of the baseline
density. Explicit bounds on the separation ε(γ ) can be obtained from the proof of Corollary 1,
based on the tail decay of the base density p (details given in the Supplementary Material,
Section C of Banerjee, Bhattacharya and Mukherjee (2020)).

6. Discussion. We propose a novel nearest-neighbor based two-sample test for detect-
ing changes between the baseline and the case samples, in the presence of heterogeneity,
as is often the case in single-cell virology. For integrative analysis involving datasets col-
lected from different experiments with varying external conditions, batch-effect corrections
are needed before applying our methodology. Our testing procedure is specially designed for
mass cytometry based techniques (Bendall et al. (2011), Giesen et al. (2014)) which produces
moderate dimensional (d ∼ 50) cellular characteristics. In the future it will be interesting to
extend our methodology for dealing with single-cell RNA-seq based techniques (Huang et
al. (2018), Hwang, Lee and Bang (2018), Jaitin et al. (2014), Schiffman et al. (2017)) which
can produce highly multivariate phenotypes (d ∼ 104). A possible approach can be based
on random projections of the d dimensional cellular characteristics to a lower dimensional
space and then using our testing procedure on the reduced data. Also, it will be interesting to
develop efficient testing procedures where the underlying population contains heterogeneous
subpopulations with highly varying sizes, including some very rare subpopulations. Finally,
extending our hypothesis testing framework to distinguish between depletion and enrichment
in remodeled cells will be important.
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SUPPLEMENTARY MATERIAL

Supplement: A nearest-neighbor based nonparametric test for viral remodeling
in heterogeneous single-cell proteomic data (DOI: 10.1214/20-AOAS1362SUPPA; .pdf).
This supplement provides the proofs of the theoretical results and additional numerical ex-
periments.

Supplement: Source code for “A nearest-neighbor based nonparametric test for viral
remodeling in heterogeneous single-cell proteomic data” (DOI: 10.1214/20-AOAS1362
SUPPB; .zip). This supplement holds the R source code that reproduces the results in Sec-
tion 3.
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APPENDIX A: PROOF OF PROPOSITION 1

Recall that for U1, . . . , Um are i.i.d. f0 and V1, . . . , Vn are i.i.d. g. Then, in the usual asymptotic
regime, by Theorem 2 of Henze and Penrose (1999), almost surely,

R(Um,Vn)

m+ n
a.s.! 1� �(f0, g, ⇢)(A.1)

where �(f0, g, ⇢) =
R f2(x)+⇢2g2(x)

(1+⇢)(f0(x)+⇢g(x))dx.

Now, by Remark 1 of Henze and Penrose (1999) for any fixed g 2 F(f0) \ {f0},

1� �(f0, g, ⇢) < 1� �(f0, f0, ⇢) =
2⇢

(1 + ⇢)2
.

Note that for any fixed ↵ 2 (0, 1/2), Cm,n(↵)
m+n ! 2⇢

(1+⇢)2 almost surely. Therefore, by (A.1), for any

fixed g 2 F(f0) \ {f0}, R(Um,Vn) < Cm,n(↵) almost surely, and the result follows.

APPENDIX B: PROOF OF THEOREM 1

The proof of Theorem 1 is an immediate consequence of the following two lemmas. The first
lemma computes the limit of n

1
d D̄m,n.

Lemma 1. Let D1, D2, . . . , Dn be as defined in equation (2.5). Then, under Assumption 1, as

m,n ! 1,

1

n1� 1
d

nX

i=1

Di
L2! ⇢

1
d ⇣1

Z
g(y)

f0(y)
1
d

dy,(B.1)

where ⇣1 is as defined in the statement of Theorem 1.

The next lemma computes the limit of n
1
d C̄m,n, which combined with Lemma 1 completes the

proof of Theorem 1.

†The research here was partially supported by NSF DMS-1811866.
†Corresponding author: gmukherj@marshall.usc.edu
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Lemma 2. Let C1, C2, . . . , Cn be as defined in equation (2.6). Then, under Assumption 1, as

m,n ! 1,

1

n1� 1
d

nX

i=1

Ci
L2! ⇢

1
d ⇣2

Z
g(y)

f0(y)
1
d

dy,(B.2)

where ⇣2 is as defined in the statement of Theorem 1.

The proofs of Lemma 1 and Lemma 2 are given below in Section B.2 and Section B.3, respec-
tively. We begin with some preliminaries about Poisson processes and stabilization of geometric
functionals, introduced by Penrose and Yukich (2003), in Section B.1 below.

B.1. Preliminaries. Given z 2 Rd, denote by '(z,Z) a measurable R+ valued function de-
fined for all locally finite set Z ⇢ Rd and z 2 Z. If z /2 Z, then '(z,Z) := '(z,Z [ {z}). The
function ' is said to be translation invariant if '(y + z, y + Z) = '(z,Z). Penrose and Yukich
(2003) defined stabilizing functions as follows:

Definition 1. (Penrose and Yukich (2003)) For any locally finite point set Z ⇢ Rd and any
integer M 2 N,

'(Z,M) := sup
N2N

 
esssupA⇢Rd\B(0,M)

|A|=N

{'(0,Z \B(0,M) [A)}
!

and

'(Z,M) := inf
N2N

 
essinfA⇢Rd\B(0,M)

|A|=N

{'(0,Z \B(0,M) [A)}
!
,

where the essential supremum/infimum is taken with respect to the Lebesgue measure on RdN . The
functional ' is said to stabilize Z if

(B.3) lim inf
M!1

'(Z,M) = lim sup
M!1

'(Z,M) = '(0,Z).

We will be interested in functionals that stabilize almost surely on P�, the homogeneous Poisson
process with rate � in Rd. Note that with probability 1, '(P�,M) is nonincreasing in M and
'(P�,M) is nondecreasing in M , therefore, they both converge. The definition of stabilization in
(B.3) means they converge to the same limit almost surely. Note that any functional '(z,Z) which
depends only on the points of Z within a fixed distance of z is stabilizing on P�. In our proofs, we
will consider the following two functionals:

• For y 2 Rd, and Z ⇢ Rd finite, define

⇣1(y,Z) :=
X

z2Z
||y � z||1{z = N(y,Z)},(B.4)

which is the distance from y to its nearest neighbor in Z.
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• For y 2 Rd, and Z ⇢ Rd finite, define

⇣2(y,Z) :=
X

z12Z

X

z22Z\{z1}

||z1 � z2||1{z1 = N(y,Z) and z2 = N(z1,Z\{y})},(B.5)

which is the distance between the nearest neighbor of y in Z and its nearest neighbor in Z.

It is easy to verify that both the functionals ⇣1(·, ·) and ⇣2(·, ·) stabilize P�, for all � > 0. This is
because the set of edges incident to the origin in the directed 1-nearest neighbor (NN) graph1 is
una↵ected by the addition or removal of points outside a ball of almost surely finite radius (Penrose
and Yukich, 2003, Theorem 2.4).

B.2. Proof of Lemma 1. We now proceed to prove Lemma 1. We begin by noting that
E(D̄m,n) = E(D1) and

E(D1) =
mX

j=1

E||V1 � Uj ||1{Uj = N(V1,Um)} = E⇣1(V1,Um),(B.6)

where ⇣1(·, ·) is as defined above in (B.4) and Um = {U1, U2, . . . , Um} are i.i.d. points from the
density f0. Note that, by translation invariance,

⇣1(000,m
1
d (Um � V1)) := m

1
d

mX

j=1

||V1 � Uj ||1{m
1
d (Uj � V1) = N(000,m

1
d (Um � V1))}

= m
1
d

mX

j=1

||V1 � Uj ||1{Uj = N(V1,Um)}

= m
1
d ⇣1(V1,Um).(B.7)

The following lemma shows that the second moment of ⇣1(000,m
1
d (Um � V1)) is bounded, under

Assumption 1.

Lemma 3. For densities f0 and g as in Assumption 1,

sup
m2N

E⇣1(000,m
1
d (Um � V1))

2 .d 1.

Proof. Note for d  2, the result holds trivially, by the boundedness of the support. Hence,
assuming, d � 3, and taking squares in (B.7) gives,

⇣1(000, m
1
d (Um � V1))

2

:= m
2
d

X

1j1,j2m

||V1 � Uj1 || · ||V1 � Uj2 ||1{Uj1 = N(V1,Um), Uj2 = N(V1,Um)}

. m
2
d

mX

j=1

||V1 � Uj ||21{Uj = N(V1,Um)},(B.8)

1 Given a finite set S ⇢ Rd, the directed 1-nearest neighbor graph (1-NN) is a graph with vertex set S with a
directed edge (a, b), for a, b 2 S, if b is the nearest neighbor of a in S.
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using the inequality ab  a2+b2

2 and the fact
Pm

j=1 1{Uj = N(V1,Um)} = 1. Now, for n large
enough,

m
2
dE

mX

j=1

||V1 � Uj ||21{Uj = N(V1,Um)} =
m

2
d

n
E

nX

i=1

mX

j=1

||Vi � Uj ||21{Uj = N(Vi,Um)}

.d
1

n1� 2
d

E�(Vn,Um),(B.9)

where the functional �(A,B) :=
P

a2A
P

b2B ||a � b||21{b = N(a,B)}, where A,B ⇢ Rd are finite
and disjoint. Note that for any partition {S0, S1, . . . , } of Rd,

�(A,B) 
1X

K=0

�(A \ SK , B \ SK),(B.10)

that is, the functional � is subadditive. (Note that the sum above is, in fact, finite because the
sets A and B are finite.) Then by a modification of (Yukich, 2006, Lemma 3.3), one can obtain

the growth bound �(A,B)  diam(A[B)2|A[B|
d�2
d . Now, choosing S0 to be the ball of radius 2

centered at the origin, and SK to be the annulus centered at the origin with inner radius 2K and
outer radius 2K+1, for K � 1, it follows from (B.10) that

�(Vn,Um) 
1X

K=0

22K

������

nX

i=1

1{Vi 2 SK}+
mX

j=1

1{Ui 2 SK}

������

d�2
d

.

Now, taking expectations above and the Jensen’s inequality gives, for n large enough,

1

n1� 2
d

E�(Vn,Um) .d

1X

K=0

22KP(V1 2 SK)
d�2
d +

1X

K=0

22KP(U1 2 SK)
d�2
d ,

both of which are finite by the integrality assumptions on f0 and g (using arguments in (Yukich,
2006, Page 85)). The result now follows by combining the bound above with (B.8) and (B.9).

The lemma above shows that the sequence {⇣1(000,m
1
d (Um � V1))}M�1 is uniformly integrable.

Now, since the functional ⇣1(·, ·) stabilizes on homogeneous Poisson processes, by arguments similar
to the proof of (Yukich, 2013, Lemma 8.1), it follows that

lim
M!1

E⇣1(000,m
1
d (Um � V1)) = E⇣1(000,Pf0(V ))),(B.11)

where ⇣1(000,P1) is as defined in equation (5.2), V is a random variable distributed according to the
density g, and Pf0(V ) is a Cox process with intensity measure f0(V ), which is a Poison process with
a random intensity measure f0(V ). Conditioning on V gives,

E⇣1(000,Pf0(V ))) =

Z
E⇣1(000,Pf0(y)))g(y)dy = E⇣1(000,P1))

Z
g(y)

f0(y)
1
d

dy,
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where the last step uses P�
D
= �� 1

dP1, for any � > 0. This implies, by (B.6), (B.7), and (B.11), that

m
1
dE(D̄m,n) = E⇣1(000,m

1
d (Um � V1)) ! E(⇣1(000,P1))

Z
g(y)

f0(y)
1
d

dy.

Then, recalling n/m ! ⇢ gives,

E
 

1

n1� 1
d

nX

i=1

Di

!
! ⇢

1
dE(⇣1(000,P1))

Z
g(y)

f0(y)
1
d

dy,(B.12)

which establishes the limit in (B.1) in expectation.
To complete the proof of the lemma we need to show that the variance of the LHS in (B.1) goes

to zero. To this end, note that

E
 

1

n1� 1
d

nX

i=1

Di

!2

=
1

n1� 2
d

ED2
1 +

n(n� 1)

n2
n

2
dED1D2 = (1 + o(1))n

2
dED1D2 + o(1),(B.13)

since n
2
dED2

1 .d 1, by Lemma 3. Next, note that

m
2
dE(D1D2) = m

2
d

mX

j1=1

mX

j2=1

E||V1 � Uj1 ||||V2 � Uj2 ||1{Uj1 = N(V1,Um)}1{Uj2 = N(V2,Um)}

= m
2
d

mX

j1=1

||V1 � Uj1 ||1{Uj1 = N(V1,Um)}
mX

j2=1

||V2 � Uj2 ||1{Uj2 = N(V2,Um)}

= E⇣1(000,m
1
d (Um � V1))⇣1(000,m

1
d (Um � V2)).

Now, by arguments similar to the proof of (Yukich, 2013, Proposition 3.1), it follows that

lim
M!1

m
2
dE(D1D2) = lim

M!1
E⇣1(000,m

1
d (Um � V1))⇣1(000,m

1
d (Um � V2)) = E⇣1(000,Pf0(V )))

2,

where, as before, V is a random variable distributed according to the density g, and Pf0(V ) is a
Cox process with intensity measure f0(V ). This combined with (B.13) and (B.12), shows that

Var

 
1

n1� 1
d

nX

i=1

Di

!
! 0.

This completes the proof of Lemma 1. ⇤

B.3. Proof of Lemma 2. Denote [m] := {1, 2, . . .m}. To begin with note that E(C̄m,n) =
E(C1) and

E(C1) =
X

j2[m]

X

s2[m]\{j}

E||Uj � Us||1{Us = N(V1,Um) and Uj = N(Us,Um)}

= ⇣2(V1,Um).(B.14)
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As in (B.7), by translation invariance,

⇣2(000,m
1
d (Um � V1)) = m

1
d

X

j2[m]

X

s2[m]\{j}

||Uj � Us||1{Us = N(V1,Um) and Uj = N(Us,Um)}

= m
1
d ⇣2(V1,Um).(B.15)

Now, as in Lemma 3, it can be shown that supm2N E⇣2(000,m
1
d (Um�V1))2 .d 1. Therefore, since the

functional ⇣2(·, ·) stabilizes on homogeneous Poisson processes, by arguments similar to the proof
of (Yukich, 2013, Lemma 8.1), it follows that

lim
M!1

E⇣2(000,m
1
d (Um � V1)) = E⇣2(000,Pf0(V ))) = f0(y)

� 1
dE⇣2(000,P1))(B.16)

where ⇣2(000,P1) is as defined in equation (5.2), V is a random variable distributed according to the
density g, and Pf0(V ) is a Cox process with intensity measure f0(V ). Then, recalling n/m ! ⇢, and
combining (B.14), (B.15), and (B.16) gives,

E
 

1

n1� 1
d

nX

i=1

Ci

!
! ⇢

1
dE⇣2(000,P1))

Z
g(y)

f0(y)
1
d

dy.

which establishes the limit in (B.2) in expectation.
Finally, similar to the proof of Lemma 1, it can be shown that the variance of the LHS in (B.2)

goes to zero, completing the proof. ⇤

As mentioned earlier, there does not appear to be a closed form expression for ⇣2 := E⇣2(000,P1)).
However, by an application of the FKG inequality for Poisson processes (Janson, 1984; Last and
Penrose, 2017), it can be shown that ⇣2 � ⇣1. This is described in the following remark.

Remark 1. From the definition of ⇣2, we get

⇣2 := E(⇣2(000,P1)) =

Z Z
||w0 � b||P(b = N(0,P0,b

1 ) and w0 = N(b,P0,b
1 \{0}))dbdw0.(B.17)

For b, w0 2 Rd
fixed, consider the functions 1{b = N(0,P0,b

1 )} and 1{w0 = N(b,P0,b
1 \{0})}, defined

on the Poisson point process P0
1 . Now, let � and �0

be two realizations of the point process P0
1 . Note

that by if � ⇢ �0
, then 1{b = N(0,�0)}  1{b = N(0,�)}, because if b is a nearest neighbor of the

origin in �0
, it will be also be nearest neighbor of the origin in the smaller set �. Similarly, for � ⇢ �0

,

1{w0 = N(b,�0\{0})}  1{w0 = N(b,�\{0})}. Therefore, both the functions 1{b = N(0,P0,b
1 )}

and 1{w0 = N(b,P0,b
1 \{0})} are nonincreasing, and by an application of the FKG inequality for

functions on Poisson processes (Janson, 1984, Lemma 2.1), it follows that

P(b = N(0,P0,b
1 ) and w0 = N(b,P0,b

1 \{0})) � P(b = N(0,P0
1 ))P(w0 = N(b,Pb

1))

This combined with (B.17) gives,

⇣2 �
Z Z

||w0 � b||P(b = N(0,P0
1 ))P(w0 = N(b,Pb

1))dbdw
0

=

Z Z
||w0 � b||e�Vd||b||e�Vd||w0�b||dbdw0

=

✓Z
e�Vd||b||db

◆✓Z
||v||e�Vd||v||dv

◆
= ⇣1,
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where the last step uses the definition of ⇣1 from equation (5.4), and
R
e�Vd||b||db = Sd

R1
0 rd�1e�Vdrddr =

Vd
R1
0 e�Vdydy = 1.

d ⇣1 ⇣2 �d = ⇣2 � ⇣1
1 0.5006 0.7493 0.2487
2 0.5008 0.5969 0.0961
3 0.5580 0.6155 0.0574
4 0.6187 0.6572 0.0385
5 0.6782 0.7054 0.0271
6 0.7361 0.7548 0.0187

Table 1

Numerical estimates of ⇣1 and ⇣2.

Numerical estimates of the constants ⇣1 and ⇣2 for small dimensions are given in Table 1. This
is computed using the average (over 20 iterations) of the values of n

1
d D̄m,n and n

1
d C̄m,n (recall

equation (2.7)) with m = n = 100000 i.i.d uniform points in the d-dimensional unit cube [0, 1]d.

APPENDIX C: PROOF OF COROLLARY 1

Note that, by equation (5.7), for g 2 F(✓), Tm,n
P! '(f0, g, ⇢) < �. This implies, limm,n!1 Pf0,g(Tm,n >

�) = 0, which proves (5.8).
Under the alternative, suppose g(y) =

PK
a=1 �̄ap(y|✓0a), such that, for some 1  j  K with

�̄j > 0, min1aK ||✓0j � ✓a|| � "(�), where "(�) will be chosen later. Then

'(f0, g, ⇢) = ⇢
1
d�d

Z
g(y)

f0(y)
1
d

dy = ⇢
1
d�d

KX

a=1

Z
�̄ap(y|✓0a)

⇣PK
b=1wbp(y|✓b)

⌘ 1
d

dy

� ⇢
1
d�d

Z

B(✓0j ,1)

�̄jp(y|✓0j)
⇣PK

b=1wbp(y|✓b)
⌘ 1

d

dy.(C.1)

Now, since the function r(·) is uniformly continuous and
R1
0 r(z)dz < 1, it follows that limz!1 r(z) =

0 (see discussion following (Niculescu and Popovici, 2011, Corollary 1)). This implies for every

M > 0 there exists a ⌘(M,d) > 0, such that r(z)  M� 1
d , for z > ⌘(M,d). Define

M :=
2�

⇢
1
d�dL

R
B(0,1) p(y)dy

and "(�) := ⌘(M,d) + 1.

Take a point ✓0j such that ||✓0j � ✓a|| � "(�), for all 1  a  K. Then, for all 1  a  K, if
y 2 B(✓0j , 1),

⌘(M,d) + 1  ||✓0j � ✓a||  ||✓0j � y||+ ||y � ✓a||  1 + ||y � ✓a||,

implies ||y � ✓a|| � ⌘(M,d). Therefore, for all 1  a  K, if y 2 B(✓0j , 1), p(y|✓a) = p(y � ✓a) =
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r(||y � ✓a||)  M� 1
d and

PK
a=1wap(y|✓a)  M� 1

d . Then, from (C.1),

'(f0, g, ⇢) � ⇢
1
d�d�̄jM

Z

B(✓0j ,1)
p(y|✓0j)dy = ⇢

1
d�d�̄jM

Z

B(✓0j ,1)
p(y � ✓0j)dy

� ⇢
1
d�dLM

Z

B(0,1)
p(y)dy

= 2�.

This implies limm,n!1 Pf0,g(Tm,n > �) = 1, since Tm,n
P! '(f0, g, ⇢) > 2�, for g as above. This

completes the proof of (5.9). ⇤

Note that the separation "(�) depends on ⌘(M,d), the rate of decay of the tail of the base density
p. For instance, when p is the standard multivariate normal distribution N(0, Id), then it su�ces
to choose ⌘(M,d) = K(d)

p
logM , where K(d) is a constant depending on d.

APPENDIX D: ADDITIONAL NUMERICAL EXPERIMENTS

D.1. Sensitivity of the Numerical Experiments in Section 3 to the choice of ⌧fc. We
consider the setting of Experiment 2 in section 3.2 and report the sensitivity of our inference using
TRUH to changes in the fold change constant ⌧fc. Recall that in Experiment 2,

F0 = 0.5 Gamd(shape = 51d, rate = 1d,⌃1) + 0.5 Expd(rate = 1d,⌃2),

where Gamd and Expd are d dimensional Gamma and Exponential distributions. For generating
correlated Gamma and Exponential variables, we use the Gaussian copula approach based function
from the R-package lcmix (Dvorkin, 2012; Xue-Kun Song, 2000). We consider tapering matrices
with positive and negative autocorrelations: (⌃1)ij = 0.7|i�j| and (⌃2)ij = �0.9|i�j| for 1  i, j  d.
For simulating Vn from G, we consider the following two scenarios:

• Scenario I: Here, G = Expd(rate = 1d,⌃2). In this case, G arises from only one of the
components of F0, that is, G 2 F(F0).

• Scenario II: Here, G = 0.1 Gamd(shape = 101d, rate = 0.51d,⌃1) + 0.9 Expd(rate = 1d,⌃2).
In this setting, G /2 F(F0) and the composite null H0 is not true. When the ratio n/m is
small, this scenario presents a di�cult setting for detecting departures from H0 as majority
of the case samples from Vn will arise from Expd(rate = 1d,⌃2) and the tests will rely on
only a small fraction of samples from Gamd(shape = 101d, rate = 0.51d,⌃1) to reject the null
hypothesis.

Table 2

Rejection rates of TRUH at 5% level of significance: Experiment 2 and Scenario I wherein H0 : G 2 F(F0) is true.

m = 500, n = 50 m = 2000, n = 200
⌧fc d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
1.0 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.4 0.000 0.000 0.000 0.000 0.000 0.000

Tables 2 and 3 report the average rejection rates of TRUH across 100 repetitions of the test as ⌧fc
varies over {1, 1.2, 1.4}. We note that the rejection rates under Scenario II are bigger than those
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Table 3

Rejection rates of TRUH at 5% level of significance: Experiment 2 and Scenario II wherein H0 : G 2 F(F0) is false.

m = 500, n = 10 m = 2000, n = 40
⌧fc d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
1.0 0.580 0.580 0.580 0.880 0.940 0.960
1.2 0.500 0.560 0.580 0.820 0.860 0.900
1.4 0.460 0.480 0.500 0.780 0.760 0.700

Table 4

Rejection rates of TRUH at 5% level of significance under Dirichlet sampling of mixing proportions:

Experiment 2 and Scenario I wherein H0 : G 2 F(F0) is true.

m = 500, n = 50 m = 2000, n = 200
⌧fc d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
1.0 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.4 0.000 0.000 0.000 0.000 0.000 0.000

of Scenario I, which indicates that our proposed procedure is powerful against departures from
the null hypothesis while the rejection rates under Scenario I are below the prespecified 0.05 level
establishing that it is a conservative test across all the regimes considered in the table. These results
also indicate that an appropriate choice of ⌧fc must be bigger or equal to 1 for a value less than 1
may lead to incorrect rejections of the null hypothesis.

Table 5

Rejection rates of TRUH at 5% level of significance under Dirichlet sampling of mixing proportions:

Experiment 2 and Scenario II wherein H0 : G 2 F(F0) is false.

m = 500, n = 10 m = 2000, n = 40
⌧fc d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
1.0 0.580 0.580 0.580 0.880 0.940 0.960
1.2 0.500 0.560 0.580 0.840 0.860 0.900
1.4 0.440 0.480 0.500 0.780 0.760 0.700

The preceding analyses were based on sampling the mixing proportions {�1, . . . ,�K̂} only from

the corners of the K̂ dimensional simplex SK̂ (see section 2.3). In what follows, we alter this sam-

pling scheme and sample the K̂ mixing proportions from a Dirichlet distribution with parameters
{�1, . . . ,�K̂}. We set �a = 0.1 for 1  a  K̂ and report the rejection rates under this sampling
scheme in tables 4 and 5. With �a = 0.1, the Dirichlet distribution places a large mass on the
corners of the K̂ dimensional simplex which explains the similar trend in the rejections rates that is
observed across both the scenarios in tables 4 and 5 when compared to tables 2 and 3, respectively.

D.2. Sensitivity of the Real Data Analysis in Section 4 to the choice of ⌧fc. In
section 4 the fold change constant ⌧fc was set to 1.1. In this section we report the sensitivity of the
results reported in section 4 for ⌧fc 2 {1, 1.1, 1.3, 1.7, 2}. In tables 6 to 9 we report the p-values of
the TRUH test statistic for testing remodeling under HIV infection under the four cases as described
in section 4. For Cases 1 and 3, which are known to exhibit remodeling, we note from tables 6 and
8 that for ⌧fc > 1.1, the TRUH test statistic fails to detect remodeling across all four donors. This
is not unexpected since a relatively large value of ⌧fc o↵ers higher conservatism in rejecting the null
hypothesis of no remodeling. Tables 7 and 9, on the other hand, represent cases of no remodeling
and ⌧fc � 1.1 allows TRUH to correctly detect no remodeling for Cases 2 and 4.
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Table 6

p-values of TRUH in CASE 1: Uninfected versus Nef-rich HIV Infected for entire 35 markers.

Donor 1 Donor 2 Donor 3 Donor 4
⌧fc m = 24, 984, n = 245 m = 31, 552, n = 521 m = 17, 704, n = 211 m = 22, 830, n = 660
1.0 < 0.001 < 0.001 < 0.001 < 0.001
1.1 < 0.001 < 0.001 < 0.001 < 0.001
1.3 0.082 0.05 0.086 0.292
1.7 1 1 1 1
2.0 1 1 1 1

Table 7

p-values of TRUH in CASE 2: Uninfected versus Nef-rich HIV Infected for 31 invariant markers.

Donor 1 Donor 2 Donor 3 Donor 4
⌧fc m = 24, 984, n = 245 m = 31, 552, n = 521 m = 17, 704, n = 211 m = 22, 830, n = 660
1.0 < 0.001 < 0.001 < 0.001 < 0.001
1.1 < 0.001 0.67 0.274 0.914
1.3 1 1 1 1
1.7 1 1 1 1
2.0 1 1 1 1

Table 8

p-values of TRUH in CASE 3: Uninfected versus Nef-deficient HIV Infected for the entire 35 markers.

Donor 1 Donor 2 Donor 3 Donor 4
⌧fc m = 24, 984, n = 129 m = 31, 552, n = 382 m = 17, 704, n = 174 m = 22, 830, n = 440
1.0 < 0.001 < 0.001 < 0.001 < 0.001
1.1 < 0.001 < 0.001 < 0.001 < 0.001
1.3 1 1 1 1
1.7 1 1 1 1
2.0 1 1 1 1

Table 9

p-values of TRUH in CASE 4: Uninfected versus Nef-deficient HIV Infected for the entire 31 invariant markers.

Donor 1 Donor 2 Donor 3 Donor 4
⌧fc m = 24, 984, n = 129 m = 31, 552, n = 382 m = 17, 704, n = 174 m = 22, 830, n = 440
1.0 < 0.001 < 0.001 < 0.001 < 0.001
1.1 0.58 0.94 0.464 0.524
1.3 1 1 1 1
1.7 1 1 1 1
2.0 1 1 1 1

D.3. Computation Time Comparisons. In this section we present a comparison of the
computing time for each of the seven competing testing procedures under the settings of Scenarios
I and II of Experiment 2 (see section 3.2) with n = 15000, m = 150 and d 2 {5, 15, 30, 50}. Tables 10
and 11 report the average computing time in minutes across 10 repetitions of the testing problem
as d varies. Here the computing time represents the time each test takes to generate a p-value.
We note that the Energy test is extremely e�cient with an average computation time just over
a minute for these scenarios. Our proposed testing procedure TRUH is the next best and is closely
followed by the four variants of the Edge Count tests. The R package gtests that implements these
variants of the Edge Count tests, spits the results for all these variants simultaneously and thus
the di↵erent Edge Count tests exhibit the same performance in tables 10 and 11. We note that the
computation time of TRUH increases with d, which is not surprising because the computational cost
for running the 1-nearest neighbor algorithm is O(nmd). The Edge Count tests, on the other hand,
rely on a minimum spanning tree construction which has O(n2) complexity and dominates the
overall running time. In our experiments, we find that the Crossmatch test is the slowest primarily
because this test requires a number of computationally expensive steps such as ranking each of the
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Table 10

Mean computing time (in minutes) for the seven competing testing procedures under the setting of Scenario

I Experiment 2. Here n = 15000, m = 150.

d Energy Crossmatch E Count GE Count WE Count MTE Count TRUH

5 1.128 41.221 8.242 8.242 8.242 8.242 1.047
15 1.142 35.225 9.394 9.394 9.394 9.394 2.161
30 1.162 35.141 9.481 9.481 9.481 9.481 3.970
50 1.235 42.062 9.784 9.784 9.784 9.784 6.380

Table 11

Mean computing time (in minutes) for the seven competing testing procedures under the setting of Scenario

II Experiment 2. Here n = 15000, m = 150.

d Energy Crossmatch E Count GE Count WE Count MTE Count TRUH

5 1.107 45.604 7.277 7.277 7.277 7.277 1.003
15 1.147 37.688 7.502 7.502 7.502 7.502 2.099
30 1.117 32.858 7.581 7.581 7.581 7.581 3.634
50 1.150 46.575 6.833 6.833 6.833 6.833 6.044

d dimensions, computing and inverting the d dimensional covariance matrix of the ranks and finally
calculating the (n+m)⇥ (n+m) matrix of Mahalanobis distance between the rank pairs.

D.4. Influence of mixing proportions on the null distribution. To understand how the
specific mixing proportions influence the null distribution of the TRUH statistic, we consider the
setting of Experiment 2 (section 3.2 of the manuscript) where the uninfected cells arise from
a 2-component mixture distribution given by F0 = 0.5 Gamd(shape = 51d, rate = 1d,⌃1) +
0.5 Expd(rate = 1d,⌃2). The infected cells arise from G = Expd(rate = 1d,⌃2) for scenario I
and from G = 0.1Gamd(shape = 101d, rate = 0.51d,⌃1) + 0.9Expd(rate = 1d,⌃2) for scenario II.
Thus scenario I represents preferential infection and scenario II represents remodeling. Here Gamd

and Expd are d dimensional Gamma and Exponential distributions.
Figure 1 plots the K̂ = 2 null distributions of the TRUH statistic under Scenario I. Here the

bootstrap algorithm generates the mixing proportions {�1, . . . ,�K̂} in step (i) only from the corners

of the K̂ = 2 dimensional simplex SK̂ and so there are B1 = K̂ such null distributions for each of
the 50 repetitions of the test. The null distributions represented by the red box plots arise when the
n pseudo infected cells are randomly sampled from the first component of F0, which corresponds
to a configuration of mixing proportions given by {�1 = 1,�2 = 0}. The box plots in green, on
the other hand, arise when the n pseudo infected cells are randomly sampled from the second
component of F0, which corresponds to {�1 = 0,�2 = 1}. The blue dots represent the TRUH test
statistic across the 50 repetitions of the test. Note that in Scenario I, the infected cells arise from
the second component of F0 and this explains why the TRUH test statistic, given by the blue dots,
are closer to the box plots in green. However, the null distribution represented by the red box plots,
which correspond to the mixing proportions {�1 = 1,�2 = 0}, o↵er more conservatism in rejecting
the null hypothesis of no remodeling as far as Scenario I is concerned.

Figure 2, on the other hand, plots the K̂ = 2 null distributions of the TRUH statistic under
Scenario II which is a case of remodeling. Here the TRUH test statistic is capped at 15 for ease of
visual representation. Unlike Scenario I, the infected cells do not arise from the convex hull F(F0)
of F0, which explains why the TRUH test statistic are far away from the two null distributions.
However, even in this scenario when the n pseudo infected cells are randomly sampled from the
first component of F0, the corresponding null distribution (box plots in red) o↵ers more conservatism
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Fig 1: The red box plots and the green box plots represent K̂ = 2 null distributions for each of the
50 repetitions of Scenario I (H0 is true) corresponding to mixing proportions {�1 = 1,�2 = 0} and {�1 =
0,�2 = 1} respectively. The blue dots are the TRUH test statistic in each repetition of the test. Left: Uninfected
and Infected sample sizes are m = 500, n = 50 and dimensionality of each sample is d = 30. Right: m =
2000, n = 200, d = 30.
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Fig 2: The red box plots and the green box plots represent K̂ = 2 null distributions for each of the 50
repetitions of Scenario II (H0 is false) corresponding to mixing proportions {�1 = 1,�2 = 0} and {�1 =
0,�2 = 1} respectively. The blue dots are the TRUH test statistic in each repetition of the test and are capped
at 15 for ease of visual representation. Left: Uninfected and Infected sample sizes are m = 500, n = 50 and
dimensionality of each sample is d = 30. Right: m = 2000, n = 200, d = 30.
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in rejecting the null hypothesis of no remodeling than the null distribution that arises under the
configuration {�1 = 0,�2 = 1}.
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